Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.182
Filtrar
1.
Arch Insect Biochem Physiol ; 116(3): e22127, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38976652

RESUMEN

Ubiquitin-fold modifier 1 (UFM1) is attached to protein substrates through the sequential activity of an E1 (UBA5)-E2 (UFC1)-E3 (UFL1) cascade. UFL1 is the E3 ligase for UFMylation in vertebrates. However, there have been no studies on UFL1 in silkworm to date. In this study, we identified a UFL1 ortholog in Bombyx mori genome. Spatio-temporal expression profiles showed that BmUFL1 expression was high in the midgut, epidermis, and testis and in the pupa-adult stage. BmUFL1 knockdown inhibited B. mori nucleopolyhedrovirus (BmNPV) proliferation, while BmUFL1 overexpression promoted BmNPV proliferation. Mechanically, protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling and cell apoptosis are involved in BmUFL1-regulated BmNPV proliferation. Overall, these results suggest that BmUFL1 facilitates BmNPV proliferation in silkworm.


Asunto(s)
Apoptosis , Bombyx , Proteínas de Insectos , Nucleopoliedrovirus , eIF-2 Quinasa , Animales , Bombyx/virología , Bombyx/genética , Bombyx/crecimiento & desarrollo , Nucleopoliedrovirus/fisiología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Replicación Viral , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Larva/virología , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/genética
2.
PLoS Negl Trop Dis ; 18(6): e0011903, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38829904

RESUMEN

BACKGROUND: The first dengue outbreak in Sao Tome and Principe was reported in 2022. Entomological investigations were undertaken to establish the typology of Aedes larval habitats, the distribution of Ae. aegypti and Ae. albopictus, the related entomological risk and the susceptibility profile of Ae. aegypti to insecticides, to provide evidence to inform the outbreak response. METHODOLOGY/PRINCIPAL FINDINGS: Entomological surveys were performed in all seven health districts of Sao Tome and Principe during the dry and rainy seasons in 2022. WHO tube and synergist assays using piperonyl butoxide (PBO) and diethyl maleate (DEM) were carried out, together with genotyping of F1534C/V1016I/V410L mutations in Ae. aegypti. Aedes aegypti and Ae. albopictus were found in all seven health districts of the country with high abundance of Ae. aegypti in the most urbanised district, Agua Grande. Both Aedes species bred mainly in used tyres, discarded tanks and water storage containers. In both survey periods, the Breteau (BI > 50), house (HI > 35%) and container (CI > 20%) indices were higher than the thresholds established by WHO to indicate high potential risk of dengue transmission. The Ae. aegypti sampled were susceptible to all insecticides tested except dichlorodiphenyltrichloroethane (DDT) (9.2% mortality, resistant), bendiocarb (61.4% mortality, resistant) and alpha-cypermethrin (97% mortality, probable resistant). A full recovery was observed in Ae. aegypti resistant to bendiocarb after pre-exposure to synergist PBO. Only one Ae. aegypti specimen was found carrying F1534C mutation. CONCLUSIONS/SIGNIFICANCE: These findings revealed a high potential risk for dengue transmission throughout the year, with the bulk of larval breeding occurring in used tyres, water storage and discarded containers. Most of the insecticides tested remain effective to control Aedes vectors in Sao Tome, except DDT and bendiocarb. These data underline the importance of raising community awareness and implementing routine dengue vector control strategies to prevent further outbreaks in Sao Tome and Principe, and elsewhere in the subregion.


Asunto(s)
Aedes , Dengue , Brotes de Enfermedades , Resistencia a los Insecticidas , Insecticidas , Larva , Mosquitos Vectores , Aedes/efectos de los fármacos , Aedes/genética , Aedes/virología , Animales , Dengue/transmisión , Dengue/epidemiología , Insecticidas/farmacología , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/genética , Mosquitos Vectores/virología , Resistencia a los Insecticidas/genética , Larva/efectos de los fármacos , Larva/virología , Humanos , Butóxido de Piperonilo/farmacología , Femenino , Maleatos/farmacología , Ecosistema , Virus del Dengue/efectos de los fármacos , Virus del Dengue/genética
3.
Neotrop Entomol ; 53(4): 917-928, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38940947

RESUMEN

Granuloviruses (GVs) Betabaculovirus associated with the fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), especially those of the type I, have scarcely been studied. These GVs might be an effective alternative for the biocontrol of this insect. In this study, the native GVs SfGV-CH13 and SfGV-CH28 were isolated from FAW larvae and characterized for morphology, molecular traits, and insecticidal activity. The elapsed time between symptomatic infection of larvae and stop feeding as well as the weight of larvae before death or prior to pupation were also evaluated. Both GVs had ovoid shape and a length of 0.4 µm. They had the same DNA restriction profiles and their genome sizes were about 126 kb. The symptomatic infection with the tested GVs mainly caused flaccidity of larva body and discoloration of integument. The integument lysis was only observed in 8% of infected larvae. Infected larvae gradually stopped feeding. Overall, these symptoms are characteristic of infections caused by type I GVs, which are known as monoorganotropic or slow-killing GVs. The median lethal dose (LD50) values for SfGV-CH13 and SfGV-CH28 isolates were 5.4 × 102 and 1.1 × 103 OBs/larva, respectively. The median lethal time (LT50) ranged from 17 to 24 days. LT50 values decreased as the viral dose was increased. The elapsed time from symptomatic infection until pupation and body weight of larvae (third instar) were higher with SfGV-CH28 than SfGV-CH13. Both granulovirus isolates were able to kill the FAW larvae from the 12th day.


