Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros












Intervalo de año de publicación
1.
Front Immunol ; 15: 1303089, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348040

RESUMEN

Guanylate binding proteins (GBPs) are an evolutionarily ancient family of proteins that are widely distributed among eukaryotes. They belong to the dynamin superfamily of GTPases, and their expression can be partially induced by interferons (IFNs). GBPs are involved in the cell-autonomous innate immune response against bacterial, parasitic and viral infections. Evolutionary studies have shown that GBPs exhibit a pattern of gene gain and loss events, indicative for the birth-and-death model of evolution. Most species harbor large GBP gene clusters that encode multiple paralogs. Previous functional and in-depth evolutionary studies have mainly focused on murine and human GBPs. Since rabbits are another important model system for studying human diseases, we focus here on lagomorphs to broaden our understanding of the multifunctional GBP protein family by conducting evolutionary analyses and performing a molecular and functional characterization of rabbit GBPs. We observed that lagomorphs lack GBP3, 6 and 7. Furthermore, Leporidae experienced a loss of GBP2, a unique duplication of GBP5 and a massive expansion of GBP4. Gene expression analysis by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and transcriptome data revealed that leporid GBP expression varied across tissues. Overexpressed rabbit GBPs localized either uniformly and/or discretely to the cytoplasm and/or to the nucleus. Oryctolagus cuniculus (oc)GBP5L1 and rarely ocGBP5L2 were an exception, colocalizing with the trans-Golgi network (TGN). In addition, four ocGBPs were IFN-inducible and only ocGBP5L2 inhibited furin activity. In conclusion, from an evolutionary perspective, lagomorph GBPs experienced multiple gain and loss events, and the molecular and functional characteristics of ocGBP suggest a role in innate immunity.


Asunto(s)
Lagomorpha , Animales , Conejos , Humanos , Ratones , Lagomorpha/metabolismo , Proteínas Portadoras , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Inmunidad Innata/genética , Interferones/metabolismo
2.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 185-193, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37664966

RESUMEN

Hindgut fermenting herbivores from different vertebrate taxa, including tortoises, and among mammals some afrotheria, perissodactyla incl. equids, several rodents as well as lagomorphs absorb more calcium (Ca) from the digesta than they require, and excrete the surplus via urine. Both proximate and ultimate causes are elusive. It was suggested that this mechanism might ensure phosphorus availability for the hindgut microbiome by removing potentially complex-building Ca from the digesta. Here we use Ussing chamber experiments to show that rabbits (Oryctolagus cuniculus) maintained on four different diets (six animals/diet) increase active Ca absorption at increasing Ca levels. This contradicts the common assumption that at higher dietary levels, where passive uptake should be more prevalent, active transport can relax and hence supports the deliberate removal hypothesis. In the rabbits, this absorption was distinctively higher in the caecum than in the duodenum, which is unexpected in mammals. Additional quantification of the presence of two proteins involved in active Ca absorption (calbindin-D9K CB; vitamin D receptor, VDR) showed higher presence with higher dietary Ca. However, their detailed distribution across the intestinal tract and the diet groups suggests that other factors not investigated in this study must play major roles in Ca absorption in rabbits. Investigating strategies of herbivores to mitigate potential negative effects of Ca in the digesta on microbial activity and growth might represent a promising area of future research.


Asunto(s)
Calcio , Lagomorpha , Conejos , Animales , Calcio/metabolismo , Calcio de la Dieta , Ciego/metabolismo , Mamíferos/metabolismo , Lagomorpha/metabolismo , Absorción Intestinal
3.
J Appl Biomed ; 21(4): 208-217, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38112460

RESUMEN

Although many efforts have been made to improve management strategies and diagnostic methods in the past several decades, the prevention of anastomotic complications, such as anastomotic leaks and strictures, remain a major clinical challenge. Therefore, new molecular pathways need to be identified that regulate anastomotic healing, and to design new treatments for patients after anastomosis to reduce the occurrence of complications. Rabbits were treated with a MST1/2 inhibitor XMU-XP-1, a Chinese medicine formula Shenhuang plaster (SHP) or a control vehicle immediately after surgery. The anastomotic burst pressure, collagen deposition, and hydroxyproline concentration were evaluated at 3 and 7 days after the surgery, and qRT-PCR and western-blot analyses were used to characterize mRNA and protein expression levels. Both XMU-XP-1 and SHP significantly increased anastomotic burst pressure, collagen deposition, and the concentration of hydroxyproline in intestinal anastomotic tissue at postoperative day 7 (POD 7). Importantly, SHP could induce TGF-ß1 expression, which activated its downstream target Smad-2 to activate the TGF-ß1 signaling pathway. Moreover, SHP reduced the phosphorylation level of YAP and increased its active form, and treatment with verteporfin, a YAP-TEAD complex inhibitor, significantly suppressed the effects induced by SHP during anastomotic tissue healing. This study demonstrated that activation of the Hippo-YAP pathway enhances anastomotic healing, and that SHP enhances both the TGF-ß1/Smad and YAP signaling pathways to promote rabbit anastomotic healing after surgery. These results suggest that SHP could be used to treat patients who underwent anastomosis to prevent the occurrence of anastomotic complications.


