Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.394
Filtrar
1.
PLoS One ; 19(6): e0299345, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38870176

RESUMEN

INTRODUCTION: Cervical cancer presents a significant global health challenge, disproportionately impacting underserved populations with limited access to healthcare. Early detection and effective management are vital in addressing this public health concern. This study focuses on Glyoxalase-1 (GLO1), an enzyme crucial for methylglyoxal detoxification, in the context of cervical cancer. METHODS: We assessed GLO1 expression in cervical cancer patient samples using immunohistochemistry. In vitro experiments using HeLa cells were conducted to evaluate the impact of GLO1 inhibition on cell viability and migration. Single-cell RNA sequencing (scRNA-seq) and gene set variation analysis were utilized to investigate the role of GLO1 in the metabolism of cervical cancer. Additionally, public microarray data were analyzed to determine GLO1 expression across various stages of cervical cancer. RESULTS: Our analysis included 58 cervical cancer patients, and showed that GLO1 is significantly upregulated in cervical cancer tissues compared to normal cervical tissues, independent of pathological findings and disease stage. In vitro experiments indicated that GLO1 inhibition by S-p-bromobenzylglutathione cyclopentyl diester decreased cell viability and migration in cervical cancer cell lines. Analyses of scRNA-seq data and public gene expression datasets corroborated the overexpression of GLO1 and its involvement in cancer metabolism, particularly glycolysis. An examination of expression data from precancerous lesions revealed a progressive increase in GLO1 expression from normal tissue to invasive cervical cancer. CONCLUSIONS: This study highlights the critical role of GLO1 in the progression of cervical cancer, presenting it as a potential biomarker and therapeutic target. These findings contribute valuable insights towards personalized treatment approaches and augment the ongoing efforts to combat cervical cancer. Further research is necessary to comprehensively explore GLO1's potential in clinical applications.


Asunto(s)
Biomarcadores de Tumor , Lactoilglutatión Liasa , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Femenino , Lactoilglutatión Liasa/metabolismo , Lactoilglutatión Liasa/genética , Lactoilglutatión Liasa/antagonistas & inhibidores , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Células HeLa , Progresión de la Enfermedad , Movimiento Celular , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Persona de Mediana Edad , Supervivencia Celular/efectos de los fármacos , Adulto , Línea Celular Tumoral
2.
Plant Physiol Biochem ; 213: 108809, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38875778

RESUMEN

The primary goal of this research is to investigate the mitigating effect of silicon (Si; 2 mM) on the growth of tomato seedlings under vanadium (V; 40 mg) stress. V stress caused higher V uptake in leaf, and enhanced concentration of leaf anthocyanin, H2O2, O2•-, and MDA, but a decreased in plant biomass, root architecture system, leaf pigments content, mineral elements, and Fv/Fm (PSII maximum efficiency). Si application increased the concentrations of crucial antioxidant molecules such as AsA and GSH, as well as the action of key antioxidant enzymes comprising APX, GR, DHAR, and MDHAR. Importantly, oxidative damage was remarkably alleviated by upregulation of these antioxidant enzymes genes. Moreover, Si application enhanced the accumulation of secondary metabolites as well as the expression their related-genes, and these secondary metabolites may restricted the excessive accumulation of H2O2. In addition, Si rescued tomato plants against the damaging effects of MG by boosting the Gly enzymes activity. The results confirmed that spraying Si to plants might diminish the V accessibility to plants, along with promotion of V stress resistance.


Asunto(s)
Antioxidantes , Plantones , Silicio , Solanum lycopersicum , Vanadio , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Silicio/farmacología , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Vanadio/metabolismo , Vanadio/toxicidad , Antioxidantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Lactoilglutatión Liasa/metabolismo , Lactoilglutatión Liasa/genética , Regulación hacia Arriba/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo
3.
Nutrients ; 16(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38892513

RESUMEN

BACKGROUND: Biochemical events provoked by oxidative stress and advanced glycation may be inhibited by combining natural bioactives with classic therapeutic agents, which arise as strategies to mitigate diabetic complications. The aim of this study was to investigate whether lycopene combined with a reduced insulin dose is able to control glycemia and to oppose glycoxidative stress in kidneys of diabetic rats. METHODS: Streptozotocin-induced diabetic rats were treated with 45 mg/kg lycopene + 1 U/day insulin for 30 days. The study assessed glycemia, insulin sensitivity, lipid profile and paraoxonase 1 (PON-1) activity in plasma. Superoxide dismutase (SOD) and catalase (CAT) activities and the protein levels of advanced glycation end-product receptor 1 (AGE-R1) and glyoxalase-1 (GLO-1) in the kidneys were also investigated. RESULTS: An effective glycemic control was achieved with lycopene plus insulin, which may be attributed to improvements in insulin sensitivity. The combined therapy decreased the dyslipidemia and increased the PON-1 activity. In the kidneys, lycopene plus insulin increased the activities of SOD and CAT and the levels of AGE-R1 and GLO-1, which may be contributing to the antialbuminuric effect. CONCLUSIONS: These findings demonstrate that lycopene may aggregate favorable effects to insulin against diabetic complications resulting from glycoxidative stress.


