Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 445
Filtrar
1.
Fish Physiol Biochem ; 50(4): 1861-1877, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38951427

RESUMEN

The metabotropic glutamate receptor (mGluR, GRM) family is involved in multiple signaling pathways and regulates neurotransmitter release. However, the evolutionary history, distribution, and function of the mGluRs family in lampreys have not been determined. Therefore, we identified the mGluRs gene family in the genome of Lethenteron reissneri, which has been conserved throughout vertebrate evolution. We confirmed that Lr-GRM3, Lr-GRM5, and Lr-GRM7 encode three types of mGluRs in lamprey. Additionally, we investigated the distribution of Lr-GRM3 within this species by qPCR and Western blotting. Furthermore, we conducted RNA sequencing to investigate the molecular function of Lr-GRM3 in lamprey. Our gene expression profile revealed that, similar to that in jawed vertebrates, Lr-GRM3 participates in multiple signal transduction pathways and influences synaptic excitability in lampreys. Moreover, it also affects intestinal motility and the inflammatory response in lampreys. This study not only enhances the understanding of mGluRs' gene evolution but also highlights the conservation of GRM3's role in signal transduction while expanding our knowledge of its functions specifically within lampreys. In summary, our experimental findings provide valuable insights for studying both the evolution and functionality of the mGluRs family.


Asunto(s)
Evolución Molecular , Lampreas , Receptores de Glutamato Metabotrópico , Animales , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Lampreas/genética , Lampreas/metabolismo , Filogenia , Transducción de Señal
2.
Mol Immunol ; 172: 47-55, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38875755

RESUMEN

3-phosphoinositide-dependent protein kinase-1 (PDK-1) is a key kinase regulating the activity of the PI3K/AKT pathway and a major regulator of the AGC protein kinase family. It is essential in the physiological activities of cells, embryonic development, individual development and immune response. In this study, we have identified for the first time an analogue of PDK-1 in the most primitive vertebrate, lamprey, and named it PDK-1-like. The protein sequence similarity of lamprey PDK-1-like to human, mouse, chicken, African xenopus and zebrafish PDK-1 were 64.4 %, 64.5 %, 65.0 %, 61.3 % and 63.2 %, respectively. The phylogenetic tree showed that PDK-1-like of lamprey were located at the base of the vertebrate branch, in line with the trend of biological evolution. Meanwhile, homology analysis showed that PDK-1 proteins across species shared a conserved kinase structural domain and a Pleckstrin Homology (PH) domain. Genomic synteny analysis revealed that the large-scale duplication blocks were not found in lamprey genome and neighbor genes of lamprey PDK-1-like presented dramatic differences compared with jawed vertebrates. More importantly, qPCR analysis showed that PDK-1-like was widely expressed in lamprey. Its mRNA expression levels varied in response to different pathogenic stimuli, and its expression was generally up-regulated under Polyinosinic-Polycytidylic acid (Poly(I:C)) stimulation. Pearson's correlation analysis showed that PDK-1-like was involved in co-expressed with MyD88-independent TLR-3 pathway during the immune response of lamprey, instead of MyD88-dependent TLR-3 pathway. In summary, our composite results offer valuable clues to the origin and evolution of PDK-1, and imply that PDK-1 s are among the most ancestral immune regulators in vertebrates.


Asunto(s)
Evolución Molecular , Inmunidad Innata , Lampreas , Filogenia , Animales , Lampreas/inmunología , Lampreas/genética , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Humanos , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Secuencia de Aminoácidos , Poli I-C/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología
3.
Dev Genes Evol ; 234(1): 45-53, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38733410

RESUMEN

AF4/FMR2 family member (AFF) proteins are a group of transcriptional regulators that can regulate gene transcription and play an important role in cellular physiological processes such as proliferation and differentiation. The transcriptome data of the lamprey spinal cord injury were analyzed in previous research. We then identified a hub gene, Lr-AFF3, from this dataset. Phylogenetic tree analysis determined the evolutionary relationships of the AFF gene family across different species. In addition, analysis of motifs, domains, and 3D structures further confirmed the conservatism of the AFF gene family. In particular, the gene structure of the AFF3 gene was not conserved, possibly because of intron insertion. It was also found that the neighboring genes of the Lr-AFF3 gene had a higher diversity than that in jawed vertebrates through synteny analysis. The results of the MTT and EdU experiments showed that the C-terminal homology domain (CHD) and N-terminal homology domain (NHD) of Lr-AFF3 promoted cell proliferation. In summary, our research will not only provide new insights into the origin and evolution of the AFF gene family in different species, but also provide new clues for the functions of Lr_AFF3.


