Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
1.
Food Chem ; 455: 139779, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38833859

RESUMEN

This study investigated the production of antioxidant peptides from Porphyra yezoensis through fermentation with three strains of microorganisms: Lactiplantibacillus plantarum L13, Bacillus amyloliquefaciens MMB-02, and Saccharomyces cerevisiae A8. The crude peptides were extracted by aqueous acid precipitation and purified by Sephadex G-25 gel column to produce highly active antioxidant components with molecular weight of <4000 Da. The LC-MS/MS result revealed that the fermentation group contained more hydrophobic amino acids and oligopeptides, which were mainly originated from phycobiliproteins and algal blue proteins. Finally, the antioxidant activity of Porphyra yezoensis was determined with DPPH· and ABTS· scavenging rates of 54.87% and 57.39%, respectively. The ferric ion-reducing power (FRAP) and enzyme activities of SOD and CAT were significantly higher than those of the control group. This study provides a scientific foundation for the deep processing of striped seaweed and contributes to the theoretical understanding of synthetic antioxidant substitutes.


Asunto(s)
Antioxidantes , Fermentación , Péptidos , Porphyra , Porphyra/química , Porphyra/metabolismo , Porphyra/microbiología , Antioxidantes/química , Antioxidantes/metabolismo , Péptidos/química , Péptidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Espectrometría de Masas en Tándem , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/química , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/química , Algas Comestibles
2.
Food Chem ; 455: 139928, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850974

RESUMEN

In this study, the impact of Gluconolactone (GDL) concentration on the formation of high-internal-phase emulsion gels (HIPEGs) and the gastrointestinal digestive viability of Lactobacillus plantarum encapsulated within these HIPEGs were demonstrated. Increasing GDL concentrations led to cross-linking of particles at the oil-water interface, thereby stabilizing smaller oil droplets. The addition of GDL to HIPEs results in a significant increase in the secondary structure of SPI, specifically in ß-sheet and ß-turn formations, accompanied by a reduction in α-helix percentage. This alteration enhanced the binding effect of protein on water, leading to changes in intermolecular force. Notably, HIPEGs containing 3.0% GDL demonstrated superior encapsulation efficiency and delivery efficiency, reaching 99.0% and 84.5%, respectively. After 14 d of continuous zebrafishs feeding, the intestinal viable cells count of Lactobacillus plantarum reached 1.18 × 107 CFU/mL. This finding supports the potential use of HIPEGs as a probiotic delivery carrier, effectively enhancing the intestinal colonization rate.


Asunto(s)
Emulsiones , Tracto Gastrointestinal , Geles , Gluconatos , Lactobacillus plantarum , Probióticos , Pez Cebra , Lactobacillus plantarum/química , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/crecimiento & desarrollo , Emulsiones/química , Probióticos/química , Probióticos/farmacología , Probióticos/administración & dosificación , Animales , Geles/química , Gluconatos/química , Gluconatos/metabolismo , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/metabolismo , Viabilidad Microbiana , Lactonas
3.
Int J Biol Macromol ; 271(Pt 1): 132406, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754658

RESUMEN

The present study aimed to enhance the survivability of the encapsulated biocomposites of Lactiplantibacillus plantarum AB6-25 and Saccharomyces boulardii T8-3C within the gastrointestinal system (GIS) and during storage period. AB6-25 and T8-3C were individually co-encapsulated using either lactobionic acid (LBA) in Na-alginate (ALG)/demineralized whey powder (DWP) or solely potential probiotics in ALG microcapsules. Free probiotic cells were utilized as the control group. Both microcapsules and free cells underwent freeze-drying. The encapsulation and freeze-drying efficiency of core materials were evaluated. The protective effect of encapsulation on the probiotics was examined under simulated GIS conditions and during storage at either 25 °C or 4 °C. Additionally, the microcapsules underwent analysis using fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscope (SEM). Encapsulation and freeze-drying processes were carried out efficiently in all groups (88.46 %-99.13 %). SEM revealed that the microcapsules possessed a spherical and homogeneous structure, with sizes ranging from 3 to 10 µm. ALG/DWP and LBA presence in the microcapsule structure was confirmed through FTIR, XRD analysis indicated the formation of a new composite. Over 180 days, all microcapsule groups stored at 4 °C maintained their therapeutic dosage viability. However, after four months, microcapsules stored at 25 °C exhibited a decline in yeast survivability below the therapeutic threshold. Experimental groups demonstrated better viability under simulated GIS conditions compared to the control. These findings suggest the potential use of microencapsulated probiotics as a food supplement and indicate that microcapsule groups containing AB6-25 and T8-3C stored at 4 °C can be preserved for six months.