Asunto(s)
Antioxidantes , Diabetes Mellitus Experimental , Productos Finales de Glicación Avanzada , Insulina , Riñón , Licopeno , Estrés Oxidativo , Ratas Wistar , Animales , Licopeno/farmacología , Riñón/efectos de los fármacos , Riñón/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Antioxidantes/farmacología , Masculino , Insulina/sangre , Insulina/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo , Arildialquilfosfatasa/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Resistencia a la Insulina , Lactoilglutatión Liasa/metabolismo , Quimioterapia Combinada , Hipoglucemiantes/farmacología , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo
4.
PLoS One ; 19(6): e0304039, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38865327

RESUMEN

Methylglyoxal (MG) is a highly cytotoxic molecule produced in all biological systems, which could be converted into non-toxic D-lactate by an evolutionarily conserved glyoxalase pathway. Glutathione-dependent glyoxalase I (GLYI) and glyoxalase II (GLYII) are responsible for the detoxification of MG into D-lactate in sequential reactions, while DJ-1 domain containing glyoxalase III (GLYIII) catalyzes the same reaction in a single step without glutathione dependency. Afterwards, D-lactate dehydrogenase (D-LDH) converts D-lactate into pyruvate, a metabolically usable intermediate. In the study, a comprehensive genome-wide investigation has been performed in one of the important vegetable plants, tomato to identify 13 putative GLYI, 4 GLYII, 3 GLYIII (DJ-1), and 4 D-LDH genes. Expression pattern analysis using microarray data confirmed their ubiquitous presence in different tissues and developmental stages. Moreover, stress treatment of tomato seedlings and subsequent qRT-PCR demonstrated upregulation of SlGLYI-2, SlGLYI-3, SlGLYI-6A, SlGLYII-1A, SlGLYII-3B, SlDJ-1A, SlDLDH-1 and SlDLDH-4 in response to different abiotic stresses, whereas SlGLYI-6B, SlGLYII-1B, SlGLYII-3A, SlDJ-1D and SlDLDH-2 were downregulated. Expression data also revealed SlGLYII-1B, SlGLYI-1A, SlGLYI-2, SlDJ-1D, and SlDLDH-4 were upregulated in response to various pathogenic infections, indicating the role of MG detoxifying enzymes in both plant defence and stress modulation. The functional characterization of each of these members could lay the foundation for the development of stress and disease-resistant plants promoting sustainable agriculture and production.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Piruvaldehído , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Piruvaldehído/metabolismo , Perfilación de la Expresión Génica , Genoma de Planta , Filogenia , Evolución Molecular , Familia de Multigenes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Lactoilglutatión Liasa/genética , Lactoilglutatión Liasa/metabolismo , Estrés Fisiológico/genética
5.
Mol Biol Rep ; 51(1): 681, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796603

RESUMEN

BACKGROUND: Silver nanoparticles (AgNPs) have been used in plant tissue culture as growth stimulants, promoting bud initiation, germination, and rooting. In prior studies, AgNPs were synthesized and characterized by green synthesis using extracts from Beta vulgaris var. cicla (BvAgNP), and their functionality as seed disinfectant and antimicrobial was verified. In this study, we evaluated the effect of BvAgNP on the growth and development of Mammillaria bombycina and Selenicereus undatus in vitro, as well as the expression of glyoxalase genes. METHODS: Explants from M. bombycina and S. undatus in vitro were treated with 25, 50, and 100 mg/L of BvAgNP. After 90 days, morphological characteristics were evaluated, and the expression of glyoxalase genes was analyzed by qPCR. RESULTS: All treatments inhibited rooting for M. bombycina and no bud initiation was observed. S. undatus, showed a maximum response in rooting and bud generation at 25 mg/L of BvAgNP. Scanning electron microscopy (SEM) results exhibited a higher number of vacuoles in stem cells treated with BvAgNP compared to the control for both species. Expression of glyoxalase genes in M. bombycina increased in all treatments, whereas it decreased for S. undatus, however, increasing in roots. CONCLUSIONS: This study presents the effects of BvAgNP on the growth and development of M. bombycina and S. undatus, with the aim of proposing treatments that promote in vitro rooting and bud initiation.