Asunto(s)
Lagomorpha , Factor de Crecimiento Transformador beta , Animales , Humanos , Conejos , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta1/farmacología , Hidroxiprolina/farmacología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacología , Transducción de Señal , Lagomorpha/metabolismo , Colágeno/farmacología , Anastomosis Quirúrgica
4.
Cells ; 12(24)2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38132140

RESUMEN

The inhibition of mammalian target of rapamycin (mTOR) with rapamycin (RAPA) provides protection against myocardial ischemia/reperfusion (I/R) injury in diabetes. Since interactions between transcripts, including long non-coding RNA (lncRNA), microRNA(miRNA) and mRNA, regulate the pathophysiology of disease, we performed unbiased miRarray profiling in the heart of diabetic rabbits following I/R injury with/without RAPA treatment to identify differentially expressed (DE) miRNAs and their predicted targets of lncRNAs/mRNAs. Results showed that among the total of 806 unique miRNAs targets, 194 miRNAs were DE after I/R in diabetic rabbits. Specifically, eight miRNAs, including miR-199a-5p, miR-154-5p, miR-543-3p, miR-379-3p, miR-379-5p, miR-299-5p, miR-140-3p, and miR-497-5p, were upregulated and 10 miRNAs, including miR-1-3p, miR-1b, miR-29b-3p, miR-29c-3p, miR-30e-3p, miR-133c, miR-196c-3p, miR-322-5p, miR-499-5p, and miR-672-5p, were significantly downregulated after I/R injury. Interestingly, RAPA treatment significantly reversed these changes in miRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated the participation of miRNAs in the regulation of several signaling pathways related to I/R injury, including MAPK signaling and apoptosis. Furthermore, in diabetic hearts, the expression of lncRNAs, HOTAIR, and GAS5 were induced after I/R injury, but RAPA suppressed these lncRNAs. In contrast, MALAT1 was significantly reduced following I/R injury, with the increased expression of miR-199a-5p and suppression of its target, the anti-apoptotic protein Bcl-2. RAPA recovered MALAT1 expression with its sponging effect on miR-199-5p and restoration of Bcl-2 expression. The identification of novel targets from the transcriptome analysis in RAPA-treated diabetic hearts could potentially lead to the development of new therapeutic strategies for diabetic patients with myocardial infarction.


Asunto(s)
Diabetes Mellitus , Lagomorpha , MicroARNs , Daño por Reperfusión Miocárdica , ARN Largo no Codificante , Animales , Humanos , Conejos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero , MicroARNs/genética , MicroARNs/metabolismo , Lagomorpha/genética , Lagomorpha/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/genética , Isquemia , Proteínas Proto-Oncogénicas c-bcl-2
5.
Virol Sin ; 38(6): 877-888, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37931840

RESUMEN

Emerging and re-emerging viruses from wild animals have seriously threatened the health of humans and domesticated animals in recent years. Herein, we isolated a new mammalian orthoreovirus (MRV), Pika/MRV/GCCDC7/2019 (PMRV-GCCDC7), in the Qinghai-Tibet Plateau wild pika (Ochotona curzoniae). Though the PMRV-GCCDC7 shows features of a typical reovirus with ten gene segments arranged in 3:3:4 in length, the virus belongs to an independent evolutionary branch compared to other MRVs based on phylogenetic tree analysis. The results of cellular susceptibility, species tropism, and replication kinetics of PMRV-GCCDC7 indicated the virus could infect four human cell lines (A549, Huh7, HCT, and LoVo) and six non-human cell lines, including Vero-E6, LLC-MK2, BHK-21, N2a, MDCK, and RfKT cell, derived from diverse mammals, i.e. monkey, mice, canine and bat, which revealed the potential of PMRV-GCCDC7 to infect a variety of hosts. Infection of BALB/c mice with PMRV-GCCDC7 via intranasal inoculation led to relative weight loss, lung tissue damage and inflammation with the increase of virus titer, but no serious respiratory symptoms and death occurred. The characterization of the new reovirus from a plateau-based wild animal has expanded our knowledge of the host range of MRV and provided insight into its risk of trans-species transmission and zoonotic diseases.