Asunto(s)
Proliferación Celular , Evolución Molecular , Lampreas , Factores de Transcripción , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/química , Lampreas/genética , Lampreas/metabolismo , Familia de Multigenes , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/química
4.
Fish Shellfish Immunol ; 150: 109622, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740227

RESUMEN

The voltage-dependent anion channel 2 (VDAC2) is the abundant protein in the outer mitochondrial membrane. Opening VDAC2 pores leads to the induction of mitochondrial energy and material transport, facilitating interaction with various mitochondrial proteins implicated in essential processes such as cell apoptosis and proliferation. To investigate the VDAC2 in lower vertebrates, we identified Lr-VDAC2, a homologue of VDAC2 found in lamprey (Lethenteron reissneri), sharing a sequence identity of greater than 50 % with its counterparts. Phylogenetic analysis revealed that the position of Lr-VDAC2 aligns with the lamprey phylogeny, indicating its evolutionary relationship within the species. The Lr-VDAC2 protein was primarily located in the mitochondria of lamprey cells. The expression of the Lr-VDAC2 protein was elevated in high energy-demanding tissues, such as the gills, muscles, and myocardial tissue in normal lampreys. Lr-VDAC2 suppressed H2O2 (hydrogen peroxide)-induced 293 T cell apoptosis by reducing the expression levels of Caspase 3, Caspase 9, and Cyt C (cytochrome c). Further research into the mechanism indicated that the Lr-VDAC2 protein inhibited the pro-apoptotic activity of BAK (Bcl-2 antagonist/killer) protein by downregulating its expression at the protein translational level, thus exerting an anti-apoptotic function similar to the role of VDAC2 in humans.


Asunto(s)
Apoptosis , Proteínas de Peces , Lampreas , Canal Aniónico 2 Dependiente del Voltaje , Animales , Humanos , Secuencia de Aminoácidos , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Regulación de la Expresión Génica , Células HEK293 , Peróxido de Hidrógeno , Lampreas/genética , Lampreas/inmunología , Filogenia , Alineación de Secuencia/veterinaria , Canal Aniónico 2 Dependiente del Voltaje/metabolismo
5.
Fish Physiol Biochem ; 50(3): 1109-1122, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38429619

RESUMEN

The Na ( +)-taurocholate cotransporting polypeptide (NTCP) is a member of the solute carrier family 10 (SLC10), which consists of 7 members (SLC10a1-SLC10a7). NTCP is a transporter localized to the basolateral membrane of hepatocytes and is primarily responsible for the absorption of bile acids. Although mammalian NTCP has been extensively studied, little is known about the lamprey NTCP (L-NTCP). Here we show that L-NTCP follows the biological evolutionary history of vertebrates, with conserved domain, motif, and similar tertiary structure to higher vertebrates. L-NTCP is localized to the cell surface of lamprey primary hepatocytes by immunofluorescence analysis. HepG2 cells overexpressing L-NTCP also showed the distribution of L-NTCP on the cell surface. The expression profile of L-NTCP showed that the expression of NTCP is highest in lamprey liver tissue. L-NTCP also has the ability to transport bile acids, consistent with its higher vertebrate orthologs. Finally, using a farnesoid X receptor (FXR) antagonist, RT-qPCR and flow cytometry results showed that L-NTCP is negatively regulated by the nuclear receptor FXR. This study is important for understanding the adaptive mechanisms of bile acid metabolism after lamprey biliary atresia based on understanding the origin, evolution, expression profile, biological function, and expression regulation of L-NTCP.