Asunto(s)
Granulovirus , Larva , Spodoptera , Animales , Spodoptera/virología , Granulovirus/genética , Larva/virología
4.
BMC Infect Dis ; 24(1): 523, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789932

RESUMEN

BACKGROUND: In Thailand, the Department of Disease Control (DDC) regularly performs visual larval surveys throughout the country to monitor dengue fever outbreaks. Since 2016, the DDC switched from a paper-based to a digital-based larval survey process. The significant amount of larval survey data collected digitally presents a valuable opportunity to precisely identify the villages and breeding habitats that are vulnerable to dengue transmission. METHODS: The study used digitally collected larval survey data from 2017 to 2019. It employed larval indices to evaluate the risk of dengue transmission in villages based on seasonal, regional, and categorical perspectives. Furthermore, the study comprehensively scrutinized each container category by employing different measures to determine its breeding preference ratio. RESULTS: The result showed that villages with a very high-risk of dengue transmission were present year-round in all regions, with the highest proportion during the rainy season. The Southern region had more high-risk villages during the winter season due to rainfall. Slums and residential communities were more vulnerable to dengue than commercial areas. All container categories could potentially serve as breeding habitats for dengue-carrying mosquitoes, with abandoned containers being the most significant breeding sites. CONCLUSIONS: The risk of dengue transmission was present year-round throughout Thailand. This underscores the importance of community and government initiatives, along with sustained public awareness campaigns and active community engagement, to efficiently and permanently eradicate mosquito breeding habitats. It should be noted that larval indices may not strongly correlate with dengue cases, as indicated by the preliminary analysis. However, they offer valuable insights into potential breeding sites for targeted preventive measures.


Asunto(s)
Aedes , Dengue , Ecosistema , Larva , Mosquitos Vectores , Dengue/transmisión , Dengue/epidemiología , Tailandia/epidemiología , Animales , Larva/virología , Mosquitos Vectores/virología , Mosquitos Vectores/fisiología , Humanos , Aedes/virología , Aedes/fisiología , Estaciones del Año , Virus del Dengue/fisiología , Brotes de Enfermedades
5.
Sci Rep ; 14(1): 12216, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806622

RESUMEN

The Ae. albopictus mosquito has gained global attention due to its ability to transmit viruses, including the dengue and zika. Mosquito control is the only effective way to manage dengue fever, as no effective treatments or vaccines are available. Insecticides are highly effective in controlling mosquito densities, which reduces the chances of virus transmission. However, Ae. albopictus has developed resistance to pyrethroids in several provinces in China. Pyrethroids target the voltage-gated sodium channel gene (VGSC), and mutations in this gene may result in knockdown resistance (kdr). Correlation studies between resistance and mutations can assist viruses in managing Ae. albopictus, which has not been studied in Guizhou province. Nine field populations of Ae. albopictus at the larval stage were collected from Guizhou Province in 2022 and reared to F1 to F2 generations. Resistance bioassays were conducted against permethrin, beta-cypermethrin, and deltamethrin for both larvae and adults of Ae. albopictus. Kdr mutations were characterized by PCR and sequencing. Additionally, the correlation between the kdr allele and pyrethroid resistance was analyzed. All nine populations of Ae. albopictus larvae and adults were found to be resistant to three pyrethroid insecticides. One kdr mutant allele at codon 1016, one at 1532 and three at 1534 were identified with frequencies of 13.86% (V1016G), 0.53% (I1532T), 58.02% (F1534S), 11.69% (F1534C), 0.06% (F1534L) and 0.99% (F1534P), respectively. Both V1016G and F1534S mutation mosquitoes were found in all populations. The kdr mutation F1534S was positively correlated with three pyrethroid resistance phenotypes (OR > 1, P < 0.05), V1016G with deltamethrin and beta-cypermethrin resistance (OR > 1, P < 0.05) and F1534C only with beta-cypermethrin resistance (OR > 1, P < 0.05). Current susceptibility status of wild populations of Ae. albopictus to insecticides and a higher frequency of kdr mutations from dengue-monitored areas in Guizhou Province are reported in this paper. Outcomes of this study can serve as data support for further research and development of effective insecticidal interventions against Ae. albopictus populations in Guizhou Province.