Asunto(s)
Alginatos , Cápsulas , Disacáridos , Probióticos , Saccharomyces boulardii , Suero Lácteo , Alginatos/química , Saccharomyces boulardii/química , Suero Lácteo/química , Probióticos/química , Disacáridos/química , Liofilización , Polvos , Lactobacillus plantarum/química , Lactobacillaceae/química
4.
J Microbiol Biotechnol ; 34(5): 1051-1058, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38803106

RESUMEN

This study investigated the impact of inulin (INL) on viability of L. plantarum D-2 (LPD2) by encapsulation through spray drying (SD) and its commercialization potential to alternative of conventional wall material maltodextrin (MD). LPD2, derived from sea tangle (Saccharina japonica) kimchi, is probiotics exhibiting significant attributes like cholesterol reduction, antioxidant properties, and resilience to acidic and bile environments. To enhance storage viability and stability of LPD2, encapsulation was applied by SD technology. The optimum encapsulation condition with MD was 10% MD concentration (MD10) and inlet temperature (96°C). The optimum concentration ratio of MD and INL was 7:3 (INL3) for alternative of MD with similar encapsulation yield and viability of LPD2. Viability of LPD2 with INL3 exhibited almost 8% higher than that with MD10 after 50 days storage at 25°C. Physicochemical characteristics of the encapsulated LPD2 (ELPD2) with MD10 and INL3 had no significant different between flowability and morphology. But, ELPD2 with INL3 had lower water solubility and higher water absorption resulting in extension of viability of LPD2 compared to that with MD10. The comprehensive study results showed that there was no significant difference in the encapsulation yield and physicochemical properties between ELPD2 with MD10 and INL3, except of water solubility index (WSI) and water absorption index (WAI). INL have the potential to substitute of MD as a commercial wall material with prebiotic functionality to enhance the viability of LPD2 by encapsulation.


Asunto(s)
Inulina , Lactobacillus plantarum , Viabilidad Microbiana , Polisacáridos , Prebióticos , Secado por Pulverización , Inulina/química , Inulina/farmacología , Polisacáridos/química , Viabilidad Microbiana/efectos de los fármacos , Lactobacillus plantarum/crecimiento & desarrollo , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/química , Probióticos , Temperatura , Desecación/métodos , Solubilidad
5.
J Agric Food Chem ; 72(22): 12655-12664, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38775266

RESUMEN

Using Lactiplantibacillus plantarum as a food-grade carrier to create non-GMO whole-cell biocatalysts is gaining popularity. This work evaluates the immobilization yield of a chitosanase (CsnA, 30 kDa) from Bacillus subtilis and a mannanase (ManB, 40 kDa) from B. licheniformis on the surface of L. plantarum WCFS1 using either a single LysM domain derived from the extracellular transglycosylase Lp_3014 or a double LysM domain derived from the muropeptidase Lp_2162. ManB and CsnA were fused with the LysM domains of Lp_3014 or Lp_2162, produced in Escherichia coli and anchored to the cell surface of L. plantarum. The localization of the recombinant proteins on the bacterial cell surface was successfully confirmed by Western blot and flow cytometry analysis. The highest immobilization yields (44-48%) and activities of mannanase and chitosanase on the displaying cell surface (812 and 508 U/g of dry cell weight, respectively) were obtained when using the double LysM domain of Lp_2162 as an anchor. The presence of manno-oligosaccharides or chito-oligosaccharides in the reaction mixtures containing appropriate substrates and ManB or CsnA-displaying cells was determined by high-performance anion exchange chromatography. This study indicated that non-GMO Lactiplantibacillus chitosanase- and mannanase-displaying cells could be used to produce potentially prebiotic oligosaccharides.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Glicósido Hidrolasas , Peptidoglicano , Bacillus subtilis/genética , Bacillus subtilis/enzimología , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/genética , Enzimas Inmovilizadas/metabolismo , Dominios Proteicos , Lactobacillus plantarum/genética , Lactobacillus plantarum/enzimología , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/química , Quitina/metabolismo , Quitina/química
6.
J Agric Food Chem ; 72(22): 12752-12761, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38779924

RESUMEN

This study investigated the transformation of polyphenols, including free and bound polyphenols during the fermentation of wolfberry juice by Lactobacillus plantarum NCU137. Results indicated that fermentation significantly increased the free polyphenols content and released bound polyphenols, enhancing the antioxidant activity. Analysis showed that there were 19 free polyphenols, mainly scopoletin, pyrogallol, and dihydroferulic acid, and 16 bound polyphenols, especially p-coumaric acid, feruloyl hexoside, and caffeic acid. A significant correlation was observed between the generation and degradation of polyphenols, and specific bound polyphenols peaked during the 24-48 h fermentation. Furthermore, reduced surface roughness and galacturonic acid content in wolfberry residue, along with increased pectinase activity, suggested substantial pectin degradation in the cell wall, which may be associated with the release of polyphenols, due to pectin serving as carriers for bound polyphenols. The fermentation also increased polyphenol oxidase and peroxidase activity, contributing to polyphenol breakdown. These findings provide insights for improving wolfberry juice production.