Asunto(s)
Lactoilglutatión Liasa , Nanopartículas del Metal , Plata , Nanopartículas del Metal/química , Plata/farmacología , Lactoilglutatión Liasa/genética , Lactoilglutatión Liasa/metabolismo , Beta vulgaris/crecimiento & desarrollo , Beta vulgaris/efectos de los fármacos , Beta vulgaris/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Extractos Vegetales/farmacología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tioléster Hidrolasas , Cactaceae
6.
Neurochem Res ; 49(7): 1823-1837, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38727985

RESUMEN

Methylglyoxal (MG) is considered a classical biomarker of diabetes mellitus and its comorbidities. However, a role for this compound in exacerbated immune responses, such as septicemia, is being increasingly observed and requires clarification, particularly in the context of neuroinflammatory responses. Herein, we used two different approaches (in vivo and acute hippocampal slice models) to investigate MG as a biomarker of neuroinflammation and the neuroimmunometabolic shift to glycolysis in lipopolysaccharide (LPS) inflammation models. Our data reinforce the hypothesis that LPS-induced neuroinflammation stimulates the cerebral innate immune response by increasing IL-1ß, a classical pro-inflammatory cytokine, and the astrocyte reactive response, via elevating S100B secretion and GFAP levels. Acute neuroinflammation promotes an early neuroimmunometabolic shift to glycolysis by elevating glucose uptake, lactate release, PFK1, and PK activities. We observed high serum and cerebral MG levels, in association with a reduction in glyoxalase 1 detoxification activity, and a close correlation between serum and hippocampus MG levels with the systemic and neuroinflammatory responses to LPS. Findings strongly suggest a role for MG in immune responses.


Asunto(s)
Biomarcadores , Hipocampo , Lipopolisacáridos , Enfermedades Neuroinflamatorias , Piruvaldehído , Piruvaldehído/metabolismo , Lipopolisacáridos/farmacología , Animales , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/inducido químicamente , Biomarcadores/metabolismo , Masculino , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Ratas Wistar , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Glucólisis/efectos de los fármacos , Interleucina-1beta/metabolismo , Inflamación/metabolismo , Inflamación/inducido químicamente , Proteína Ácida Fibrilar de la Glía/metabolismo , Lactoilglutatión Liasa/metabolismo , Ratas , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos
7.
Carbohydr Res ; 540: 109125, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703663

RESUMEN

Di-d-psicose anhydride (DPA), derived from functional rare saccharide as d-psicose, is investigated for its strong chelating ability. Methylglyoxal (MGO), an important precursor of advanced glycation end-products (AGEs), promotes obesity, and causes complications such as diabetic nephropathy. On mesangial cells, DPA can substantially reduce the negative effects of MGO. DPA effectively trapping MGO in mesangial cells. The bonding properties of the DPA-MGO adduct were discussed by mass spectrometry and nuclear magnetic resonance (NMR). The NMR spectra of the DPA-MGO adduct provide evidence for chelation bonding. The inhibition of AGE formation and the mass spectrometry results of the DPA-MGO adduct indicate that DPA can scavenge MGO at a molar ratio of 1:1. DPA suppressed 330 % of the up-regulated receptor for an AGEs protein expression to a normal level and restored the suppressed glyoxalase 1 level to 86 % of the normal group. This research provides important evidence and theoretical basis for the development of AGE inhibitors derived from rare saccharide.


Asunto(s)
Nefropatías Diabéticas , Productos Finales de Glicación Avanzada , Piruvaldehído , Piruvaldehído/química , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/prevención & control , Productos Finales de Glicación Avanzada/metabolismo , Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Células Mesangiales/efectos de los fármacos , Células Mesangiales/metabolismo , Lactoilglutatión Liasa/antagonistas & inhibidores , Lactoilglutatión Liasa/metabolismo , Humanos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Anhídridos/química , Quelantes/química , Quelantes/farmacología
8.
J Hazard Mater ; 473: 134452, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38762984

RESUMEN

Agricultural lands with vanadium (V), pose a significant and widespread threat to crop production worldwide. The study was designed to explore the melatonin (ME) treatment in reducing the V-induced phytotoxicity in muskmelon. The muskmelon seedlings were grown hydroponically and subjected to V (40 mg L-1) stress and exogenously treated with ME (100 µmol L-1) to mitigate the V-induced toxicity. The results showed that V toxicity displayed a remarkably adverse effect on seedling growth and biomass, primarily by impeding root development, the photosynthesis system and the activities of antioxidants. Contrarily, the application of ME mitigated the V-induced growth damage and significantly improved root attributes, photosynthetic efficiency, leaf gas exchange parameters and mineral homeostasis by reducing V accumulation in leaves and roots. Additionally, a significant reduction in the accumulation of reactive oxygen species (ROS), malondialdehyde (MDA) along with a decrease in electrolyte leakage was observed in muskmelon seedlings treated with ME under V-stress. This reduction was attributed to the enhancement in the activities of antioxidants in leaves/roots such as ascorbate (AsA), superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione peroxidase (GPX), glutathione S-transferase (GST) as compared to the V stressed plants. Moreover, ME also upregulated the chlorophyll biosynthesis and antioxidants genes expression in muskmelon. Given these findings, ME treatment exhibited a significant improvement in growth attributes, photosynthesis efficiency and the activities of antioxidants (enzymatic and non-enzymatic) by regulating their expression of genes against V-stress with considerable reduction in oxidative damage.