Asunto(s)
Lagomorpha , Orthoreovirus de los Mamíferos , Animales , Perros , Ratones , Lagomorpha/metabolismo , Orthoreovirus de los Mamíferos/genética , Filogenia , Virulencia , Animales Salvajes , Genómica
6.
Cell Rep ; 41(1): 111446, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36198267

RESUMEN

The plateau pika (Ochotona curzoniae) is native to the Qinghai-Tibet Plateau. In this study, the gene that encodes a heme-binding protein in the pulmonary surfactant (PS) of the pika is identified. The protein is a homotetrameric hemoglobin (δ4) encoded by HBD (δ). HBD is expressed in alveolar epithelial type II (ATII) and type I (ATI) cells, upregulated by hypoxia. δ4 is secreted into alveolar cavities through osmiophilic multilamellar bodies. HBD expression is downregulated by RNAi, which significantly increases hypoxia-inducible factor 1α expression in lung tissue and red blood cells and hemoglobin and blood lactate concentrations but significantly decreases arterial partial pressure of oxygen (PaO2). Our results indicate that plateau pikas physiologically show hypoxemia when HBD expression is downregulated. Therefore, specific HBD expression in the lungs helps plateau pikas to obtain oxygen under hypoxia by maintaining higher PaO2. These findings provide insights into the adaptive mechanisms of plateau pikas to withstand high-altitude environments.


Asunto(s)
Lagomorpha , Surfactantes Pulmonares , Altitud , Células Epiteliales Alveolares/metabolismo , Animales , Proteínas de Unión al Hemo , Hemoglobinas/metabolismo , Hipoxia/metabolismo , Lactatos/metabolismo , Lagomorpha/genética , Lagomorpha/metabolismo , Pulmón/metabolismo , Oxígeno/metabolismo , Surfactantes Pulmonares/metabolismo
7.
Cell Rep ; 39(7): 110816, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35584682

RESUMEN

The Qinghai-Tibet Plateau (QTP) harbors hundreds of species well adapted to its extreme conditions, including its low-oxygen (hypoxic) atmosphere. Here, we show that the plateau pika-a keystone mammal of the QTP-lacks robust circadian rhythms. The major form of the plateau pika Epas1 protein includes a 24-residue insert caused by a point mutation at the 5' juncture site of Intron14 and is more stable than other mammalian orthologs. Biochemical studies reveal that an Epas1-Bmal1 complex with lower trans-activation activity occupies the E1/E2 motifs at the promoter of the core-clock gene Per2, thus explaining how an Epas1 mutation-selected in the hypoxic conditions of the QTP-disrupts the molecular clockwork. Importantly, experiments with hypoxic chambers show that mice expressing the plateau pika Epas1 ortholog in their suprachiasmatic nucleus have dysregulated central clocks, and pika Epas1 knockin mice reared in hypoxic conditions exhibit dramatically reduced heart damage compared with wild-type animals.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Relojes Circadianos , Lagomorpha , Aclimatación , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Hipoxia/genética , Hipoxia/metabolismo , Lagomorpha/genética , Lagomorpha/metabolismo , Ratones , Mutación/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-34861554

RESUMEN

The plateau pika, a typical hypoxia-tolerant mammal lives 3000-5000 m above sea level on the Qinghai-Tibet Plateau, has acquired many physiological and morphological characteristics and strategies in its adaptation to sustained, high-altitude hypoxia. Blunted hypoxic pulmonary vasoconstriction is one such strategy, but the genes involved in this strategy have not been elucidated. Here, we investigated the genes involved and their expression profiles in the lung transcriptome of plateau pikas subjected to different hypoxic conditions (using low-pressure oxygen cabins). A slight, right ventricular hypertrophy was observed in pikas of the control group (altitude: 3200 m) vs. those exposed to 5000 m altitude conditions for one week. Our assembly identified 67,774 genes; compared with their expression in the control animals, 866 and 8364 genes were co-upregulated and co-downregulated, respectively, in pikas subjected to 5000 m altitude conditions for 1 and 4 w. We elucidated pathways that were associated with pulmonary vascular arterial pressure, including vascular smooth muscle contraction, HIF-1 signalling, calcium signalling, cGMP-PKG signalling, and PI3K-Akt signalling based on the differentially expressed genes; the top-100 pathway enrichments were found between the control group and the group exposed to 5000 m altitude conditions for 4 w. The mRNA levels of 18 candidate gene showed that more than 83% of genes were expressed and the number of transcriptome The up-regulated genes were EPAS1, Hbα, iNOS, CX40, CD31, PPM1B, HIF-1α, MYLK, Pcdh12, Surfactant protein B, the down-regulated genes were RYR2, vWF, RASA1, CLASRP, HIF-3α. Our transcriptome data are a valuable resource for future genomic studies on plateau pika.