Asunto(s)
Antioxidantes , Fermentación , Jugos de Frutas y Vegetales , Frutas , Lactobacillus plantarum , Lycium , Polifenoles , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/química , Polifenoles/metabolismo , Polifenoles/química , Antioxidantes/metabolismo , Antioxidantes/química , Jugos de Frutas y Vegetales/análisis , Frutas/química , Frutas/metabolismo , Frutas/microbiología , Lycium/química , Lycium/metabolismo , Pectinas/metabolismo , Pectinas/química
7.
Food Chem ; 450: 139472, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38705103

RESUMEN

In this study, the electrospinning technique was used to co-encapsulate Quercetin (Qu) and Lactiplantibacillus plantarum 1-24-LJ in PVA-based nanofibers, and the effect of bioactive films on fish preservation was evaluated at the first time. The findings indicated that both Lpb. plantarum 1-24-LJ and Qu were successfully in the fibers, and co-loaded fibers considerably outperformed single-loaded fiber in terms of bacterial survival and antioxidant activity. Following fish preservation using the loaded fibers, significant reductions were observed in TVB-N, TBARS, and microbial complexity compared to the control group. Additionally, the co-loaded fibers more effectively reduced the counts of H2S-producing bacteria and Pseudomonas. In the future, fibers with both active substances and LAB hold promise as a novel approach for fish preservation.


Asunto(s)
Carpas , Conservación de Alimentos , Quercetina , Quercetina/farmacología , Quercetina/química , Animales , Carpas/microbiología , Conservación de Alimentos/métodos , Conservación de Alimentos/instrumentación , Lactobacillus plantarum/química , Lactobacillus plantarum/metabolismo , Bacterias/efectos de los fármacos , Antioxidantes/química , Antioxidantes/farmacología
8.
Int J Biol Macromol ; 269(Pt 2): 132068, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719001

RESUMEN

Pullulan was used as the wall material for microencapsulation of L. plantarum CRD7 by spray drying, while isomalto-oligosaccharides (IMO) was used as prebiotic. Also, the effect of different thermal protectants on survival rate during microencapsulation was evaluated. Taguchi orthogonal array design showed that pullulan at 14 % concentration, IMO at 30 % concentration and whey protein isolate at 20 % rate were the optimized wall material, prebiotic and thermal protectant, respectively for microencapsulation of L. plantarum. FESEM images revealed that the spray-dried encapsulates were fibrous similar to those produce by electrospinning, while fluorescence microscopy ascertained that most of the probiotic cells were alive and intact after microencapsulation. The adsorption-desorption isotherm was of Type II and the encapsulate had specific surface area of 1.92 m2/g and mean pore diameter of 15.12 nm. The typical amide II and III bands of the bacterial proteins were absent in the FTIR spectra, suggestive of adequate encapsulation. DSC thermogram showed shifting of melting peaks to wider temperature range due to interactions between the probiotic and wall materials. IMO at 30 % (w/w) along with WPI at 20 % concentration provided the highest storage stability and the lowest rate of cell death of L. plantarum after microencapsulation. Acid and bile salt tolerance results confirmed that microencapsulated L. plantarum could sustain the harsh GI conditions with >7.5 log CFU/g viability. After microencapsulation, L. plantarum also possessed the ability to ferment milk into curd with pH of 4.62.


Asunto(s)
Glucanos , Lactobacillus plantarum , Prebióticos , Glucanos/química , Glucanos/farmacología , Lactobacillus plantarum/química , Secado por Pulverización , Probióticos/química , Viabilidad Microbiana/efectos de los fármacos , Composición de Medicamentos , Proteína de Suero de Leche/química , Oligosacáridos/química , Oligosacáridos/farmacología
9.
Food Chem ; 452: 139595, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38749143

RESUMEN

Selenium nanospheres (SeNPs) show less toxicity and greater bioavailability than selenite salts. This research demonstrated the substantial tolerance and efficient conversion of Se(IV) into SeNPs by Lactiplantibacillus plantarum NML21. The bioreduction process of Se(IV) and the properties of SeNPs, including their morphology, particle size, and stability, were investigated with techniques including SEM, EDX, TEM, XPS, FT-IR, dynamic light scattering, XRD, and Raman spectroscopy. Under high selenium stress, certain cells displayed significant deformation and rupture, and released SeNPs as the main product of the bioreduction of Se(IV). These SeNPs were red, amorphous, zero-valent, and spherical, with an average diameter of 160 nm. Spectroscopic analysis highlighted that the functional groups of CO and CO are key to the bioreduction of Se(IV). The study suggested preliminary mechanisms for the bioreduction of Se(IV) and the formation and release of SeNPs by lactic acid bacteria. NML21 may therefore be a promising candidate for SeNPs synthesis.