Asunto(s)
Antioxidantes , Melatonina , Fotosíntesis , Plantones , Vanadio , Melatonina/farmacología , Vanadio/toxicidad , Antioxidantes/metabolismo , Fotosíntesis/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Lactoilglutatión Liasa/metabolismo , Lactoilglutatión Liasa/genética , Especies Reactivas de Oxígeno/metabolismo , Malondialdehído/metabolismo , Cucumis melo/efectos de los fármacos , Cucumis melo/genética , Cucumis melo/crecimiento & desarrollo , Cucumis melo/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Clorofila/metabolismo
9.
Hypertension ; 81(7): 1537-1549, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38752345

RESUMEN

BACKGROUND: Preeclampsia is a multifaceted syndrome that includes maternal vascular dysfunction. We hypothesize that increased placental glycolysis and hypoxia in preeclampsia lead to increased levels of methylglyoxal (MGO), consequently causing vascular dysfunction. METHODS: Plasma samples and placentas were collected from uncomplicated and preeclampsia pregnancies. Uncomplicated placentas and trophoblast cells (BeWo) were exposed to hypoxia. The reactive dicarbonyl MGO and advanced glycation end products (Nε-(carboxymethyl)lysine [CML], Nε-(carboxyethyl)lysine [CEL], and MGO-derived hydroimidazolone [MG-H]) were quantified using liquid chromatography-tandem mass spectrometry. The activity of GLO1 (glyoxalase-1), that is, the enzyme detoxifying MGO, was measured. The impact of MGO on vascular function was evaluated using wire/pressure myography. The therapeutic potential of the MGO-quencher quercetin and mitochondrial-specific antioxidant mitoquinone mesylate (MitoQ) was explored. RESULTS: MGO, CML, CEL, and MG-H2 levels were elevated in preeclampsia-placentas (+36%, +36%, +25%, and +22%, respectively). Reduced GLO1 activity was observed in preeclampsia-placentas (-12%) and hypoxia-exposed placentas (-16%). Hypoxia-induced MGO accumulation in placentas was mitigated by the MGO-quencher quercetin. Trophoblast cells were identified as the primary source of MGO. Reduced GLO1 activity was also observed in hypoxia-exposed BeWo cells (-26%). Maternal plasma concentrations of CML and the MGO-derived MG-H1 increased as early as 12 weeks of gestation (+16% and +17%, respectively). MGO impaired endothelial barrier function, an effect mitigated by MitoQ, and heightened vascular responsiveness to thromboxane A2. CONCLUSIONS: This study reveals the accumulation of placental MGO in preeclampsia and upon exposure to hypoxia, demonstrates how MGO can contribute to vascular impairment, and highlights plasma CML and MG-H1 levels as promising early biomarkers for preeclampsia.


Asunto(s)
Biomarcadores , Placenta , Preeclampsia , Piruvaldehído , Preeclampsia/metabolismo , Preeclampsia/fisiopatología , Preeclampsia/sangre , Humanos , Femenino , Piruvaldehído/metabolismo , Piruvaldehído/sangre , Embarazo , Placenta/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangre , Adulto , Productos Finales de Glicación Avanzada/metabolismo , Trofoblastos/metabolismo , Lactoilglutatión Liasa/metabolismo
10.
J Med Life ; 17(1): 87-98, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38737655

RESUMEN

This study aimed to identify novel Glyoxalase-I (Glo-I) inhibitors with potential anticancer properties, focusing on anthraquinone amide-based derivatives. We synthesized a series of these derivatives and conducted in silico docking studies to predict their binding interactions with Glo-I. In vitro assessments were performed to evaluate the anti-Glo-I activity of the synthesized compounds. A comprehensive structure-activity relationship (SAR) analysis identified key features responsible for specific binding affinities of anthraquinone amide-based derivatives to Glo-I. Additionally, a 100 ns molecular dynamics simulation assessed the stability of the most potent compound compared to a co-crystallized ligand. Compound MQ3 demonstrated a remarkable inhibitory effect against Glo-I, with an IC50 concentration of 1.45 µM. The inhibitory potency of MQ3 may be attributed to the catechol ring, amide functional group, and anthraquinone moiety, collectively contributing to a strong binding affinity with Glo-I. Anthraquinone amide-based derivatives exhibit substantial potential as Glo-I inhibitors with prospective anticancer activity. The exceptional inhibitory efficacy of compound MQ3 indicates its potential as an effective anticancer agent. These findings underscore the significance of anthraquinone amide-based derivatives as a novel class of compounds for cancer therapy, supporting further research and advancements in targeting the Glo-I enzyme to combat cancer.