Asunto(s)
Aedes , Dengue , Resistencia a los Insecticidas , Insecticidas , Mutación , Piretrinas , Animales , Piretrinas/farmacología , Aedes/genética , Aedes/efectos de los fármacos , Aedes/virología , Resistencia a los Insecticidas/genética , China/epidemiología , Dengue/transmisión , Dengue/genética , Insecticidas/farmacología , Mosquitos Vectores/genética , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/virología , Larva/efectos de los fármacos , Larva/genética , Larva/virología , Canales de Sodio Activados por Voltaje/genética , Control de Mosquitos/métodos , Nitrilos/farmacología
6.
J Econ Entomol ; 117(3): 1141-1151, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38706118

RESUMEN

Bombyx mori L. (Lepidoptera: Bombycidae) nucleopolyhedrovirus (BmNPV) is a serious pathogen causing huge economic losses to sericulture. There is growing evidence that the gut microbiota of silkworms plays a critical role in shaping host responses and interactions with viral infection. However, little is known about the differences in the composition and diversity of intestinal microflora, especially with respect to silkworm strain differences and BmNPV infection-induced changes. Here, we aim to explore the differences between BmNPV-resistant strain A35 and susceptible strain P50 silkworm and the impact of BmNPV infection on intestinal microflora in different strains. The 16S rDNA sequencing analysis revealed that the fecal microbial populations were distinct between A35 and P50 and were significantly changed post BmNPV infection in both strains. Further analysis showed that the BmNPV-resistant strain silkworm possessed higher bacterial diversity than the susceptible strain, and BmNPV infection reduced the diversity of intestinal flora assessed by feces in both silkworm strains. In response to BmNPV infection, the abundance of Muribaculaceae increased in P50 and decreased in A35, while the abundance of Enterobacteriaceae decreased in P50 and increased in A35. These results indicated that BmNPV infection had various effects on the abundance of fecal microflora in different silkworm strains. Our findings not only broadened the understanding of host-pathogen interactions but also provided theoretical help for the breeding of resistant strains and healthy rearing of silkworms based on symbiotic bacteria.


Asunto(s)
Bombyx , Microbioma Gastrointestinal , Nucleopoliedrovirus , Animales , Bombyx/virología , Bombyx/microbiología , Bombyx/crecimiento & desarrollo , Nucleopoliedrovirus/fisiología , Larva/virología , Larva/microbiología , Larva/crecimiento & desarrollo , Heces/microbiología , Heces/virología
7.
Trop Anim Health Prod ; 56(5): 167, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761254

RESUMEN

Ticks can transmit viruses, bacteria, and parasites to humans, livestock, and pet animals causing tick-borne diseases (TBDs) mechanically or biologically in the world. Lumpy skin disease virus, Anaplasma marginale, and Theileria annulata inflict severe infections in cattle, resulting in significant economic losses worldwide. The study investigated the potential transmissions of LSDV, A. marginale, and T. annulata through male Hyalomma anatolicum ticks in cattle calves. Two 6-month-old Holstein crossbred calves designated as A and B were used. On day 1, 15 uninfected female ticks (IIa) and infected batch of 40 male ticks (I) were attached on calf A for 11 days. Filial transmission of the infections was observed in female ticks (IIb) collected from calf A, where 8 female ticks had been co-fed with infected male ticks. The blood sample of calf B was found positive through PCR for the infections. The larvae and egg pools obtained from the infected ticks were also tested positive in PCR. The study confirmed the presence of these mixed pathogens and potential intra-stadial and transovarial transmissions of A. marginale, T. annulata, and LSDV in male and female ticks of H. anatolicum and experimental calves to establish the feasibility of infections through an in vivo approach.


Asunto(s)
Anaplasma marginale , Anaplasmosis , Ixodidae , Virus de la Dermatosis Nodular Contagiosa , Theileria annulata , Theileriosis , Animales , Bovinos , Masculino , Anaplasma marginale/aislamiento & purificación , Ixodidae/virología , Ixodidae/microbiología , Theileria annulata/aislamiento & purificación , Virus de la Dermatosis Nodular Contagiosa/fisiología , Virus de la Dermatosis Nodular Contagiosa/aislamiento & purificación , Femenino , Anaplasmosis/transmisión , Theileriosis/transmisión , Dermatosis Nodular Contagiosa/transmisión , Dermatosis Nodular Contagiosa/virología , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/parasitología , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/transmisión , Larva/virología
8.
Poult Sci ; 103(7): 103845, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788486

RESUMEN

Phage therapy is gaining momentum as an alternative to antibiotics in the treatment of salmonellosis caused by Salmonella. In this study, a novel Salmonella phage, vB_SalS_JNS02, was isolated successfully from poultry farms in Shandong, China. The biological characteristics of vB_SalS_JNS02 were analysed, which revealed a short latent period of approximately 10 min and a burst size of 110 PFU/cell. Moreover, vB_SalS_JNS02 exhibited remarkable stability across a wide pH range (pH 3-12) and temperatures ranging from 30 to 80°C. Genome sequencing analysis provided valuable insights into the genetic composition of vB_SalS_JNS02, which consists of a double-stranded DNA genome that spans 42,450 base pairs and has a G + C content of 49.4%. Of significant importance, the genomic sequence of vB_SalS_JNS02 did not contain any genes related to lysogenicity, virulence, or antibiotic resistance. The phage's efficacy was evaluated in a larval challenge study. Treatment with the phage resulted in increased survival of Galleria mellonella larvae (100, 70, and 85%) (MOI 0.1) in the prophylactic treatment, co-infection treatment, and remedial treatment experiments, respectively. Another in vivo experiment investigated the potential application of the phage in broiler chickens and revealed that a single oral dose of vB_SalS_JNS02 (108 PFU/mL, 100 µL/chick) administered 3 h after S. enteritidis oral administration provided effective protection. The introduction of bacteriophage not only enhances the production of secretory immunoglobulin A (sIgA), but also induces alterations in the composition of the gut microbial community. Phage therapy increases the relative abundance of beneficial bacteria, which helps to maintain intestinal barrier homeostasis. However, it is unable to fully restore the disrupted intestinal microbiome caused by S. enteritidis infection. Importantly, no significant adverse effects were observed in the animal subjects following oral administration of the phage, and our findings highlight vB_SalS_JNS02 is a hopeful candidate as a promising tool to target Salmonella infections in poultry.