Asunto(s)
Nanosferas , Oxidación-Reducción , Selenio , Selenio/química , Selenio/metabolismo , Nanosferas/química , Nanosferas/metabolismo , Tamaño de la Partícula , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/química
10.
J Sci Food Agric ; 104(11): 6977-6986, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38619112

RESUMEN

BACKGROUND: The adhesion of probiotics to the intestine is crucial for their probiotic function. In previous studies, Tremella polysaccharides (TPS) (with sodium casein) have shown the potential to encapsulate probiotics and protect them in a simulated gastrointestinal tract. This study explored the effect of TPS (with sodium casein) on the adhesion of probiotics. RESULTS: Lactobacillus plantarum was coated with TPS and sodium casein in different proportions, and was freeze-dried. The rheological properties of the mixture of probiotics powder and mucin solution were determined by static and dynamic rheological analysis. Aqueous solutions of probiotic powder and mucin mixture exhibited pseudoplastic fluid rheological properties. The higher the proportion of TPS content, the higher the apparent viscosity and yield stress. The mixed bacterial powder and mucin fluid displayed thixotropy and was in accordance with the Herschel-Bulkley model. The TPS increased the bio-adhesive force of the probiotic powder and mucin. When using TPS as the only carbon source, the adhesion of L. plantarum to Caco-2 cells increased by 228% in comparison with glucose in vitro. Twelve adhesive proteins were also detected in the whole-cell proteome of L. plantarum. Among them, ten adhesive proteins occurred abundantly when grown with TPS as a carbon source. CONCLUSION: Tremella polysaccharides therefore possess probiotic properties and can promote the intestinal adhesion of L. plantarum. © 2024 Society of Chemical Industry.


Asunto(s)
Adhesión Bacteriana , Lactobacillus plantarum , Polisacáridos , Probióticos , Lactobacillus plantarum/química , Lactobacillus plantarum/metabolismo , Probióticos/química , Humanos , Células CACO-2 , Adhesión Bacteriana/efectos de los fármacos , Polisacáridos/química , Polisacáridos/farmacología , Basidiomycota/química , Basidiomycota/metabolismo , Intestinos/microbiología , Reología , Viscosidad , Mucinas/química , Mucinas/metabolismo
11.
Fish Shellfish Immunol ; 149: 109547, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593522

RESUMEN

Heat-killed probiotics offer an alternative approach to enhance growth and disease resistance in farmed fish. In this study, we isolated Lactiplantibacillus plantarum VSG3 from the gut of Labeo rohita to investigate the effects of heat-killed L. plantarum (HK-LP) on the health and growth performance of Cyprinus carpio fingerlings. Different concentrations of HK-LP (0, 50, 100, 200, 300, and 400 mg/kg) were administered to the fish, followed by a challenge with Aeromonas hydrophila after 8 weeks of feeding. Notably, the LP200 group exhibited significantly improved percentage weight gain and specific growth rate, accompanied by the lowest feed conversion ratio. Post-challenge survival rates were considerably enhanced in the LP200 group, reaching 60.65%. Moreover, serum analysis indicated significantly higher levels of total protein and albumin in the LP200 group than in the control group. Although HK-LP had no substantial impact on certain serum parameters (glucose, total cholesterol, cortisol, and alanine aminotransferase), aspartate aminotransferase levels were considerably low in the LP200 group. Intestinal protease and trypsin activities significantly increased in the LP200 group, while no significant changes were observed in lipase and amylase activities post-pathogen challenge. Serum immunological indices, including lysozyme, alternative complement pathway, and phagocytic activity, improved considerably in the LP200 group. Additionally, serum antioxidant enzyme activities (superoxide dismutase [SOD], glutathione peroxidase [GPx], catalase [CAT], and myeloperoxidase) were significantly elevated in the LP200 group, while malondialdehyde level was reduced. Gene expression analysis in liver tissue indicated strong upregulation of antioxidant-related genes (SOD, CAT, nuclear factor erythroid 2 [NFE2]-related factor 2 [Nrf2], Kelch-like ECH-associated protein 1[Keap1]) in the LP100 and LP200 groups. Pro-inflammatory cytokines (IL-1ß and TNF-α) were considerably downregulated in the kidneys of the LP200 post-challenged fish, although the anti-inflammatory cytokine IL-10 showed an increased expression. Quadratic regression analysis identified the optimal dietary HK-LP level for maximizing growth and immune performance (200.381-270.003 mg/kg). In summary, our findings underscore the potential of HK-LP as a valuable dietary supplement for enhancing carp aquaculture, particularly at the appropriate concentration.