Asunto(s)
Amidas , Antraquinonas , Inhibidores Enzimáticos , Lactoilglutatión Liasa , Humanos , Amidas/química , Amidas/farmacología , Antraquinonas/farmacología , Antraquinonas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Lactoilglutatión Liasa/antagonistas & inhibidores , Lactoilglutatión Liasa/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad
11.
Biomolecules ; 14(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38785990

RESUMEN

The glyoxalase system, comprising GLO1 and GLO2 enzymes, is integral in detoxifying methylglyoxal (MGO) generated during glycolysis, with dysregulation implicated in various cancer types. The MEK/ERK/SMAD1 signaling pathway, crucial in cellular processes, influences tumorigenesis, metastasis, and angiogenesis. Altered GLO1 expression in cancer showcases its complex role in cellular adaptation and cancer aggressiveness. GLO2 exhibits context-dependent functions, contributing to both proapoptotic and antiapoptotic effects in different cancer scenarios. Research highlights the interconnected nature of these systems, particularly in ovarian cancer and breast cancer. The glyoxalase system's involvement in drug resistance and its impact on the MEK/ERK/SMAD1 signaling cascade underscore their clinical significance. Furthermore, this review delves into the urgent need for effective biomarkers, exemplified in ovarian cancer, where the RAGE-ligand pathway emerges as a potential diagnostic tool. While therapeutic strategies targeting these pathways hold promise, this review emphasizes the challenges posed by context-dependent effects and intricate crosstalk within the cellular milieu. Insights into the molecular intricacies of these pathways offer a foundation for developing innovative therapeutic approaches, providing hope for enhanced cancer diagnostics and tailored treatment strategies.


Asunto(s)
Neoplasias de la Mama , Lactoilglutatión Liasa , Sistema de Señalización de MAP Quinasas , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/tratamiento farmacológico , Lactoilglutatión Liasa/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteína Smad1/metabolismo , Transducción de Señal , Animales
12.
Plant Cell Rep ; 43(4): 103, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502356

RESUMEN

KEY MESSAGE: Methylglyoxal and glyoxalase function a significant role in plant response to heavy metal stress. We update and discuss the most recent developments of methylglyoxal and glyoxalase in regulating plant response to heavy metal stress. Methylglyoxal (MG), a by-product of several metabolic processes, is created by both enzymatic and non-enzymatic mechanisms. It plays an important role in plant growth and development, signal transduction, and response to heavy metal stress (HMS). Changes in MG content and glyoxalase (GLY) activity under HMS imply that they may be potential biomarkers of plant stress resistance. In this review, we summarize recent advances in research on the mechanisms of MG and GLY in the regulation of plant responses to HMS. It has been discovered that appropriate concentrations of MG assist plants in maintaining a balance between growth and development and survival defense, therefore shielding them from heavy metal harm. MG and GLY regulate plant physiological processes by remodeling cellular redox homeostasis, regulating stomatal movement, and crosstalking with other signaling molecules (including abscisic acid, gibberellic acid, jasmonic acid, cytokinin, salicylic acid, melatonin, ethylene, hydrogen sulfide, and nitric oxide). We also discuss the involvement of MG and GLY in the regulation of plant responses to HMS at the transcriptional, translational, and metabolic levels. Lastly, considering the current state of research, we present a perspective on the future direction of MG research to elucidate the MG anti-stress mechanism and offer a theoretical foundation and useful advice for the remediation of heavy metal-contaminated environments in the future.


Asunto(s)
Lactoilglutatión Liasa , Metales Pesados , Piruvaldehído/metabolismo , Plantas/metabolismo , Lactoilglutatión Liasa/metabolismo , Metales Pesados/toxicidad , Metales Pesados/metabolismo , Desarrollo de la Planta , Estrés Fisiológico/fisiología
13.
Mol Metab ; 81: 101888, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307385

RESUMEN

Chronic, systemic inflammation is a pathophysiological manifestation of metabolic disorders. Inflammatory signaling leads to elevated glycolytic flux and a metabolic shift towards aerobic glycolysis and lactate generation. This rise in lactate corresponds with increased generation of lactoylLys modifications on histones, mediating transcriptional responses to inflammatory stimuli. Lactoylation is also generated through a non-enzymatic S-to-N acyltransfer from the glyoxalase cycle intermediate, lactoylglutathione (LGSH). Here, we report a regulatory role for LGSH in mediating histone lactoylation and inflammatory signaling. In the absence of the primary LGSH hydrolase, glyoxalase 2 (GLO2), RAW264.7 macrophages display significant elevations in LGSH and histone lactoylation with a corresponding potentiation of the inflammatory response when exposed to lipopolysaccharides. An analysis of chromatin accessibility shows that lactoylation is associated with more compacted chromatin than acetylation in an unstimulated state; upon stimulation, however, regions of the genome associated with lactoylation become markedly more accessible. Lastly, we demonstrate a spontaneous S-to-S acyltransfer of lactate from LGSH to CoA, yielding lactoyl-CoA. This represents the first known mechanism for the generation of this metabolite. Collectively, these data suggest that LGSH, and not intracellular lactate, is the primary driving factor facilitating histone lactoylation and a major contributor to inflammatory signaling.