Asunto(s)
Pollos , Genoma Viral , Terapia de Fagos , Enfermedades de las Aves de Corral , Salmonelosis Animal , Fagos de Salmonella , Animales , Terapia de Fagos/veterinaria , Fagos de Salmonella/fisiología , Fagos de Salmonella/genética , Enfermedades de las Aves de Corral/terapia , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/virología , Salmonelosis Animal/terapia , Salmonelosis Animal/microbiología , Mariposas Nocturnas/virología , Mariposas Nocturnas/microbiología , China , Larva/microbiología , Larva/virología
9.
J Virol ; 98(6): e0027224, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38771043

RESUMEN

Klebsiella spp. are causative agents of healthcare-associated infections in patients who are immunocompromised and use medical devices. The antibiotic resistance crisis has led to an increase in infections caused by these bacteria, which can develop into potentially life-threatening illnesses if not treated swiftly and effectively. Thus, new treatment options for Klebsiella are urgently required. Phage therapy can offer an alternative to ineffective antibiotic treatments for antibiotic-resistant bacteria infections. The aim of the present study was to produce a safe and effective phage cocktail treatment against Klebsiella pneumoniae and Klebsiella oxytoca, both in liquid in vitro culture and an in vivo Galleria mellonella infection model. The phage cocktail was significantly more effective at killing K. pneumoniae and K. oxytoca strains compared with monophage treatments. Preliminary phage cocktail safety was demonstrated through application in the in vivo G. mellonella model: where the phage cocktail induced no toxic side effects in G. mellonella. In addition, the phage cocktail significantly improved the survival of G. mellonella when administered as a prophylactic treatment, compared with controls. In conclusion, our phage cocktail was demonstrated to be safe and effective against Klebsiella spp. in the G. mellonella infection model. This provides a strong case for future treatment for Klebsiella infections, either as an alternative or adjunct to antibiotics.IMPORTANCEKlebsiella infections are a concern in individuals who are immunocompromised and are becoming increasingly difficult to treat with antibiotics due to their drug-resistant properties. Bacteriophage is one potential alternative therapy that could be used to tackle these infections. The present study describes the design of a non-toxic phage cocktail that improved the survival of Galleria mellonella infected with Klebsiella. This phage cocktail demonstrates potential for the safe and effective treatment of Klebsiella infections, as an adjunct or alternative to antibiotics.


Asunto(s)
Bacteriófagos , Infecciones por Klebsiella , Klebsiella oxytoca , Klebsiella pneumoniae , Terapia de Fagos , Animales , Infecciones por Klebsiella/terapia , Infecciones por Klebsiella/microbiología , Bacteriófagos/fisiología , Terapia de Fagos/métodos , Klebsiella pneumoniae/virología , Klebsiella oxytoca/virología , Mariposas Nocturnas/microbiología , Mariposas Nocturnas/virología , Klebsiella/virología , Modelos Animales de Enfermedad , Larva/microbiología , Larva/virología , Lepidópteros/microbiología , Lepidópteros/virología
10.
J Med Microbiol ; 73(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743467

RESUMEN

Introduction . Acinetobacter baumannii is a critical priority pathogen for novel antimicrobials (World Health Organization) because of the rise in nosocomial infections and its ability to evolve resistance to last resort antibiotics. A. baumannii is thus a priority target for phage therapeutics. Two strains of a novel, virulent bacteriophage (LemonAid and Tonic) able to infect carbapenem-resistant A. baumannii (strain NCTC 13420), were isolated from environmental water samples collected through a citizen science programme.Gap statement. Phage-host coevolution can lead to emergence of host resistance, with a concomitant reduction in the virulence of host bacteria; a potential benefit to phage therapy applications.Methodology. In vitro and in vivo assays, genomics and microscopy techniques were used to characterize the phages; determine mechanisms and impact of phage resistance on host virulence, and the efficacy of the phages against A. baumannii.Results. A. baumannii developed resistance to both viruses, LemonAid and Tonic. Resistance came at a cost to virulence, with the resistant variants causing significantly reduced mortality in a Galleria mellonella larval in vivo model. A replicated 8 bp insertion increased in frequency (~40 % higher frequency than in the wild-type) within phage-resistant A. baumannii mutants, putatively resulting in early truncation of a protein of unknown function. Evidence from comparative genomics and an adsorption assay suggests this protein acts as a novel phage receptor site in A. baumannii. We find no evidence linking resistance to changes in capsule structure, a known virulence factor. LemonAid efficiently suppressed growth of A. baumanni in vitro across a wide range of titres. However, in vivo, while survival of A. baumannii infected larvae significantly increased with both remedial and prophylactic treatment with LemonAid (107 p.f.u. ml-1), the effect was weak and not sufficient to save larvae from morbidity and mortality.Conclusion. While LemonAid and Tonic did not prove effective as a treatment in a Galleria larvae model, there is potential to harness their ability to attenuate virulence in drug-resistant A. baumannii.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Acinetobacter baumannii/virología , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/patogenicidad , Acinetobacter baumannii/genética , Bacteriófagos/genética , Bacteriófagos/fisiología , Virulencia , Infecciones por Acinetobacter/microbiología , Animales , Mariposas Nocturnas/microbiología , Mariposas Nocturnas/virología , Terapia de Fagos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Larva/microbiología , Larva/virología
11.
Sci Rep ; 14(1): 9612, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671077