Asunto(s)
Aeromonas hydrophila , Alimentación Animal , Antioxidantes , Carpas , Dieta , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Probióticos , Animales , Probióticos/administración & dosificación , Probióticos/farmacología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Carpas/inmunología , Carpas/crecimiento & desarrollo , Alimentación Animal/análisis , Enfermedades de los Peces/inmunología , Dieta/veterinaria , Aeromonas hydrophila/fisiología , Antioxidantes/metabolismo , Inmunidad Innata , Lactobacillus plantarum/química , Calor , Expresión Génica , Suplementos Dietéticos/análisis , Distribución Aleatoria , Resistencia a la Enfermedad
12.
J Trace Elem Med Biol ; 84: 127448, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38626650

RESUMEN

INTRODUCTION: S. mutans has been identified as the primary pathogenic bacterium in biofilm-mediated dental caries. The biogenic selenium nanoparticles (SeNPs) produced by L. plantarum KNF-5 were used in this study against S. mutans ATCC 25175. OBJECTIVES: The aims of this study were: (1) the biosynthesis of SeNPs by L. plantarum KNF-5, (2) the characterization of SeNPs, (3) the investigation of the inhibitory effect of biogenic SeNPs against S. mutans ATCC 25175, and (4) the determination of the anti-biofilm potential of SeNPS against S. mutans ATCC 25175. METHODOLOGY: 3 mL of the culture was added to 100 mL of MRS medium and incubated. After 4 h, Na2SeO3 solution (concentration 100 µg/mL) was added and incubated at 37 °C for 36 h. The color of the culture solution changed from brownish-yellow to reddish, indicating the formation of SeNPs. The characterization of SeNPs was confirmed by UV-Vis spectrophotometry, FTIR, SEM-EDS and a particle size analyzer. The antibacterial activity was determined by the disk diffusion method, the MIC by the micro-double dilution method, and the biofilm inhibitory potential by the crystal violet method and the MTT assay. The effect of SeNPs on S. mutans ATCC 25175 was determined using SEM and CLSM spectrometry techniques. The sulfate-anthrone method was used to analyze the effect of SeNPs on insoluble extracellular polysaccharides. The expression of genes in S. mutans ATCC 25175 was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). PREPARATION OF NANOPARTICLES: SeNPs produced by probiotic bacteria are considered a safe method. In this study, L. plantarum KNF-5 (probiotic strain) was used for the production of SeNPs. RESULTS: The biogenic SeNPs were spherical and coated with proteins and polysaccharides and had a diameter of about 270 nm. The MIC of the SeNPs against S. mutans ATCC 25175 was 3.125 mg/mL. Biofilm growth was also significantly suppressed at this concentration. The expression of genes responsible for biofilm formation (GtfB, GtfC, BrpA and GbpB,) was reduced when S. mutans ATCC 25175 was treated with SeNPs. CONCLUSION: It was concluded that the biogenic SeNPs produced by L. plantarum KNF-5 was highly effective to inhibit the growth of S. mutans ATCC 25175. NOVELTY STATEMENT: The application of biogenic SeNPs, a natural anti-biofilm agent against S. mutans ATCC 25175. In the future, this study will provide a new option for the prevention and treatment of dental caries.


Asunto(s)
Antibacterianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Nanopartículas , Selenio , Streptococcus mutans , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/fisiología , Biopelículas/efectos de los fármacos , Selenio/farmacología , Selenio/química , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Lactobacillus plantarum/química , Lactobacillus plantarum/metabolismo , Tamaño de la Partícula
13.
Food Chem ; 451: 139344, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663238

RESUMEN

A novel bacteriocin, plantaricin ZFM9, was purified from Lactiplantibacillus plantarum ZFM9 using a combination of ammonium sulfate precipitation, XAD-2 macroporous resin, Sephadex G-50, Sephadex LH-20, and reversed-phase high performance liquid chromatography. The molecular mass of plantaricin ZFM9 was 1151.606 Da, and the purity was 98.3%. Plantaricin ZFM9 has thermal stability (95.6% retention at 120 °C for 30 min), pH stability (pH ≤ 5), and sensitivity to the pepsin, trypsin, papain, and proteinase K. Plantaricin ZFM9 exhibited broad-spectrum antimicrobial activity and notably inhibit methicillin-resistant Staphylococcus aureus D48 (MRSA). According to the results of electron microscopy and fluorescence leakage assay, it was found that plantaricin ZFM9 caused damage to the cells membrane and leakage of the contents of S. aureus D48. In addition, Lipid II was not the anti-MRSA target of plantaricin ZFM9. This study underscores the potential of plantaricin ZFM9 for applications in the food field and biopharmaceuticals against MRSA infection.