Asunto(s)
Lampreas , Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Animales , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/genética , Simportadores/metabolismo , Lampreas/genética , Lampreas/metabolismo , Humanos , Regulación de la Expresión Génica , Células Hep G2 , Filogenia , Hepatocitos/metabolismo , Ácidos y Sales Biliares/metabolismo , Evolución Molecular , Secuencia de Aminoácidos , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
7.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397089

RESUMEN

Lamprey homologues of the classic embryonic inducer Noggin are similar in expression pattern and functional properties to Noggin homologues of jawed vertebrates. All noggin genes of vertebrates apparently originated from a single ancestral gene as a result of genome duplications. nogginA, nogginB and nogginC of lampreys, like noggin1 and noggin2 of gnathostomes, demonstrate the ability to induce complete secondary axes with forebrain and eye structures when overexpressed in Xenopus laevis embryos. According to current views, this finding indicates the ability of lamprey Noggin proteins to suppress the activity of the BMP, Nodal/Activin and Wnt/beta-catenin signaling pathways, as shown for Noggin proteins of gnathostomes. In this work, by analogy with experiments in Xenopus embryos, we attempted to induce secondary axes in the European river lamprey Lampetra fluviatilis by injecting noggin mRNAs into lamprey eggs in vivo. Surprisingly, unlike what occurs in amphibians, secondary axis induction in the lampreys either by noggin mRNAs or by chordin and cerberus mRNAs, the inductive properties of which have been described, was not observed. Only wnt8a mRNA demonstrated the ability to induce secondary axes in the lampreys. Such results may indicate that the mechanism of axial specification in lampreys, which represent jawless vertebrates, may differ in detail from that in the jawed clade.


Asunto(s)
Lampreas , Prosencéfalo , Animales , Lampreas/genética , Xenopus laevis/genética , Vía de Señalización Wnt , Genoma , Filogenia
8.
Fish Shellfish Immunol ; 146: 109413, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311092

RESUMEN

Liver-expressed antimicrobial peptide 2 (LEAP2) is a member of the antimicrobial peptides family and plays a key role in the innate immune system of organisms. LEAP2 orthologs have been identified from a variety of fish species, however, its function in primitive vertebrates has not been clarified. In this study, we cloned and identified Lc-LEAP2 from the primitive jawless vertebrate lamprey (Lethenteron camtschaticum) which includes a 25 amino acids signal peptide and a mature peptide of 47 amino acids. Although sequence similarity was low compared to other species, the mature Lc-LEAP2 possesses four conserved cysteine residues, forming a core structure with two disulfide bonds between the cysteine residues in the relative 1-3 (Cys 58 and Cys 69) and 2-4 (Cys 64 and Cys 74) positions. Lc-LEAP2 was most abundantly expressed in the muscle, supraneural body and buccal gland of lamprey, and was significantly upregulated during LPS and Poly I:C stimulations. The mature peptide was synthesized and characterized for its antibacterial activity against different bacteria. Lc-LEAP2 possessed inhibition of a wide range of bacteria with a dose-dependence, disrupting the integrity of bacterial cell membranes and binding to bacterial genomic DNA, although its inhibitory function is weak compared to that of higher vertebrates. These data suggest that Lc-LEAP2 plays an important role in the innate immunity of lamprey and is of great value in improving resistance to pathogens. In addition, the antimicrobial mechanism of LEAP2 has been highly conserved since its emergence in primitive vertebrates.


Asunto(s)
Hepcidinas , Lampreas , Animales , Lampreas/genética , Lampreas/metabolismo , Hepcidinas/genética , Secuencia de Aminoácidos , Cisteína , Proteínas de Peces/química , Vertebrados/metabolismo , Péptidos/genética , Antibacterianos/farmacología , Filogenia
9.
Nature ; 627(8005): 811-820, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38262590