Asunto(s)
Lagomorpha , Fosfatidilinositol 3-Quinasas , Animales , Perfilación de la Expresión Génica , Hipoxia/genética , Hipoxia/metabolismo , Lagomorpha/genética , Lagomorpha/metabolismo , Pulmón/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo
9.
PLoS One ; 14(12): e0226202, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31830084

RESUMEN

The plethora of restriction factors with the ability to inhibit the replication of retroviruses have been widely studied and genetic hallmarks of evolutionary selective pressures in Primates have been well documented. One example is the tripartite motif-containing protein 5 alpha (TRIM5α), a cytoplasmic factor that restricts retroviral infection in a species-specific fashion. In Lagomorphs, similarly to what has been observed in Primates, the specificity of TRIM5 restriction has been assigned to the PRYSPRY domain. In this study, we present the first insight of an intra-genus variability within the Lagomorpha TRIM5 PRYSPRY domain. Remarkably, and considering just the 32 residue-long v1 region of this domain, the deduced amino acid sequences of Daurian pika (Ochotona dauurica) and steppe pika (O. pusilla) evidenced a high divergence when compared to the remaining Ochotona species, presenting values of 44% and 66% of amino acid differences, respectively. The same evolutionary pattern was also observed when comparing the v1 region of two Sylvilagus species members (47% divergence). However, and unexpectedly, the PRYSPRY domain of Lepus species exhibited a great conservation. Our results show a high level of variation in the PRYSPRY domain of Lagomorpha species that belong to the same genus. This suggests that, throughout evolution, the Lagomorpha TRIM5 should have been influenced by constant selective pressures, likely as a result of multiple different retroviral infections.


Asunto(s)
Evolución Molecular , Especiación Genética , Lagomorpha/genética , Primates/genética , Proteínas de Motivos Tripartitos/genética , Secuencia de Aminoácidos , Animales , Lagomorpha/metabolismo , Filogenia , Primates/metabolismo , Dominios Proteicos , Homología de Secuencia , Especificidad de la Especie , Proteínas de Motivos Tripartitos/metabolismo
10.
Biochem Biophys Res Commun ; 500(2): 117-123, 2018 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-29626477

RESUMEN

The plateau pika (Ochotona curzoniae), one of the indigenous animals of the Qinghai-Tibet Plateau, is adapted to life in a cold and hypoxic environment. We conducted a series of genomic, proteomic and morphological studies to investigate whether changes in energy metabolism contribute to adaptation of the plateau pika to cold stress by analyzing summer and winter cohorts. The winter group showed strong morphological and histological features of brown adipose tissue (BAT) in subcutaneous white adipose tissue (sWAT). To obtain molecular evidence of browning of sWAT, we performed reverse transcription and quantitative real-time PCR, which revealed that BAT-specific genes, including uncoupling protein 1 (UCP-1) and PPAR-γ coactivator 1α (PGC-1α), were highly expressed in sWAT from the winter group. Compared with the summer group, Western blot analysis also confirmed that UCP-1, PGC-1α and Cox4 protein levels were significantly increased in sWAT from the winter group. Increased BAT mass in the inter-scapular region of the winter group was also observed. These results suggest that the plateau pika adapts to cold by browning sWAT and increasing BAT in order to increase thermogenesis. These changes are distinct from the previously reported adaptation of highland deer mice. Understanding the regulatory mechanisms underlying this adaptation may lead to novel therapeutic strategies for treating obesity and metabolic disorders.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Frío , Exposición a Riesgos Ambientales , Lagomorpha/metabolismo , Grasa Subcutánea/metabolismo , Adiposidad , Animales , Peso Corporal , Regulación de la Expresión Génica , Glucosa/metabolismo , Insulina/metabolismo , Metabolismo de los Lípidos , Mitocondrias/genética , Estaciones del Año , Tibet
11.
J Virol ; 92(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29187537

RESUMEN

Rabbit hemorrhagic disease virus (RHDV) and European brown hare syndrome virus (EBHSV) are two lagoviruses from the family Caliciviridae that cause fatal diseases in two leporid genera, Oryctolagus and Lepus, respectively. In the last few years, several examples of host jumps of lagoviruses among leporids were recorded. In addition, a new pathogenic genotype of RHDV emerged, and many nonpathogenic strains of lagoviruses have been described. The molecular mechanisms behind host shifts and the emergence of virulence are unknown. Since RHDV uses glycans of the histo-blood group antigen type as attachment factors to initiate infection, we studied if glycan specificities of the new pathogenic RHDV genotype, nonpathogenic lagoviruses, and EBHSV potentially play a role in determining the host range and virulence of lagoviruses. We observed binding to A, B, or H antigens of the histo-blood group family for all strains known to primarily infect European rabbits (Oryctolagus cuniculus), which have recently been classified as GI strains. However, we could not explain the emergence of virulence, since similar glycan specificities were found in several pathogenic and nonpathogenic strains. In contrast, EBHSV, recently classified as GII.1, bound to terminal ß-linked N-acetylglucosamine residues of O-glycans. Expression of these attachment factors in the upper respiratory and digestive tracts in three lagomorph species (Oryctolagus cuniculus, Lepuseuropaeus, and Sylvilagus floridanus) showed species-specific patterns regarding susceptibility to infection by these viruses, indicating that species-specific glycan expression is likely a major contributor to lagovirus host specificity and range.IMPORTANCE Lagoviruses constitute a genus of the family Caliciviridae comprising highly pathogenic viruses, RHDV and EBHSV, that infect rabbits and hares, respectively. Recently, nonpathogenic strains were discovered and new pathogenic strains have emerged. In addition, host jumps between lagomorphs have been observed. The mechanisms responsible for the emergence of pathogenicity and host species range are unknown. Previous studies showed that RHDV strains attach to glycans expressed in the upper respiratory and digestive tracts of rabbits, the likely portals of virus entry. Here, we studied the glycan-binding properties of novel pathogenic and nonpathogenic strains looking for a link between glycan binding and virulence or between glycan specificity and host range. We found that glycan binding did not correlate with virulence. However, expression of glycan motifs in the upper respiratory and digestive tracts of lagomorphs revealed species-specific patterns associated with the host ranges of the virus strains, suggesting that glycan diversity contributes to lagovirus host ranges.