Asunto(s)
Antibacterianos , Bacteriocinas , Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Bacteriocinas/farmacología , Bacteriocinas/química , Bacteriocinas/aislamiento & purificación , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Peso Molecular , Lactobacillus plantarum/química , Lactobacillus plantarum/aislamiento & purificación
14.
Food Chem ; 449: 139180, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38579650

RESUMEN

Maple syrup, a popular natural sweetener has a high content of sucrose, whose consumption is linked to different health issues such as obesity and diabetes. Hence, within this paper, the conversion of sucrose to prebiotics (fructo-oligosaccharides, FOS) was proposed as a promising approach to obtaining a healthier, value-added product. Enzymatic conversion was optimized with respect to key experimental factors, and thereafter derived immobilized preparation of fructosyltransferase (FTase) from Pectinex® Ultra SP-L (FTase-epoxy Purolite, 255 IU/g support) was successfully utilized to produce novel functional product in ten consecutive reaction cycles. The product, obtained under optimal conditions (60 °C, 7.65 IU/mL, 12 h), resulted in 56.0% FOS, 16.7% sucrose, and 27.3% monosaccharides of total carbohydrates, leading to a 1.6-fold reduction in caloric content. The obtained products` prebiotic potential toward the probiotic strain Lactobacillus plantarum 299v was demonstrated. The changes in physico-chemical and sensorial characteristics were esteemed as negligible.


Asunto(s)
Acer , Proteínas Bacterianas , Hexosiltransferasas , Oligosacáridos , Prebióticos , Sacarosa , Prebióticos/análisis , Oligosacáridos/química , Oligosacáridos/metabolismo , Hexosiltransferasas/metabolismo , Hexosiltransferasas/química , Sacarosa/metabolismo , Sacarosa/química , Acer/química , Acer/metabolismo , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/enzimología , Lactobacillus plantarum/química , Biocatálisis , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo
15.
J Sci Food Agric ; 104(9): 5219-5230, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38323477

RESUMEN

BACKGROUND: Amino acids (AAs) are the building blocks of proteins, but they also serve as biological compounds in biochemical processes, and d-AA isomers are increasingly being recognized as important signaling molecules. As the main organic substrate used by cells in the intestinal tract, the role of the chiral specificity of glutamine is still largely ignored. RESULTS: In a previous study, we found that d-glutamine affected the quorum sensing of Lactiplantibacillus plantarum A3, promoted the release of signaling molecule AI-2 and up-regulated the expression of the LuxS gene. The results showed that when d-glutamine and L. plantarum A3 were simultaneously applied to a mouse model, the diversity and abundance of intestinal flora in both male and female mice were increased. Interestingly, the simultaneous effect of d-glutamine and L. plantarum A3 on the bacterial diversity and abundance of male mice was significantly higher than that of female mice. In addition, the combination of d-glutamine and L. plantarum A3 can improve the host microecology by enhancing the population of Firmicutes such as Lactobacillus and Lachnospiraceae, reducing the population of Fusobacterium and Bacteroides and affecting metabolic pathways such as AA metabolism and transporter transport. CONCLUSION: d-Glutamine, as a signaling molecule, can better stimulate the endogenous d-glutamine synthesis in mice and be utilized by L. plantarum A3. Furthermore, sex differences in the changes of intestinal microflora are also found in this research. This research sheds some light on the adoption of d-AAs combined with lactic acid bacteria in intestinal tract health treatment. © 2024 Society of Chemical Industry.


Asunto(s)
Microbioma Gastrointestinal , Glutamina , Probióticos , Percepción de Quorum , Animales , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Femenino , Masculino , Percepción de Quorum/efectos de los fármacos , Probióticos/administración & dosificación , Probióticos/farmacología , Glutamina/metabolismo , Glutamina/farmacología , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/química , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación
16.
J Microbiol Biotechnol ; 34(2): 314-329, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38111307