RESUMEN

As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a crucial window into early vertebrate evolution1-3. Here we investigate the complex history, timing and functional role of genome-wide duplications4-7 and programmed DNA elimination8,9 in vertebrates in the light of a chromosome-scale genome sequence for the brown hagfish Eptatretus atami. Combining evidence from syntenic and phylogenetic analyses, we establish a comprehensive picture of vertebrate genome evolution, including an auto-tetraploidization (1RV) that predates the early Cambrian cyclostome-gnathostome split, followed by a mid-late Cambrian allo-tetraploidization (2RJV) in gnathostomes and a prolonged Cambrian-Ordovician hexaploidization (2RCY) in cyclostomes. Subsequently, hagfishes underwent extensive genomic changes, with chromosomal fusions accompanied by the loss of genes that are essential for organ systems (for example, genes involved in the development of eyes and in the proliferation of osteoclasts); these changes account, in part, for the simplification of the hagfish body plan1,2. Finally, we characterize programmed DNA elimination in hagfish, identifying protein-coding genes and repetitive elements that are deleted from somatic cell lineages during early development. The elimination of these germline-specific genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline and pluripotency functions, paralleling findings in lampreys10,11. Reconstruction of the early genomic history of vertebrates provides a framework for further investigations of the evolution of cyclostomes and jawed vertebrates.


Asunto(s)
Evolución Molecular , Anguila Babosa , Vertebrados , Animales , Anguila Babosa/anatomía & histología , Anguila Babosa/citología , Anguila Babosa/embriología , Anguila Babosa/genética , Lampreas/genética , Filogenia , Vertebrados/genética , Sintenía , Poliploidía , Linaje de la Célula
10.
Nat Ecol Evol ; 8(3): 519-535, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38216617

RESUMEN

Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish, Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian-earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity.


Asunto(s)
Anguila Babosa , Animales , Filogenia , Anguila Babosa/genética , Duplicación de Gen , Vertebrados/genética , Genoma , Lampreas/genética
11.
Immunol Invest ; 53(2): 241-260, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38078455

RESUMEN

The mammalian testis and ovary possess special immunocompetence, which is central to provide protection against pathogens. However, the innate immune responses to immune challenges in lamprey gonads are poorly understood. In this study, we extracted RNA from testis and ovary tissues of lampreys at 0 hour, 8 hours and 17 days after lipopolysaccharides (LPS) stimulation and performed transcriptome sequencing. While the transcriptome profiles of the two tissues were different for the most part, genes LIP, LECT2, LAL2, GRN, ITLN, and C1q were found to be the most significantly up-regulated genes in both. Quantitative Real-time PCR (qRT-PCR) analysis confirmed that these genes were upregulated after stimulation. Furthermore, immunohistochemical staining showed that these genes in lamprey gonads are expressed in high quantities and have a specific distribution. Taken together, our results suggest that these genes could play an essential role in response of the gonads to LPS induction. This research establishes a basis for investigating the immune mechanism of vertebrate gonads and presents a fresh concept for gaining insight into the evolutionary development of jawless vertebrates.


Asunto(s)
Lampreas , Transcriptoma , Animales , Femenino , Masculino , Lampreas/genética , Lipopolisacáridos , Perfilación de la Expresión Génica , Gónadas , Inmunidad Innata/genética , Mamíferos/genética
12.
Fish Shellfish Immunol ; 145: 109323, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38147915

RESUMEN

Heat shock proteins (HSPs) are molecular chaperones that ubiquitously exist in various organisms and play essential roles in protein folding, transport, and expression. While most HSPs are highly conserved across species, a few HSPs are evolutionarily distinct in some species and may have unique functions. To explore the evolutionary history of the vertebrate HSP family, we identify members of the HSP family at the genome-wide level in lampreys (Lethenteron reissneri), a living representative of jawless vertebrates diverged from jawed vertebrates over 500 million years ago. The phylogenetic analysis reveals that the lamprey HSP family contains HSP90a1, HSP90a2, HSC70, HSP60, HSP30, HSP27, HSP17, and HSP10, which have a primitive status in the molecular evolution of vertebrate HSPs. Transcriptome analysis reveals the expression distribution of members of the HSP family in various tissues of lampreys. It is shown that HSP30, normally found in birds, amphibians, and fish, is also present in lampreys, with remarkable expansion of HSP30 gene copies in the lamprey genome. The transcription of HSP30 is significantly induced in leukocytes and heart of lampreys during various pathogens or poly(I:C) stimulation, indicating that HSP30 may be involved in the immune defense of lampreys in response to bacterial or viral infection. Immunohistochemistry demonstrates significantly increased HSP30 expression in subcutaneous muscle tissue after skin injury in lamprey models of wound repair. Furthermore, transcriptome analysis shows that ectopic expression of HSP30 in 3T3-L1 fibroblasts affect the expression of genes related to the PI3K-AKT signaling pathway, suggesting that HSP30 could serves as a negative regulator of fibrosis. These results indicate that HSP30 may play a critical role in facilitating the process of lamprey skin repair following injury. This study provides new insights into the origin and evolution of the HSP gene family in vertebrates and offers valuable clues to reveal the important role of HSP30 in immune defense and wound healing of lampreys.