Asunto(s)
Histonas , Lactoilglutatión Liasa , Histonas/metabolismo , Cromatina/metabolismo , Glucólisis , Lactoilglutatión Liasa/metabolismo , Ácido Láctico/metabolismo , Macrófagos/metabolismo
14.
Plant Physiol Biochem ; 207: 108391, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309183

RESUMEN

Methylglyoxal is a common cytotoxic metabolite produced in plants during multiple biotic and abiotic stress. To mitigate the toxicity of MG, plants utilize the glyoxalase pathway comprising glyoxalase I (GLYI), glyoxalase II (GLYII), or glyoxalase III (GLYIII). GLYI and GLYII are the key enzymes of glyoxalase pathways that play an important role in abiotic stress tolerance. Earlier research showed that MG level is lower when both GLYI and GLYII are overexpressed together, compared to GLYI or GLYII single gene overexpressed transgenic plants. D-lactate dehydrogenase (D-LDH) is an integral part of MG detoxification which metabolizes the end product (D-lactate) of the glyoxalase pathway. In this study, two Arabidopsis transgenic lines were constructed using gene pyramiding technique: GLYI and GLYII overexpressed (G-I + II), and GLYI, GLYII, and D-LDH overexpressed (G-I + II + D) plants. G-I + II + D exhibits lower MG and D-lactate levels and enhanced abiotic stress tolerance than the G-I + II and wild-type plants. Further study explores the stress tolerance mechanism of G-I + II + D plants through the interplay of different regulators and plant hormones. This, in turn, modulates the expression of ABA-dependent stress-responsive genes like RAB18, RD22, and RD29B to generate adaptive responses during stress. Therefore, there might be a potential correlation between ABA and MG detoxification pathways. Furthermore, higher STY46, GPX3, and CAMTA1 transcripts were observed in G-I + II + D plants during abiotic stress. Thus, our findings suggest that G-I + II + D has significantly improved MG detoxification, reduced oxidative stress-induced damage, and provided a better protective mechanism against abiotic stresses than G-I + II or wild-type plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Lactato Deshidrogenasas , Lactoilglutatión Liasa , Lactoilglutatión Liasa/genética , Lactoilglutatión Liasa/metabolismo , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Estrés Fisiológico , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Lactatos , Regulación de la Expresión Génica de las Plantas , Piruvaldehído/metabolismo , Glutatión Peroxidasa/metabolismo , Proteínas de Arabidopsis/genética
15.
Environ Sci Pollut Res Int ; 31(1): 1562-1575, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38047999

RESUMEN

Biochar (BC) and humic acid (HA) are well-documented in metal/metalloid detoxification, but their regulatory role in conferring plant oxidative stress under arsenic (As) stress is poorly understood. Therefore, we aimed at investigating the role of BC and HA (0.2 and 0.4 g kg-1 soil) in the detoxification of As (0.25 mM sodium arsenate) toxicity in rice (Oryza sativa L. cv. BRRI dhan75). Arsenic exhibited an increased lipid peroxidation, hydrogen peroxide, electrolyte leakage, and proline content which were 32, 30, 9, and 89% higher compared to control. In addition, the antioxidant defense system of rice consisting of non-enzyme antioxidants (18 and 43% decrease in ascorbate and glutathione content) and enzyme activities (23-50% reduction over control) was decreased as a result of As toxicity. The damaging effect of As was prominent in plant height, biomass acquisition, tiller number, and relative water content. Furthermore, chlorophyll and leaf area also exhibited a decreasing trend due to toxicity. Arsenic exposure also disrupted the glyoxalase system (23 and 33% decrease in glyoxalase I and glyoxalase II activities). However, the application of BC and HA recovered the reactive oxygen species-induced damages in plants, upregulated the effectiveness of the ascorbate-glutathione pool, and accelerated the activities of antioxidant defense and glyoxalase enzymes. These positive roles of BC and HA ultimately resulted in improved plant characteristics with better plant-water status and regulated proline content that conferred As stress tolerance in rice. So, it can be concluded that BC and HA effectively mitigated As-induced physiology and oxidative damage in rice plants. Therefore, BC and HA could be used as potential soil amendments in As-contaminated rice fields.


Asunto(s)
Arsénico , Carbón Orgánico , Lactoilglutatión Liasa , Oryza , Antioxidantes/metabolismo , Oryza/metabolismo , Sustancias Húmicas , Arsénico/toxicidad , Estrés Oxidativo , Ácido Ascórbico/farmacología , Glutatión/metabolismo , Lactoilglutatión Liasa/metabolismo , Lactoilglutatión Liasa/farmacología , Peroxidación de Lípido , Prolina/metabolismo , Agua , Plantones
16.
Genes Cells ; 29(1): 52-62, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37963646