RESUMEN

Fifteen cyclic dipeptides (CDPs) containing proline, one cyclo(Phe-Ala) without proline, and a non-peptidyl DL-3-phenyllactic acid were previously identified in the culture filtrates of Lactobacillus plantarum LBP-K10, an isolate from kimchi. In this study, we used Japanese quail (Coturnix japonica) eggs to examine the effects of probiotic supplementation on the antimicrobial CDPs extracted from quail eggs (QE). Eggshell-free QE were obtained from two distinct groups of quails. The first group (K10N) comprised eggs from unsupplemented quails. The second group (K10S) comprised eggs from quails supplemented with Lb. plantarum LBP-K10. The QE samples were extracted using methylene chloride through a liquid-liquid extraction process. The resulting extract was fractionated into 16 parts using semi-preparative high-performance liquid chromatography. Two fractions, Q6 and Q9, were isolated from K10S and identified as cis-cyclo(L-Ser-L-Pro) and cis-cyclo(L-Leu-L-Pro). The Q9 fraction, containing cis-cyclo(L-Leu-L-Pro), has shown significant inhibitory properties against the proliferation of highly pathogenic multidrug-resistant bacteria, as well as human-specific and phytopathogenic fungi. Some of the ten combinations between the remaining fourteen unidentified fractions and two fractions, Q6 and Q9, containing cis-cyclo(L-Ser-L-Pro) and cis-cyclo(L-Leu-L-Pro) respectively, demonstrated a significant increase in activity against multidrug-resistant bacteria only when combined with Q9. The activity was 7.17 times higher compared to a single cis-cyclo(L-Leu-L-Pro). This study presents new findings on the efficacy of proline-containing CDPs in avian eggs. These CDPs provide antimicrobial properties when specific probiotics are supplemented.


Asunto(s)
Antiinfecciosos , Lactobacillus plantarum , Probióticos , Animales , Humanos , Coturnix , Lactobacillus plantarum/química , Antiinfecciosos/farmacología , Prolina , Suplementos Dietéticos , Dipéptidos/farmacología , Péptidos Cíclicos/farmacología , Codorniz
17.
Fish Shellfish Immunol ; 142: 109170, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37852511

RESUMEN

Pseudomonas plecoglossicida infection is a highly contagious epidemic in aquaculture, causing significant mortality among teleost. Our previous research has demonstrated that Lactobacillus plantarum E2 is beneficial for large yellow croaker in resisting infections caused by P. plecoglossicida. However, the relevant mechanisms remain largely unclear. In the present study, we used zebrafish (Danio rerio) to further explore the function of L. plantarum E2 and its mechanisms for resisting P. plecoglossicida infection. E2 supplementation diet significantly improved the growth rates and α-amylase and trypsin activities of the liver in zebrafish. After challenge with P. plecoglossicida strain PQLYC4, the survival rates of zebrafish were improved, and immune-related genes expression (IL-1ß, TNF-α, IL-8, Ig-Z, TLR-22 and IL-12α) were down-regulated. Histological analysis showed that E2 group had a longer intestinal villus and thicker intestinal walls after 30 days of feeding and healthier intestinal structure after challenge with P. plecoglossicida strain PQLYC4. Furthermore, co-incubation of zebrafish embryo fibroblast (ZF-4 cells) with L. plantarum E2 reduced apoptosis of ZF-4 cells after exposed to P. plecoglossicida. Intestinal microbiota analysis showed that E2 strain significantly increased the relative abundance of Lactobacillus and Pseudomonas, and PCoA analysis revealed a noticeable divergence in the intestinal microbial communities after E2 supplement. Together, our results suggested that E2 strain may promote zebrafish survival against P. plecoglossicida infection by regulating the intestinal microbiota and alleviating inflammatory response and apoptosis, thus exhibiting the potential as a probiotic.


Asunto(s)
Microbioma Gastrointestinal , Lactobacillus plantarum , Infecciones por Pseudomonas , Animales , Pez Cebra , Lactobacillus plantarum/química , Pseudomonas , Inflamación/veterinaria , Infecciones por Pseudomonas/prevención & control , Infecciones por Pseudomonas/veterinaria , Apoptosis
18.
Int J Biol Macromol ; 248: 125932, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37482152

RESUMEN

The present study aimed to purify and characterize a novel low-molecular-weight antimicrobial peptide (AMP) named as PNMGL2 produced by Lactiplantibacillus plantarum NMGL2. The AMP was effectively separated and purified by ethyl acetate extraction and DEAE-Sepharose anion exchange chromatography. Tricine-SDS-PAGE of the purified AMP showed a major protein band below 1.7 kDa, which was identified by MALDI-TOF MS to be a hexapeptide LNFLKK (761.95 Da), and structurally characterized to be combination of helixes and random coil by a PEP-FOLD 3 De novo approach. The antimicrobial activity of LNFLKK was confirmed by chemical synthesis of the peptide that showed clear inhibition (MIC 7.8 mg/mL) against both Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes), and Gram-negative bacteria (Enterobacter sakazakii, Escherichia coli and Shigella flexneri). PNMGL2 was pH resistant (pH 2-9), heat stable (121 °C, 30 min), and protease sensitive. Treatment of UV rays, sodium chloride and organic solvents did not decrease the activity. Sequencing of the whole genome of L. plantarum NMGL2 revealed presence of a bacteriocin gene cluster with two putative bacteriocin genes (ORF4 and ORF5) that were not expressed, confirming the significance of PNMGL2 contributing the antimicrobial activity of the strain. This study demonstrated the low-molecular-weight AMP that was uncharacterized in the relevant available databases, suggesting its potential application as a novel natural food preservative.