Asunto(s)
Lampreas , Fosfatidilinositol 3-Quinasas , Animales , Lampreas/genética , Filogenia , Fosfatidilinositol 3-Quinasas/genética , Proteínas de Choque Térmico/genética , Evolución Molecular , Inmunidad , Cicatrización de Heridas
13.
Mol Phylogenet Evol ; 189: 107942, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37804959

RESUMEN

The history of lamprey evolution has been contentious due to limited morphological differentiation and limited genetic data. Available data has produced inconsistent results, including in the relationship among northern and southern species and the monophyly of putative clades. Here we use whole genome sequence data sourced from a public database to identify orthologs for 11 lamprey species from across the globe and build phylogenies. The phylogeny showed a clear separation between northern and southern lamprey species, which contrasts with some prior work. We also find that the phylogenetic relationships of our samples of two genera, Lethenteron and Eudontomyzon, deviate from the taxonomic classification of these species, suggesting that they require reclassification.


Asunto(s)
Genoma , Lampreas , Animales , Filogenia , Lampreas/genética , Genoma/genética
14.
Dev Biol ; 504: 12-24, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37696353

RESUMEN

The Estrogen Related Receptor (ERR) nuclear hormone receptor genes have a wide diversity of roles in vertebrate development. In embryos, ERR genes are expressed in several tissues, including the central and peripheral nervous systems. Here we seek to establish the evolutionary history of chordate ERR genes, their expression and their regulation. We examine ERR expression in mollusc, amphioxus and sea squirt embryos, finding the single ERR orthologue is expressed in the nervous system in all three, with muscle expression also found in the two chordates. We show that most jawed vertebrates and lampreys have four ERR paralogues, and that vertebrate ERR genes were ancestrally linked to Estrogen Receptor genes. One of the lamprey paralogues shares conserved expression domains with jawed vertebrate ERRγ in the embryonic vestibuloacoustic ganglion, eye, brain and spinal cord. Hypothesising that conserved expression derives from conserved regulation, we identify a suite of pan-vertebrate conserved non-coding sequences in ERR introns. We use transgenesis in lamprey and chicken embryos to show that these sequences are regulatory and drive reporter gene expression in the nervous system. Our data suggest an ancient association between ERR and the nervous system, including expression in cells associated with photosensation and mechanosensation. This includes the origin in the vertebrate common ancestor of a suite of regulatory elements in the 3' introns that drove nervous system expression and have been conserved from this point onwards.


Asunto(s)
Cordados , Embrión de Pollo , Animales , Cordados/genética , Evolución Molecular , Vertebrados , Secuencia Conservada , Lampreas/genética , Lampreas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Regulación del Desarrollo de la Expresión Génica/genética , Filogenia
15.
Dev Comp Immunol ; 148: 104903, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37541459