RESUMEN

The Carniolan honey bee (Apis mellifera carnica) plays an essential role in crop pollination, environment diversity, and the production of honey bee products. However, the health of individual honey bees and their colonies is under pressure due to multiple stressors, including viruses as a significant threat to bees. Monitoring various virus infections could be a crucial selection tool during queen rearing. In the present study, samples from all developmental stages (eggs, larvae, pupae, and queens) were screened for the incidence of seven viruses during queen rearing in Slovenia. The screening of a total of 108 samples from five queen breeders was performed by the RT-qPCR assays. The results showed that the highest incidence was observed for black queen cell virus (BQCV), Lake Sinai virus 3 (LSV3), deformed wing virus B (DWV-B), and sacbrood virus (SBV). The highest viral load was detected in queens (6.07 log10 copies/queen) and larvae (5.50 log10 copies/larva) for BQCV, followed by SBV in larvae (5.47 log10 copies/larva). When comparing all the honey bee developmental stages, the eggs exhibited general screening for virus incidence and load in queen mother colonies. The results suggest that analyzing eggs is a good indicator of resilience to virus infection during queen development.


Asunto(s)
Larva , Animales , Abejas/virología , Larva/virología , Virus ARN/genética , Virus ARN/aislamiento & purificación , Virus de Insectos/genética , Virus de Insectos/aislamiento & purificación , Dicistroviridae/genética , Dicistroviridae/patogenicidad , Dicistroviridae/aislamiento & purificación , Carga Viral , Óvulo/virología , Femenino , Pupa/virología , Eslovenia/epidemiología
12.
J Vector Borne Dis ; 61(1): 101-106, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648411

RESUMEN

BACKGROUND OBJECTIVES: Dengue is a major vector-borne disease having public health importance. It is caused by Dengue Virus (DENV) and is transmitted by mosquitoes of Aedes species. With the unavailability of a vaccine, vector control remains the only preventive measure for dengue. Studies have already been conducted to establish the presence of dengue vectors in the north-eastern states of India. However, limited studies have been conducted in Tripura state. In the present study we aimed to identify the preferred breeding habitats of dengue vectors in the state. METHODS: Clinical case data of dengue since the last five years was studied and the areas with the highest case numbers were identified. Entomological investigation was carried out in areas reporting the highest number of cases. Larvae were collected from the breeding habitats using standard protocol followed by morphological and molecular identification. Further, House index (HI), Container index (CI) and Pupal index (PI) were determined. The positive pools were then processed for incrimination for the presence of dengue virus. Calculation of entomological indices was done. RESULTS: Of the total 815 containers searched, 36.80% containers were positive for mosquito larvae. Among the immature mosquito collection, 836 adults emerged and were identified as Aedes albopictus using standard taxonomic keys followed by molecular methods. HI, CI and PI, varied from 15.38% to 100%, 21% to 31.04 %, and 2.93% to 110.53% respectively. However, none of the pools was positive for dengue virus. INTERPRETATION CONCLUSION: The present study identified Ae. albopictus as a potential vector of dengue in Tripura. The study gave important insights on the preferred larval habitats and provides information on the indication of displacement of Ae. albopictus from rural to urban and semi-urban areas. However, longitudinal studies for longer time frame are necessary for any conclusive remarks.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Ecosistema , Larva , Mosquitos Vectores , Pupa , Animales , India , Larva/virología , Larva/crecimiento & desarrollo , Larva/fisiología , Mosquitos Vectores/virología , Mosquitos Vectores/fisiología , Mosquitos Vectores/crecimiento & desarrollo , Aedes/virología , Aedes/fisiología , Aedes/crecimiento & desarrollo , Pupa/virología , Pupa/crecimiento & desarrollo , Dengue/transmisión , Humanos , Femenino
13.
Viruses ; 16(4)2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38675859