Asunto(s)
Bacteriocinas , Lactobacillus plantarum , Antibacterianos , Lactobacillus plantarum/química , Bacteriocinas/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Péptidos Antimicrobianos
19.
Int J Biol Macromol ; 244: 125451, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37331540

RESUMEN

Exopolysaccharides (EPS) from lactic acid bacteria (LAB) as edible and safe bioproducts with health benefits have become an interesting topic. In this study, aqueous two-phase system (ATPS) was established using ethanol and (NH4)2SO4 as phase-forming substances to separate and purify LAB EPS from Lactobacillus plantarum 1.0665. The operating conditions were optimized by a single factor and response surface method (RSM). The results indicated that an effectively selective separation of LAB EPS was achieved by the ATPS consisted of 28 % (w/w) ethanol and 18 % (w/w) (NH4)2SO4 at pH 4.0. Under optimized conditions, the partition coefficient (K) and recovery rate (Y) were well matched with the predicted value of 3.83 ± 0.019 and 74.66 ± 1.05 %. The physicochemical properties of purified LAB EPS were characterized by various technologies. According to the results, LAB EPS was a complex polysaccharide with a triple helix structure mainly composed of mannose, glucose and galactose in the molar ratio of 1.00: 0.32: 0.14, and it proved that the ethanol/(NH4)2SO4 system had good selectivity for LAB EPS. In addition, LAB EPS displayed excellent antioxidant activity, antihypertension activity, anti-gout capacity and hypoglycemic activity in vitro analysis. The results suggested that LAB EPS could be a dietary supplement applied in functional foods.


Asunto(s)
Lactobacillales , Lactobacillus plantarum , Etanol/química , Polisacáridos Bacterianos/farmacología , Polisacáridos Bacterianos/química , Lactobacillus plantarum/química , Antioxidantes/química , Agua/química
20.
Poult Sci ; 102(7): 102764, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37216885

RESUMEN

The total number of intestinal microbiotas is low, and the intestinal tract develops rapidly and imperfectly at the embryonic stage. Embryonic period as a particular physiological stage is an important time window to explore how to regulate organismal health by probiotics. Therefore, this experiment was conducted to investigate the effect of embryonic injection of Lactobacillus plantarum PA01 at embryonic d 14 (E14) on the microbiome of the contents of the gizzard, cecum at embryonic d 20 (E20) and cecum at d 1 posthatch (D1) by 16S rRNA sequencing. Results showed that PA01 had no significant effect on broiler body weight and yolk sac weight at E20 and D1 (P > 0.05). PA-01 altered the Shannon index and ß diversity of the gizzard at E20 (P < 0.05), increased the abundance of Firmicutes (P < 0.05), and decreased the relative abundance of Proteobacteria, Bacteroidota, and Actinobacteriota (P < 0.05). At the genus level of the microbiota, PA01 significantly increased the relative abundance of Lactiplantibacillus (P < 0.05). At 20 embryos, PA01 altered the α and ß diversity indices (P < 0.05) and decreased the relative abundance of Salmonella (P < 0.05) of the cecal microbiota. The biomarkers of PA01 group were Lactobacillales, Blautia, Lachnospiraceae, and Asinibacterium. Embryonic injection of PA01 altered the E20 intestinal microbes. PA01 altered the ß-diversity index of the 1-day-old cecum (P < 0.05), and there was no significant effect on microbial composition at the phylum and genus level (P > 0.05). LefSe analysis revealed that the biomarkers of the PA01 group were Lactobacillaceae, Lactiplantibacillus, Moraxellaceae, and Acinetobacter. Biomarkers in the Con group were Devosia, Bacillus, Nordella, Mesorhizobium, and Pseudolabrys. PA01 increased acetic acid in the gastrointestinal tract at E20 along with acetic and butyric acid in cecum of 1-day-old. In conclusion, embryo-injected L. plantarum PA01 altered the structure and metabolites of the microbial flora before and after hatching, in particular promoting the colonization of Lactobacillus.


Asunto(s)
Lactobacillus plantarum , Animales , Lactobacillus plantarum/química , Pollos/fisiología , ARN Ribosómico 16S/genética , Tracto Gastrointestinal , Intestinos , Bacteroidetes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...