RESUMEN

Information on the prostaglandin pathway in lampreys is limited. Here, five genes related to the prostaglandin pathway from synthesis to inactivation, namely, phospholipase A2, cyclooxygenase-2, prostaglandin E synthase 3, prostaglandin D synthase, and 15-hydroxyprostaglandin dehydrogenase [NAD(+)], were screened and cloned from the lamprey, Lethenteron camtschaticum. Bioinformatic analysis showed that these lamprey genes are relatively conserved with teleost genes in domains, motifs, gene structure and 3D structure. Analysis of expression distribution of the genes in lamprey tissues revealed that a complete prostaglandin pathway from synthesis to inactivation exists in the oral gland of lamprey, especially the key gene of prostaglandin synthesis cyclooxygenase-2, which was highly expressed in the oral gland. Furthermore, cyclooxygenase-2 expression increased after LPS and Poly I:C stimulations. Using our established spatial metabolite database LampreyDB, six prostaglandin-related metabolites were screened from the oral gland of lamprey, four of which were highly expressed in the oral gland. This study provides new insights into prostaglandin synthesis and inactivation pathways in lamprey, thereby improving our understanding of the origin and evolution of the prostaglandin pathway and contributing to the recognition of lamprey regulatory mechanisms in development and immunity.


Asunto(s)
Lampreas , Vertebrados , Animales , Lampreas/genética , Ciclooxigenasa 2/metabolismo , Filogenia
16.
Protein Pept Lett ; 30(8): 679-689, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37496246

RESUMEN

INTRODUCTION: The first vertebrates were jawless fish, or Agnatha, whose evolution diverged into jawed fish, or Gnathostomes, around 550 million years ago. METHODS: In this study, we investigated ß PFT proteins' evolutionary divergence of lamprey immune protein from Agnatha, reportedly possessing anti-cancer activity, into Dln1 protein from Gnathostomes. Both proteins showed structural and functional divergence, and shared evolutionary origin. Primary, secondary and tertiary sequences were compared to discover functional domains and conserved motifs in order to study the evolution of these two proteins. The structural and functional information relevant to evolutionary divergence was revealed using hydrophobic cluster analysis. RESULTS: The findings demonstrate that two membrane proteins with only a small degree of sequence identity can have remarkably similar hydropathy profiles, pointing towards conserved and similar global structures. When facing the lipid bilayer or lining the pore lumen, the two proteins' aerolysin domains' corresponding residues displayed a similar and largely conserved pattern. Aerolysin-like proteins from different species can be identified using a fingerprint created by PIPSA analysis of the pore-forming protein. CONCLUSION: We were able to fully understand the mechanism of action during pore formation through structural studies of these proteins.


Asunto(s)
Gnathostoma , Animales , Vertebrados , Peces , Lampreas/genética , Porinas , Evolución Molecular , Filogenia
17.
Fish Shellfish Immunol ; 140: 108967, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37488041

RESUMEN

The tryptophan-kynurenine (TRP-KYN) pathway is involved in several biological functions, including immunosuppression, inflammatory response, and tumor suppression. Six TRP-KYN pathway-related genes, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 2 (IDO2), aminoadipate aminotransferase (AADAT), glutamate oxaloacetate transaminase 2 (GOT2), kynurenine monooxygenase (KMO), and kynureninase (KYNU) have been identified and cloned from the jawless vertebrate lamprey (Lampetra japonica) to gain insights into their evolution and characterization. Expression distribution showed that the key gene Lj-TDO was highly expressed in the oral gland. Real-time quantitative PCR showed that TRP-KYN pathway-related genes were significantly overexpressed after multi-stimulation. RNA interference showed that Lj-IDO2 knockdown regulated the expression of inflammatory factors. In conclusion, our study successfully clarified the ancestral features and functions of the TRP-KYN pathway, while providing valuable insights into the involvement of this pathway in the immune responses of a jawless vertebrate.


Asunto(s)
Quinurenina , Triptófano , Animales , Triptófano/metabolismo , Quinurenina/análisis , Quinurenina/metabolismo , Lampreas/genética , Lampreas/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Inmunidad Innata/genética
18.
Biotechniques ; 74(5): 243-278, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37218744

RESUMEN

High-purity total RNA extraction from animal embryos is essential for transcriptome analyses. lampreys, together with hagfish, are the only extant jawless vertebrates or cyclostomes and are thus key organisms for EvoDevo studies. However, extracting uncontaminated RNA from early-stage embryos remains challenging. RNA does not bind to the silica membrane in filter-based extractions, significantly reducing yields; and ethanol/isopropanol precipitation methods lead to contaminants, bringing down the optical density (OD) 260/280 ratio. The RNA extraction protocol was modified using precentrifugation and adding salts before isopropanol precipitation. This modification significantly increased RNA yield, removed contaminants and improved RNA integrity. Egg membrane sources were suspected to cause RNA purification problems because low-quality extraction does not occur in posthatching embryos.