RESUMEN

In Australia, Soldier flies (Inopus spp.) are economically significant pests of sugarcane that currently lack a viable management strategy. Despite various research efforts, the mechanisms underlying the damage caused by soldier fly larvae remain poorly understood. Our study aims to explore whether this damage is associated with the transmission of plant viruses during larval feeding. We also explore the larval transcriptome to identify any entomopathogenic viruses with the potential to be used as biocontrol agents in future pest management programs. Seven novel virus sequences are identified and characterised using de novo assembly of RNA-Seq data obtained from salivary glands of larvae. The novel virus sequences belong to different virus families and are tentatively named SF-associated anphevirus (SFaAV), SF-associated orthomyxo-like virus (SFaOV), SF-associated narna-like virus (SFaNV), SF-associated partiti-like virus (SFaPV), SF-associated toti-like virus (SFaTV-1 and SFaTV-2) and SF-associated densovirus (SFaDV). These newly identified viruses are more likely insect-associated viruses, as phylogenetic analyses show that they cluster with other insect-specific viruses. Small RNA analysis indicates prominent peaks at both 21 nt and 26-29 nt, suggesting the activation of host siRNA and piwiRNA pathways. Our study helps to improve understanding of the virome of soldier flies and could identify insect viruses for deployment in novel pest management strategies.


Asunto(s)
Dípteros , Perfilación de la Expresión Génica , Larva , Filogenia , Saccharum , Animales , Larva/virología , Dípteros/virología , Australia , Saccharum/virología , Transcriptoma , Virus de Insectos/genética , Virus de Insectos/clasificación , Virus de Plantas/genética , Virus de Plantas/clasificación , Genoma Viral
14.
Viruses ; 16(4)2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38675870

RESUMEN

In the last few years, there has been a dramatic increase in the number of discovered viruses that are transmitted by arthropods. Some of them are pathogenic for humans and mammals, and the pathogenic potential of others is unknown. The genus Orthoflavivirus belongs to the family Flaviviridae and includes arboviruses that cause severe human diseases with damage to the central nervous system and hemorrhagic fevers, as well as viruses with unknown vectors and viruses specific only to insects. The latter group includes Lammi virus, first isolated from a mosquito pool in Finland. It is known that Lammi virus successfully replicates in mosquito cell lines but not in mammalian cell cultures or mice. Lammi virus reduces the reproduction of West Nile virus during superinfection and thus has the potential to reduce the spread of West Nile virus in areas where Lammi virus is already circulating. In this work, we isolated Lammi virus from a pool of adult Aedes cinereus mosquitoes that hatched from larvae/pupae collected in Saint Petersburg, Russia. This fact may indicate transovarial transmission and trans-stadial survival of the virus.


Asunto(s)
Aedes , Mosquitos Vectores , Animales , Aedes/virología , Federación de Rusia , Femenino , Mosquitos Vectores/virología , Flaviviridae/fisiología , Flaviviridae/aislamiento & purificación , Flaviviridae/clasificación , Flaviviridae/genética , Larva/virología
15.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38688866

RESUMEN

AIMS: Understanding bacterial phage resistance mechanisms has implications for developing phage-based therapies. This study aimed to explore the development of phage resistance in Escherichia coli K1 isolates' to K1-ULINTec4, a K1-dependent bacteriophage. METHODS AND RESULTS: Resistant colonies were isolated from two different strains (APEC 45 and C5), both previously exposed to K1-ULINTec4. Genome analysis and several parameters were assessed, including growth capacity, phage adsorption, phenotypic impact at capsular level, biofilm production, and virulence in the in vivo Galleria mellonella larvae model. One out of the six resistant isolates exhibited a significantly slower growth rate, suggesting the presence of a resistance mechanism altering its fitness. Comparative genomic analysis revealed insertion sequences in the region 2 of the kps gene cluster involved in the capsule biosynthesis. In addition, an immunoassay targeting the K1 capsule showed a very low positive reaction compared to the control. Nevertheless, microscopic images of resistant strains revealed the presence of capsules with a clustered organization of bacterial cells and biofilm assessment showed an increased biofilm production compared to the sensitive strains. In the G. mellonella model, larvae infected with phage-resistant isolates showed better survival rates than larvae infected with phage-sensitive strains. CONCLUSIONS: A phage resistance mechanism was identified at the genomic level and had a negative impact on the K1 capsule production. The resistant isolates showed an increased biofilm production and a decreased virulence in vivo.


Asunto(s)
Cápsulas Bacterianas , Biopelículas , Escherichia coli , Animales , Cápsulas Bacterianas/genética , Bacteriófagos/genética , Bacteriófagos/fisiología , Biopelículas/crecimiento & desarrollo , Colifagos/genética , Colifagos/fisiología , Escherichia coli/virología , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Larva/microbiología , Larva/virología , Virulencia/genética , Humanos , Mariposas Nocturnas/microbiología
16.
Med Vet Entomol ; 38(2): 234-243, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38489505