Asunto(s)
Infecciones por Caliciviridae/virología , Virus de la Enfermedad Hemorrágica del Conejo/fisiología , Lagomorpha/virología , Lagovirus/fisiología , Polisacáridos/metabolismo , Virulencia , Acoplamiento Viral , Animales , Infecciones por Caliciviridae/metabolismo , Susceptibilidad a Enfermedades , Liebres , Lagomorpha/clasificación , Lagomorpha/metabolismo , Filogenia , Conejos , Especificidad de la Especie
12.
High Alt Med Biol ; 18(3): 219-225, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28846033

RESUMEN

Cao, Xue-Feng, Zhen-Zhong Bai, Lan Ma, Shuang Ma, and Ri-Li Ge. Metabolic alterations of Qinghai-Tibet plateau pikas in adaptation to high altitude. High Alt Med Biol. 18:219-225, 2017.-To determine specific metabolic alterations in the myocardium of plateau pikas (Ochotona curzoniae) and potential metabolic biomarkers involved in their adaptation to the high-altitude environment of the Qinghai-Tibet Plateau. Ten pikas were captured by traps in the Kekexili Reserve (4630 m a.s.l; n = 5) and at the foot of the Laji Mountain (2600 m a.s.l; n = 5) on the Qinghai-Tibet Plateau, Qinghai Province, China. Metabolite levels were determined by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) metabolomics, and multivariate statistical analysis was performed. Several metabolites involved in carbohydrate, fat, energy, and redox homeostasis pathways were significantly altered in pikas living at 4630 m. In addition, those pikas showed increased levels of lactic acid, sarcosine, 4-hydroxybutyrate, methionine, tartaric acid, ribose, tyrosine, pentadecanoic acid, 2-monoolein, 3,5-dihydroxyphenylglycine, trehalose-6-phosphate, succinic acid, myoinositol, fumaric acid, taurine, 2-hydroxybutanoic acid, gluconic acid, citrulline, and glutathione, but decreased levels of oleic acid and 2'-deoxyadenosine 5'-monophosphate. Metabolic activity is significantly altered in the myocardium of pikas in the high-altitude areas of the Qinghai-Tibet Plateau. This study provides important insights into metabolic biomarkers related to the adaptation of pikas to high-altitude hypoxia.


Asunto(s)
Aclimatación/fisiología , Altitud , Lagomorpha/metabolismo , Metaboloma/fisiología , Miocardio/metabolismo , Animales , China , Análisis Multivariante , Tibet
13.
Physiol Res ; 66(2): 357-362, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27982675

RESUMEN

With hypoxic stress, hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) are elevated and their responses are altered in skeletal muscles of plateau animals [China Qinghai-Tibetan plateau pikas (Ochotona curzoniae)] as compared with control animals [normal lowland Sprague-Dawley (SD) rats]. The results indicate that HIF-1alpha and VEGF are engaged in physiological functions under hypoxic environment. The purpose of the current study was to examine the protein levels of VEGF receptor subtypes (VEGFRs: VEGFR-1, VEGFR-2 and VEGFR-3) in the end organs, namely skeletal muscle, heart and lung in response to hypoxic stress. ELISA and Western blot analysis were employed to determine HIF-1alpha and the protein expression of VEGFRs in control animals and plateau pikas. We further blocked HIF-1alpha signal to determine if HIF-1alpha regulates alternations in VEGFRs in those tissues. We hypothesized that responsiveness of VEGFRs in the major end organs of plateau animals is differential with insult of hypoxic stress and is modulated by low oxygen sensitive HIF-1alpha. Our results show that hypoxic stress induced by exposure of lower O(2) for 6 h significantly increased the levels of VEGFR-2 in skeletal muscle, heart and lung and the increases were amplified in plateau pikas. Our results also demonstrate that hypoxic stress enhanced VEGFR-3 in lungs of plateau animals. Nonetheless, no significant alternations in VEGFR-1 were observed in those tissues with hypoxic stress. Moreover, we observed decreases of VEGFR-2 in skeletal muscle, heart and lung; and decreases of VEGFR-3 in lung following HIF-1alpha inhibition. Overall, our findings suggest that in plateau animals 1) responsiveness of VEGFRs is different under hypoxic environment; 2) amplified VEGFR-2 response appears in skeletal muscle, heart and lung, and enhanced VEGFR-3 response is mainly observed in lung; 3) HIF-1alpha plays a regulatory role in the levels of VEGFRs. Our results provide the underlying cellular and molecular mechanisms responsible for hypoxic environment in plateau animals, having an impact on research of physiological and ecological adaptive responses to acute or chronic hypoxic stress in humans who living at high attitude and who live at a normal sea level but suffer from hypoxic disorders.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Lagomorpha/metabolismo , Pulmón/metabolismo , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Aclimatación , Altitud , Animales , Regulación de la Expresión Génica/fisiología , Especificidad de Órganos/fisiología , Ratas Sprague-Dawley , Especificidad de la Especie , Estrés Fisiológico , Tibet , Distribución Tisular
14.
Artículo en Inglés | MEDLINE | ID: mdl-27490559