RESUMEN

Glyoxalase I (GLO I), a major enzyme involved in the detoxification of the anaerobic glycolytic byproduct methylglyoxal, is highly expressed in various tumors, and is regarded as a promising target for cancer therapy. We recently reported that piceatannol potently inhibits human GLO I and induces the death of GLO I-dependent cancer cells. Pyruvate kinase M2 (PKM2) is also a potential therapeutic target for cancer treatment, so we evaluated the combined anticancer efficacy of piceatannol plus low-dose shikonin, a potent and specific plant-derived PKM2 inhibitor, in two GLO I-dependent cancer cell lines, HL-60 human myeloid leukemia cells and NCI-H522 human non-small-cell lung cancer cells. Combined treatment with piceatannol and low-dose shikonin for 48 h synergistically reduced cell viability, enhanced apoptosis rate, and increased extracellular methylglyoxal accumulation compared to single-agent treatment, but did not alter PKM1, PKM2, or GLO I protein expression. Taken together, these results indicate that concomitant use of low-dose shikonin potentiates piceatannol-induced apoptosis of GLO I-dependent cancer cells by augmenting methylglyoxal accumulation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Lactoilglutatión Liasa , Neoplasias Pulmonares , Humanos , Piruvaldehído , Apoptosis , Piruvato Quinasa/metabolismo , Línea Celular Tumoral
17.
Front Endocrinol (Lausanne) ; 14: 1235581, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38027126

RESUMEN

Background: Glyoxalase 1 (GLO1) plays a crucial role in defending against glycation. Single nucleotide polymorphism (SNP) variants in the GLO1 gene may affect gene expression and alter enzyme activity. However, there have been limited studies evaluating the association between GLO1 and diabetes, especially gestational diabetes mellitus (GDM). Therefore, this study is the first to explore the association of GLO1 SNPs and GDM risk. Methods: The study included a total of 500 GDM patients and 502 control subjects. The SNPscan™ genotyping assay was used to genotype rs1781735, rs4746 and rs1130534. To assess the disparities in genotype, allele, and haplotype distributions and their correlation with GDM risk, the independent sample t-test, logistic regression, and chi-square test were employed during the data processing phase. Furthermore, one-way ANOVA was conducted to determine the differences in genotype and blood glucose and methylglyoxal(MG) levels. Results: Significant differences were observed in prepregnancy body mass index (pre-BMI), age, systolic blood pressure (SBP), diastolic blood pressure (DBP), and parity between GDM and healthy subjects (P < 0.05). After adjusting for these factors, GLO1 rs1130534 TA remained associated with an increased risk of GDM (TA vs. TT + AA: OR = 1.320; 95% CI: 1.008-1.728; P = 0.044), especially in the pre-BMI ≥ 24 subgroup (TA vs. TT + AA: OR = 2.424; 95% CI: 1.048-5.607; P = 0.039), with fasting glucose levels being significantly elevated in the TA genotype compared to the TT genotype (P < 0.05). Conversely, the GLO1 rs4746 TG was associated with a decreased risk of GDM (TG vs. TT: OR = 0.740; 95% CI: 0.548-0.999; P = 0.049; TG vs. TT + GG: OR = 0.740; 95% CI: 0.548-0.998; P = 0.048). Additionally, the haplotype T-G-T of rs1781735, rs4746 and rs1130534 was associated with a decreased risk of GDM among individuals with a pre-BMI ≥ 24 (OR = 0.423; 95% CI: 0.188-0.955; P = 0.038). Furthermore, the rs1781735 GG genotype was found to be more closely related to maternal MG accumulation and neonatal weight gain (P < 0.05). Conclusion: Our findings suggested that GLO1 rs1130534 was associated with an increased susceptibility to GDM and higher blood glucose levels, but GLO1 rs4746 was associated with a decreased risk of GDM. The rs1781735 has been associated with the accumulation of maternal MG and subsequent weight gain in neonates.


Asunto(s)
Diabetes Gestacional , Lactoilglutatión Liasa , Embarazo , Femenino , Recién Nacido , Humanos , Diabetes Gestacional/epidemiología , Diabetes Gestacional/genética , Glucemia/metabolismo , Pueblos del Este de Asia , Polimorfismo de Nucleótido Simple , Lactoilglutatión Liasa/genética , Lactoilglutatión Liasa/metabolismo , Aumento de Peso
18.
BMC Cancer ; 23(1): 956, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814205

RESUMEN

MicroRNAs (miRNAs) have been reported to serve as potential biomarkers in bladder cancer and play important roles in cancer progression. This study aimed to investigate the biological role of miR-205-3p in bladder cancer. We showed that miR-205-3p was significantly down-regulated in bladder cancer tissues and cells. Moreover, overexpression of miR-205-3p inhibited bladder cancer progression in vitro. Then we confirmed that GLO1, a downstream target of miR-205-3p, mediated the effect of miR-205-3p on bladder cancer cells. In addition, we found that miR-205-3p inhibits P38/ERK activation through repressing GLO1. Eventually, we confirmed that miR-205-3p inhibits the occurrence and progress of bladder cancer by targeting GLO1 in vivo by nude mouse tumorigenesis and immunohistochemistry. In a word, miR-205-3p inhibits proliferation and metastasis of bladder cancer cells by activating the GLO1 mediated P38/ERK signaling pathway and that may be a potential therapeutic target for bladder cancer.