Asunto(s)
Anguila Babosa , Lampreas , Animales , Lampreas/genética , 2-Propanol , Vertebrados/genética , Anguila Babosa/genética , ARN/genética , Filogenia
19.
Zoolog Sci ; 40(3): 208-218, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37256568

RESUMEN

Two cytochrome P450 genes homologous to human CYP7A1 and CYP27A1 were cloned from the non-parasitic Japanese lamprey Lethenteron reissneri. Lamprey cyp7a1 mRNA had varied expression levels among individuals: about four orders of magnitude differences in larval liver and nearly three orders of magnitude differences in male adult liver. Overexpressed Cyp7a1 protein tagged with green fluorescent protein (GFP) was localized to the endoplasmic reticulum. Lamprey cyp27a1 mRNA had relatively constant expression levels: within two orders of magnitude differences in larvae and adult liver and intestine. GFP-tagged Cyp27a1 protein was localized to mitochondria. The expression profiles of lamprey cyp7a1 and cyp27a1 genes and the cellular localizations of their products were in good agreement with their counterparts in mammals, where these two P450s catalyze initial hydroxylation reactions of cholesterol in classical and alternative pathways of bile acid synthesis, respectively. The cyp7a1 mRNA levels in adult male liver showed significant negative correlations to both body weight and total length of the animal, implying the involvement of the gene in the production of female-attractive pheromones in sexually matured male livers. The lamprey Cyp7a1 contains a long extension of 116 amino acids between helices D and E of the protein. Possible roles of this extension in regulating the enzymatic activity of lamprey Cyp7a1 are discussed.


Asunto(s)
Lampreas , Hígado , Animales , Femenino , Masculino , Ácidos y Sales Biliares/metabolismo , Colestanotriol 26-Monooxigenasa/genética , Colestanotriol 26-Monooxigenasa/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Lampreas/genética , Lampreas/metabolismo , Hígado/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
Dev Comp Immunol ; 146: 104729, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37187445

RESUMEN

Ferritin, one of the key regulators of iron homeostasis, is widely present throughout almost all species. The vertebrate ferritin family, which originates from a single gene in the ancestral invertebrates, contains the widest variety of ferritin subtypes among all animal species. However, the evolutionary history of the vertebrate ferritin family remains to be further clarified. In this study, genome-wide identification of the ferritin homologs is performed in lampreys, which are the extant representatives of jawless vertebrates that diverged from the future jawed vertebrates more than 500 million years ago. Molecular evolutionary analyses show that four members of the lamprey ferritin family, L-FT1-4, are derived from a common ancestor with jawed vertebrate ferritins prior to the divergence of the jawed vertebrate ferritin subtypes. The lamprey ferritin family shares evolutionarily conserved characteristics of the ferritin H subunit with higher vertebrates, but certain members such as L-FT1 additionally accumulate some features of the M or L subunits. Expression profiling reveals that lamprey ferritins are highly expressed in the liver. The transcription of L-FT1 is significantly induced in the liver and heart during lipopolysaccharide stimulation, indicating that L-FTs may play a role in the innate immune response to bacterial infection in lampreys. Furthermore, the transcriptional expression of L-FT1 in quiescent and LPS-activated leukocytes is up- and down-regulated by the lamprey TGF-ß2, an essential regulator of the inflammatory response, respectively. Our results provide new insights into the origin and evolution of the vertebrate ferritin family and reveal that lamprey ferritins may be involved in immune regulation as target genes of the TGF-ß signaling pathway.


Asunto(s)
Ferritinas , Lampreas , Animales , Ferritinas/genética , Ferritinas/metabolismo , Filogenia , Lampreas/genética , Vertebrados/genética , Evolución Molecular , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...