RESUMEN

Sperm specific lactate dehydrogenases (LDH-C4) is a lactate dehydrogenase that catalyzes the conversion of pyruvate to lactate. In mammals, Ldh-c was originally thought to be expressed only in testes and spermatozoa. Plateau pika (Ochotona curzoniae), which belongs to the genus Ochotona of the Ochotonidea family, is a hypoxia-tolerant mammal living 3000-5000 m above sea level on the Qinghai-Tibet Plateau, an environment which is strongly hypoxic. Ldh-c is expressed not only in testes and sperm, but also in the somatic tissues of plateau pika. To reveal the effect of hypoxia on pika Ldh-c expression, we investigated the mRNA and protein level of Ldh-c as well as the biochemical index of anaerobic glycolysis in pika somatic tissues at the altitudes of 2200 m, 3200 m and 3900 m. Our results showed that mRNA and protein expression levels of Ldh-c in the tissues of pika's heart, liver, brain and skeletal muscle were increased significantly from 2200 m to 3200 m, but had no difference from 3200 m to 3900 m; the activities of LDH and the contents of lactate showed no difference from 2200 m to 3200 m, but were increased significantly from 3200 m to 3900 m. Hypoxia up-regulated and maintained the expression levels of Ldh-c in the pika somatic cells. Under the hypoxia condition, plateau pikas increased anaerobic glycolysis in somatic cells by LDH-C4, and that may have reduced their dependence on oxygen and enhanced their adaptation to the hypoxic environment.


Asunto(s)
Altitud , Hipoxia/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Lagomorpha/metabolismo , Aclimatación , Adaptación Fisiológica , Animales , Western Blotting , Encéfalo/metabolismo , Glucólisis , Isoenzimas/metabolismo , Ácido Láctico/metabolismo , Hígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Oxígeno/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Testículo/metabolismo , Tibet
15.
Int J Mol Sci ; 17(1)2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26751442

RESUMEN

Testis-specific lactate dehydrogenase (LDH-C4) is one of the lactate dehydrogenase (LDH) isozymes that catalyze the terminal reaction of pyruvate to lactate in the glycolytic pathway. LDH-C4 in mammals was previously thought to be expressed only in spermatozoa and testis and not in other tissues. Plateau pika (Ochotona curzoniae) belongs to the genus Ochotona of the Ochotonidea family. It is a hypoxia-tolerant species living in remote mountain areas at altitudes of 3000-5000 m above sea level on the Qinghai-Tibet Plateau. Surprisingly, Ldh-c is expressed not only in its testis and sperm, but also in somatic tissues of plateau pika. To shed light on the function of LDH-C4 in somatic cells, Ldh-a, Ldh-b, and Ldh-c of plateau pika were subcloned into bacterial expression vectors. The pure enzymes of Lactate Dehydrogenase A4 (LDH-A4), Lactate Dehydrogenase B4 (LDH-B4), and LDH-C4 were prepared by a series of expression and purification processes, and the three enzymes were identified by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and native polyacrylamide gel electrophoresis (PAGE). The enzymatic kinetics properties of these enzymes were studied by Lineweaver-Burk double-reciprocal plots. The results showed the Michaelis constant (Km) of LDH-C4 for pyruvate and lactate was 0.052 and 4.934 mmol/L, respectively, with an approximate 90 times higher affinity of LDH-C4 for pyruvate than for lactate. At relatively high concentrations of lactate, the inhibition constant (Ki) of the LDH isoenzymes varied: LDH-A4 (Ki = 26.900 mmol/L), LDH-B4 (Ki = 23.800 mmol/L), and LDH-C4 (Ki = 65.500 mmol/L). These data suggest that inhibition of lactate by LDH-A4 and LDH-B4 were stronger than LDH-C4. In light of the enzymatic kinetics properties, we suggest that the plateau pika can reduce reliance on oxygen supply and enhance its adaptation to the hypoxic environments due to increased anaerobic glycolysis by LDH-C4.