Asunto(s)
Lactoilglutatión Liasa , MicroARNs , Neoplasias de la Vejiga Urinaria , Animales , Ratones , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Neoplasias de la Vejiga Urinaria/patología , Humanos , Lactoilglutatión Liasa/metabolismo
19.
Sci Rep ; 13(1): 13618, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37604852

RESUMEN

Raphanus sativus also known as radish is a member of the Brassicaceae family which is mainly cultivated for human and animal consumption. R. sativus growth and development is negatively affected by heavy metal stress. The metal zirconium (Zr) have toxic effects on plants and tolerance to the metal could be regulated by known signaling molecules such as methylglyoxal (MG). Therefore, in this study we investigated whether the application of the signaling molecule MG could improve the Zr tolerance of R. sativus at the seedling stage. We measured the following: seed germination, dry weight, cotyledon abscission (%), cell viability, chlorophyll content, malondialdehyde (MDA) content, conjugated diene (CD) content, hydrogen peroxide (H2O2) content, superoxide (O2•-) content, MG content, hydroxyl radical (·OH) concentration, ascorbate peroxidase (APX) activity, superoxide dismutase (SOD) activity, glyoxalase I (Gly I) activity, Zr content and translocation factor. Under Zr stress, exogenous MG increased the seed germination percentage, shoot dry weight, cotyledon abscission, cell viability and chlorophyll content. Exogenous MG also led to a decrease in MDA, CD, H2O2, O2•-, MG and ·OH, under Zr stress in the shoots. Furthermore, MG application led to an increase in the enzymatic activities of APX, SOD and Gly I as well as in the complete blocking of cotyledon abscission under Zr stress. MG treatment decreased the uptake of Zr in the roots and shoots. Zr treatment decreased the translocation factor of the Zr from roots to shoots and MG treatment decreased the translocation factor of Zr even more significantly compared to the Zr only treatment. Our results indicate that MG treatment can improve R. sativus seedling growth under Zr stress through the activation of antioxidant enzymes and Gly I through reactive oxygen species and MG signaling, inhibiting cotyledon abscission through H2O2 signaling and immobilizing Zr translocation.


Asunto(s)
Brassicaceae , Lactoilglutatión Liasa , Raphanus , Antioxidantes , Clorofila , Peróxido de Hidrógeno , Estrés Oxidativo , Piruvaldehído/toxicidad , Plantones , Superóxido Dismutasa , Circonio
20.
Gene ; 885: 147701, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37572800

RESUMEN

OBJECTIVE: The individuals' genetic traits predispose them to a higher or lower risk of Type 2 diabetes mellitus (T2DM) and its complications, for example, acute coronary syndrome (ACS). As carbonyl stress is responsible for the pathogenesis and complications of T2DM, and glyoxalase 1 (GLO1) is the most crucial determinant of carbonyl stress, the study aimed to explore the association between GLO1 gene polymorphism, GLO1 activity in red blood cell (RBC), plasma methylglyoxal (MG) levels, and ACS risk in South Indian T2DM patients. METHODS: A total of 150 T2DM patients with ACS as cases and 150 T2DM patients without ACS as controls were recruited in a case-control study. The rs4746, rs1049346 and rs1130534 of the GLO1 gene were analysed using TaqMan allele discrimination assay. The RBC GLO1 activity and plasma MG levels were measured. RESULTS: Significantly lower RBC GLO1 activity and higher plasma MG levels were found in cases compared to controls (p < 0.001 and p = 0.008, respectively). The genotype and allele frequencies of rs1049346 significantly differed between cases and controls (p < 0.001). For rs1130534 and rs1049346, no significant difference was found. For rs1049346, the TT and CC genotypes were associated with higher (p = 0.002) and lower (p = 0.001) ACS risk, respectively, in various genetic models. The TT genotype of rs1049346 was associated with lower RBC GLO1 activity (p = 0.004) and higher MG level (p = 0.010). In haplotype analysis, higher ACS susceptibility with the TAT haplotype (p < 0.001) and lower ACS susceptibility with the TAC haplotype (p < 0.001) were observed. Also, lower RBC GLO1 activity was associated with the TAT haplotype (p = 0.002). CONCLUSIONS: The rs1049346 of the GLO1 gene may be associated with ACS risk in South Indian T2DM patients, and the T and C allele might be essential precipitating and protective factors, respectively.


Asunto(s)
Síndrome Coronario Agudo , Diabetes Mellitus Tipo 2 , Lactoilglutatión Liasa , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicaciones , Estudios de Casos y Controles , Síndrome Coronario Agudo/genética , Polimorfismo Genético , Genotipo , Factores de Riesgo , Lactoilglutatión Liasa/genética , Piruvaldehído , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...