RESUMEN

Mayaro virus (MAYV; Alphavirus: Togaviridae) is an emerging pathogen in Latin America, causing fever and polyarthritis. Sporadic outbreaks of MAYV have occurred in the region, with reported human cases being imported to Europe and North America. Although primarily a risk for those residing in the Amazon basin's tropical forests, recent reports highlight that urbanization would increase the risk of MAYV transmission in Latin America. Urban emergence depends on human susceptibility and the ability of mosquitos like Aedes aegypti  (Linnaeus, 1762) (Diptera: Culicidae) to transmit MAYV. Despite the absence of active MAYV transmission in Argentine, the risk of introduction is substantial due to human movement and the presence of Ae. aegypti in the region. This study aimed to evaluate the susceptibility of different Argentine Ae. aegypti populations to MAYV genotype L (MAYV-L) using dose-response assays and determine barriers to virus infection, dissemination and transmission. Immature mosquito stages were collected in Buenos Aires, Córdoba and Rosario cities. Female Ae. aegypti (F2) were orally infected by feeding on five concentrations of MAYV-L, ranging from 1.0 to 6.0 log10 PFU/mL. Abdomens, legs and saliva were analysed using viral plaque assays. Results revealed that MAYV-L between infection and dissemination were associated with viral doses rather than the population origin. Infection rates varied between 3% and 65%, with a 50% infectious dose >5.5 log10 PFU/mL. Dissemination occurred at 39%, with a 50% dissemination dose of ~6.0 log10 PFU/mL. Dissemination among infected mosquitoes ranged from 60% to 86%, and transmission from disseminated mosquitoes ranged from 11% to 20%. Argentine Ae. aegypti populations exhibited a need for higher viral doses of MAYV-L than those typically found in humans to become infected. In addition, only a small proportion of infected mosquitoes were capable of transmitting the virus. Understanding MAYV transmission in urban areas is crucial for public health interventions.


Asunto(s)
Aedes , Alphavirus , Mosquitos Vectores , Animales , Aedes/virología , Aedes/fisiología , Argentina , Mosquitos Vectores/virología , Mosquitos Vectores/fisiología , Alphavirus/fisiología , Femenino , Infecciones por Alphavirus/transmisión , Larva/virología , Larva/crecimiento & desarrollo
17.
J Invertebr Pathol ; 204: 108095, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38499284

RESUMEN

Epoxyoctadecamonoenoic acids (EpOMEs) are produced from linoleic acid by a cytochrome P450 monooxygenase (CYP) and play a crucial role in terminating excessive and unnecessary immune responses during the late infection stage in insects. This suggests that an increase in the EpOME level may enhance the virulence of insect pathogens against pests. This study tested this hypothesis using a specific inhibitor against soluble epoxide hydrolase (sEH) to degrade EpOMEs, which leads to elevated endogenous EpOME levels. A baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), was used to infect three different lepidopteran insects (Spodoptera exigua, Maruca vitrata, and Plutella xylostella) by oral feeding or hemocoelic injection treatments. Within one hour, the viral infection induced the expression of three different phospholipase A2 (PLA2) genes and, after 12 h, up-regulated the expressions of CYP and sEH genes in Spodopera exigua. As expected, AcMNPV virulence was suppressed by the addition of arachidonic acid (a catalytic product of PLA2) but was enhanced by the addition of either of the EpOME regioisomers. In addition, treatment with a specific sEH inhibitor (AUDA) increased AcMNPV virulence against three different lepidopteran insects, presumably by increasing endogenous EpOME levels. This enhanced effect of EpOMEs on virulence was further supported by specific RNA interference (RNAi), in which RNAi specific to CYP expression decreased AcMNPV virulence while a specific RNAi against sEH expression significantly enhanced virulence. In response to AcMNPV infection, TUNEL assay results showed that S. exigua larvae exhibited apoptosis in the midgut, fat body, and epidermis. Inhibition of apoptosis by a pan-caspase inhibitor, Z-VAD-FMK, significantly increased virulence. Similarly, the addition of AUDA to the viral treatment suppressed the gene expression of five inducible caspases and cytochrome C to suppress apoptosis, which led to a significant increase in the tissue viral titers. These results indicate that EpOMEs play a role in terminating excessive and unnecessary immune responses against viral infection during the late stage by down-regulating antiviral apoptosis in lepidopteran insects.


Asunto(s)
Mariposas Nocturnas , Nucleopoliedrovirus , Animales , Mariposas Nocturnas/virología , Mariposas Nocturnas/inmunología , Virulencia , Nucleopoliedrovirus/patogenicidad , Spodoptera/virología , Spodoptera/inmunología , Larva/virología , Larva/inmunología
18.
Microbiol Spectr ; 12(5): e0378423, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38511948

RESUMEN

Clostridium perfringens is a prevalent bacterial pathogen in poultry, and due to the spread of antimicrobial resistance, alternative treatments are needed to prevent and treat infection. Bacteriophages (phages), viruses that kill bacteria, offer a viable option and can be used therapeutically to treat C. perfringens infections. The aim of this study was to isolate phages against C. perfringens strains currently circulating on farms across the world and establish their virulence and development potential using host range screening, virulence assays, and larva infection studies. We isolated 32 phages of which 19 lysed 80%-92% of our global C. perfringens poultry strain collection (n = 97). The virulence of these individual phages and 32 different phage combinations was quantified in liquid culture at multiple doses. We then developed a multi-strain C. perfringens larva infection model, to mimic an effective poultry model used by the industry. We tested the efficacy of 16/32 phage cocktails in the larva model. From this, we identified that our phage cocktail consisting of phages CPLM2, CPLM15, and CPLS41 was the most effective at reducing C. perfringens colonization in infected larvae when administered before bacterial challenge. These data suggest that phages do have significant potential to prevent and treat C. perfringens infection in poultry. IMPORTANCE: Clostridium perfringens causes foodborne illness worldwide, and 95% of human infections are linked to the consumption of contaminated meat, including chicken products. In poultry, C. perfringens infection causes necrotic enteritis, and associated mortality rates can be up to 50%. However, treating infections is difficult as the bacterium is becoming antibiotic-resistant. Furthermore, the poultry industry is striving toward reduced antibiotic usage. Bacteriophages (phages) offer a promising alternative, and to progress this approach, robust suitable phages and laboratory models that mimic C. perfringens infections in poultry are required. In our study, we isolated phages targeting C. perfringens and found that many lyse C. perfringens strains isolated from chickens worldwide. Consistent with other published studies, in the model systems we assayed here, when some phages were combined as cocktails, the infection was cleared most effectively compared to individual phage use.