Asunto(s)
Adaptación Fisiológica , Hipoxia , L-Lactato Deshidrogenasa/metabolismo , Lagomorpha/metabolismo , Animales , Clonación Molecular , Isoenzimas/metabolismo , Cinética , Lagomorpha/fisiología , Masculino
16.
Mol Biol Evol ; 32(2): 287-98, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25415962

RESUMEN

A fundamental question in evolutionary genetics concerns the roles of mutational pleiotropy and epistasis in shaping trajectories of protein evolution. This question can be addressed most directly by using site-directed mutagenesis to explore the mutational landscape of protein function in experimentally defined regions of sequence space. Here, we evaluate how pleiotropic trade-offs and epistatic interactions influence the accessibility of alternative mutational pathways during the adaptive evolution of hemoglobin (Hb) function in high-altitude pikas (Mammalia: Lagomorpha). By combining ancestral protein resurrection with a combinatorial protein-engineering approach, we examined the functional effects of sequential mutational steps in all possible pathways that produced an increased Hb-O2 affinity. These experiments revealed that the effects of mutations on Hb-O2 affinity are highly dependent on the temporal order in which they occur: Each of three ß-chain substitutions produced a significant increase in Hb-O2 affinity on the ancestral genetic background, but two of these substitutions produced opposite effects when they occurred as later steps in the pathway. The experiments revealed pervasive epistasis for Hb-O2 affinity, but affinity-altering mutations produced no significant pleiotropic trade-offs. These results provide insights into the properties of adaptive substitutions in naturally evolved proteins and suggest that the accessibility of alternative mutational pathways may be more strongly constrained by sign epistasis for positively selected biochemical phenotypes than by antagonistic pleiotropy.


Asunto(s)
Altitud , Epistasis Genética/genética , Hemoglobinas/genética , Lagomorpha/genética , Lagomorpha/metabolismo , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Animales , Evolución Molecular , Mutación , Oxígeno/metabolismo , Selección Genética/genética
17.
Physiol Res ; 63(6): 801-5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25535647

RESUMEN

Hypoxia-inducible factor-1alpha (HIF-1alpha) transcriptionally regulates expression of several target genes in protecting tissues against hypoxia. With hypoxic stress, vascular endothelial growth factor (VEGF) is a signal protein produced by cells and further contributes to improvement of vascular functions and restoring the oxygen supply to tissues. In this current study, we first hypothesized that the protein levels of HIF-1alpha and VEGF are reduced in skeletal muscles of plateau animals [China Qinghai-Tibetan plateau pikas (ochotona curzoniae)] in response to hypoxia as compared with control animals [normal lowland Sprague-Dawley (SD) rats]. We further hypothesized that HIF-1alpha plays a role in regulating expression of VEGF in skeletal muscle. Note that HIF-1alpha and VEGF were determined by using two-site immunoenzymatic assay (ELISA) methods. Our results demonstrated that hypoxic stress induced by exposure of lower O(2) (6 h) significantly increased the levels of HIF-1alpha and VEGF in the oxidative and glycolytic muscles of SD rats and pikas (P<0.05 vs. normoxic conditions). Notably, the increases in HIF-1alpha and VEGF were significantly less in pikas (P<0.05, vs. SD controls) than in SD rats. In addition, a linear relationship was observed between amplified HIF-1alpha and VEGF in oxidative muscle (r=0.76 and P<0.01) and glycolytic muscle (r=0.72 and P<0.01) and inhibiting HIF-1alpha significantly decreased expression of VEGF induced by hypoxic stress in skeletal muscles (P<0.05). Overall, our findings suggest that (1) responsiveness of HIF-1alpha and VEGF in skeletal muscles to hypoxic stress is blunted in plateau animals, and (2) HIF-1alpha has a regulatory effect on VEGF under hypoxic environment.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Hipoxia/metabolismo , Lagomorpha/metabolismo , Músculo Esquelético/metabolismo , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Animales , Masculino , Ratas , Ratas Sprague-Dawley
18.
Nitric Oxide ; 38: 38-44, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24632467