Asunto(s)
Bacteriófagos , Infecciones por Clostridium , Clostridium perfringens , Especificidad del Huésped , Enfermedades de las Aves de Corral , Clostridium perfringens/virología , Animales , Bacteriófagos/fisiología , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/terapia , Infecciones por Clostridium/veterinaria , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/virología , Virulencia , Pollos , Aves de Corral/microbiología , Terapia de Fagos/métodos , Larva/microbiología , Larva/virología , Modelos Animales de Enfermedad
19.
Pest Manag Sci ; 80(8): 3752-3762, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38488318

RESUMEN

BACKGROUND: Voltage-dependent anion-selective channels (VDACs) serve as pore proteins within the mitochondrial membrane, aiding in the regulation of cell life and cell death. Although the occurrence of cell death is crucial for defense against virus infection, the function played by VDAC in Bombyx mori, in response to the influence of Bombyx mori nucleopolyhedrovirus (BmNPV), remains unclear. RESULTS: BmVDAC was found to be relatively highly expressed both during embryonic development, and in the Malpighian tubule and midgut. Additionally, the expression levels of BmVDAC were found to be different among silkworm strains with varying levels of resistance to BmNPV, strongly suggesting a connection between BmVDAC and virus infection. To gain further insight into the function of BmVDAC in BmNPV, we employed RNA interference (RNAi) to silence and overexpress it by pIZT/V5-His-mCherry. The results revealed that BmVDAC is instrumental in developing the resistance of host cells to BmNPV infection in BmN cell-line cells, which was further validated as likely to be associated with initiating programmed cell death (PCD). Furthermore, we evaluated the function of BmVDAC in another insect, Spodoptera exigua. Knockdown of the BmVDAC homolog in S. exigua, SeVDAC, made the larvae more sensitive to BmNPV. CONCLUSION: We have substantiated the pivotal role of BmVDAC in conferring resistance against BmNPV infection, primarily associated with the initiation of PCD. The findings of this study shine new light on the molecular mechanisms governing the silkworm's response to BmNPV infection, thereby supporting innovative approaches for pest biocontrol. © 2024 Society of Chemical Industry.


Asunto(s)
Apoptosis , Bombyx , Larva , Nucleopoliedrovirus , Canales Aniónicos Dependientes del Voltaje , Animales , Bombyx/virología , Bombyx/genética , Nucleopoliedrovirus/fisiología , Larva/virología , Larva/crecimiento & desarrollo , Larva/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Canales Aniónicos Dependientes del Voltaje/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Interferencia de ARN
20.
J Chem Ecol ; 50(3-4): 152-167, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38353894

RESUMEN

Host plant consumption and pathogen infection commonly influence insect traits related to development and immunity, which are ultimately reflected in the behavior and physiology of the insect. Herein, we explored changes in the metabolome of a generalist insect herbivore, Vanessa cardui (Lepidoptera: Nymphalidae), in response to both dietary variation and pathogen infection in order to gain insight into tritrophic interactions for insect metabolism and immunity. Caterpillars were reared on two different host plants, Plantago lanceolata (Plantaginaceae) and Taraxacum officinale (Asteraceae) and subjected to a viral infection by Junonia coenia densovirus (JcDV), along with assays to determine the insect immune response and development. Richness and diversity of plant and caterpillar metabolites were evaluated using a liquid chromatography-mass spectrometry approach and showed that viral infection induced changes to the chemical content of V. cardui hemolymph and frass dependent upon host plant consumption. Overall, the immune response as measured by phenoloxidase (PO) enzymatic activity was higher in individuals feeding on P. lanceolata compared with those feeding on T. officinale. Additionally, infection with JcDV caused suppression of PO activity, which was not host plant dependent. We conclude that viral infection combined with host plant consumption creates a unique chemical environment, particularly within the insect hemolymph. Whether and how these metabolites contribute to defense against viral infection is an open question in chemical ecology.


Asunto(s)
Herbivoria , Metaboloma , Taraxacum , Animales , Taraxacum/química , Taraxacum/metabolismo , Larva/virología , Larva/fisiología , Plantago/química , Plantago/fisiología , Hemolinfa/metabolismo , Hemolinfa/química , Monofenol Monooxigenasa/metabolismo , Mariposas Diurnas/fisiología , Mariposas Diurnas/virología , Mariposas Diurnas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...