RESUMEN

Nitric oxide (NO), a potent vasodilator, plays an important role in preventing hypoxia induced pulmonary hypertension. Endogenous NO is synthesized by nitric oxide synthases (NOSs) from l-arginine. In mammals, three different NOSs have been identified, including neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS). Plateau pika (Ochotona curzoniae) is a typical hypoxia tolerant mammal that lives at 3000-5000 m above sea level on the Qinghai-Tibet Plateau. The aim of this study was to investigate whether NOS expression and NO production are regulated by chronic hypoxia in plateau pika. Quantitative real-time PCR and western blot analyses were conducted to quantify relative abundances of iNOS and eNOS transcripts and proteins in the lung tissues of plateau pikas at different altitudes (4550, 3950 and 3200 m). Plasma NO metabolites, nitrite/nitrate (NO(x)⁻) levels were also examined by Ion chromatography to determine the correlation between NO production and altitude level. The results revealed that iNOS transcript levels were significantly lower in animals at high altitudes (decreased by 53% and 57% at altitude of 3950 and 4550 m compared with that at 3200 m). Similar trends in iNOS protein abundances were observed (26% and 41% at 3950 and 4550 m comparing with at 3200 m). There were no significant differences in eNOS mRNA and protein levels in the pika lungs among different altitudes. The plasma NO(x)⁻ levels of the plateau pikas at high altitudes significantly decreased (1.65±0.19 µg/mL at 3200 m to 0.44±0.03 µg/mL at 3950 m and 0.24±0.01 µg/mL at 4550 m). This is the first evidence describing the effects of chronic hypoxia on NOS expression and NO levels in the plateau pika in high altitude adaptation. We conclude that iNOS expression and NO production are suppressed at high altitudes, and the lower NO concentration at high altitudes may serve crucial roles for helping the plateau pika to survive at hypoxic environment.


Asunto(s)
Altitud , Regulación Enzimológica de la Expresión Génica , Lagomorpha/metabolismo , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Óxido Nítrico/biosíntesis , Animales , Hipoxia/sangre , Hipoxia/enzimología , Hipoxia/genética , Lagomorpha/sangre , Lagomorpha/genética , Pulmón/enzimología , Pulmón/metabolismo , Óxido Nítrico/sangre , Óxido Nítrico Sintasa de Tipo II/genética , Tibet
19.
Mol Biol (Mosk) ; 48(1): 124-32, 2014.
Artículo en Ruso | MEDLINE | ID: mdl-25842833

RESUMEN

Lactate dehydrogenase C4 (LDH-C4) is considered to be a good target protein for the development of contraceptive drugs. To develop contraceptive rodenticide against pika (Ochotona curzoniae) LDH-C4, the pika LDH-C gene was cloned and expressed in Escherichia coli. The recombinant protein was purified and characterized. The cDNA of pika LDH-C gene was cloned by RACE method. The cDNA was 1498 bp in length containing an ORF of 996 bp which encoded a polypeptide of 332 amino acids. The ORF of pika LDH-C was introduced in E. coli and expressed with no fusion tags added. The recombinant LDH-C4 protein was purified by heating, affinity chromatography and ion-exchange chromatography. The recombinant pika LDH-C4 was a tetramer with a molecular weight of approximately 140 kDa, and it had temperature-dependent catalytic activity, as it was thermally stable up to 60 degrees C. The optimal pH values in the forward and backward reactions were around 7.48 and 10.28, respectively. The apparent Michaelis constants for pyruvate and lactate were 51.2 +/- 3.8 and 8568.8 +/- 409 microM respectively. The inhibition constant for oxalic acid was 11.8 +/- 3.5 mM. This study laid a solid foundation for contraceptive rodenticide development against pika LDH-C4.


Asunto(s)
Clonación Molecular , Expresión Génica , Lagomorpha , Sistemas de Lectura Abierta , Animales , Secuencia de Bases , Estabilidad de Enzimas , Escherichia coli/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , L-Lactato Deshidrogenasa/química , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/aislamiento & purificación , L-Lactato Deshidrogenasa/metabolismo , Lagomorpha/genética , Lagomorpha/metabolismo , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
20.
PLoS One ; 8(10): e77236, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24130861

RESUMEN

T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4) contains the canonical phosphoprotein phosphatase 1 (PPP1) binding motif, composed by the amino acid sequence RVSF. We identified and validated the binding of TCTEX1D4 to PPP1 and demonstrated that indeed this protein is a novel PPP1 interacting protein. Analyses of twenty-one mammalian species available in public databases and seven Lagomorpha sequences obtained in this work showed that the PPP1 binding motif 90RVSF93 is present in all of them and is flanked by a palindromic sequence, PLGS, except in three species of pikas (Ochotona princeps, O. dauurica and O. pusilla). Furthermore, for the Ochotona species an extra glycosylation site, motif 96NLS98, and the loss of the palindromic sequence were observed. Comparison with other lagomorphs suggests that this event happened before the Ochotona radiation. The dN/dS for the sequence region comprising the PPP1 binding motif and the flanking palindrome highly supports the hypothesis that for Ochotona species this region has been evolving under positive selection. In addition, mutational screening shows that the ability of pikas TCTEX1D4 to bind to PPP1 is maintained, although the PPP1 binding motif is disrupted, and the N- and C-terminal surrounding residues are also abrogated. These observations suggest pika as an ideal model to study novel PPP1 complexes regulatory mechanisms.


Asunto(s)
Dineínas/química , Dineínas/metabolismo , Lagomorpha/metabolismo , Proteína Fosfatasa 1/metabolismo , Selección Genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Dineínas/genética , Evolución Molecular , Lagomorpha/genética , Mutagénesis Sitio-Dirigida , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...