Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.499
Filtrar
1.
Biomed Mater ; 19(5)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38955335

RESUMEN

This study aimed to develop and optimize karanjin-loaded ethosomal nanogel formulation and evaluate its efficacy in alleviating symptoms of psoriasis in an animal model induced by imiquimod. These karanjin-loaded ethosomal nanogel, were formulated to enhance drug penetration into the skin and its epidermal retention. Karanjin was taken to formulate ethosomes due to its potential ani-psoriatic activity. Ethosomes were formulated using the cold method using 32full factorial designs to optimize the formulation components. 9 batches were prepared using two independent variablesX1: concentration of ethanol andX2: concentration of phospholipid whereas vesicle size (Y1) and percentage entrapment efficiency (Y2) were selected as dependent variables. All the dependent variables were found to be statistically significant. The optimized ethosomal suspension (B3) exhibited a vesicle size of 334 ± 2.89 nm with an entrapment efficiency of 94.88 ± 1.24% and showed good stability. The morphology of vesicles appeared spherical with smooth surfaces through transmission electron microscopy analysis. X-ray diffraction analysis confirmed that the drug existed in an amorphous state within the ethosomal formulation. The optimized ethosome was incorporated into carbopol 934 to develop nanogel for easy application on the skin. The nanogel underwent characterization for various parameters including spreadability, viscosity, pH, extrudability, and percentage drug content. The ethosomal formulation remarkably enhanced the skin permeation of karanjin and increased epidermal retention of the drug in psoriatic skin compared to marketed preparation and pure drug. A skin retention study showed that ethosomal nanogel formulation has 48.33% epidermal retention in 6 h.In vivo,the anti-psoriatic activity of karanjin ethosomal nanogel demonstrated significant improvement in psoriasis, indicated by a gradual decrease in skin thickness and scaling as reflected in the Psoriasis Severity Index grading. Therefore, the prepared ethosomal nanogel is a potential vehicle for improved topical delivery of karanjin for better treatment of psoriasis.


Asunto(s)
Nanogeles , Psoriasis , Absorción Cutánea , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Animales , Nanogeles/química , Lecitinas/química , Piel/metabolismo , Piel/patología , Tamaño de la Partícula , Liposomas/química , Polietilenglicoles/química , Glycine max/química , Ratas , Masculino , Imiquimod/química , Portadores de Fármacos/química , Polietileneimina/química , Difracción de Rayos X , Etanol/química , Acrilatos
2.
J Oleo Sci ; 73(8): 1125-1134, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39085085

RESUMEN

In recent years, there has been a growing interest in regulating lipid digestion through the construction of various interfacial structures. In the present work, a series of complex interfacial structures were designed by combining Tween 80 in the aqueous phase and lecithin in the oil phase at different concentration ratios. The emulsification properties, the roles in regulating lipid digestion, and the interfacial dilatational rheological properties of the composite emulsifying systems were characterized. The results showed that the combination of Tween 80 and lecithin at different ratios could effectively modulate the rate of lipid digestion. The polyoxyethylene chains of Tween 80 formed a network, that provided a spatial obstacle for the adsorption of bile salts and lipases. Thus, Tween 80 significantly delayed the lipid digestion. The introduction of lecithin gradually replaced Tween 80 molecules at the interface, thus providing space for the adsorption of bile salts and lipases. In addition, as the ratio of lecithin concentration to Tween 80 increased, lecithin gradually became the dominant factor in the interfacial properties. As a result, the rate of lipid digestion was accelerated. Therefore, by compounding different ratios of lecithin and Tween 80, a series of emulsions with different lipid digestion rates were obtained. This research provides a basis for rationally designing food emulsions according to specific needs.


Asunto(s)
Ácidos y Sales Biliares , Emulsiones , Lecitinas , Lipasa , Polisorbatos , Polisorbatos/química , Lecitinas/química , Adsorción , Lipasa/química , Lipasa/metabolismo , Ácidos y Sales Biliares/química , Reología , Digestión , Metabolismo de los Lípidos , Nanoestructuras/química , Lípidos/química , Agua/química
3.
Eur J Pharm Biopharm ; 201: 114379, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908488

RESUMEN

A novel composite carrier composed of Pluronic lecithin organogels and fatty acid vesicles was used to enhance the stability and facilitate the topical delivery of a natural bioactive drug, magnolol (Mag), for treatment of skin cancer. Jojoba oil was incorporated in the organogel (OG) base to provide a synergistic effect in treatment of skin cancer. The organoleptic properties, rheological behavior, morphology, and drug content of the OG formulations were investigated with emphasis on the impact of vesicle loading on the OG characteristics. The effect of OG on Mag release and ex-vivo permeation studies were evaluated and compared to free Mag in OG. The biological anti-tumor activity of the OG formulae was assessed using a skin cancer model in mice. All OG formulations exhibited uniform drug distribution with drug content ranging from 92.22 ± 0.91 to 100.45 ± 0.77 %. Rheological studies confirmed the OG shear-thinning flow behavior. Ex-vivo permeation studies demonstrated that the permeation of Mag from all OG formulations surpassed that obtained with free Mag in the OG. The anti-tumor activity studies revealed the superior efficacy of 10-hydroxy-decanoic acid (HDA)-based vesicles incorporated in OG formulations in mitigating 7,12- dimethylbenz(a)anthracene (DMBA)-induced skin cancer, thereby offering a promising platform for the local delivery of Mag.


Asunto(s)
Compuestos de Bifenilo , Ácidos Grasos , Geles , Lecitinas , Lignanos , Poloxámero , Neoplasias Cutáneas , Animales , Compuestos de Bifenilo/química , Compuestos de Bifenilo/administración & dosificación , Compuestos de Bifenilo/farmacocinética , Lecitinas/química , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Ratones , Ácidos Grasos/química , Lignanos/administración & dosificación , Lignanos/farmacocinética , Lignanos/farmacología , Lignanos/química , Poloxámero/química , Portadores de Fármacos/química , Administración Cutánea , Sistemas de Liberación de Medicamentos/métodos , Absorción Cutánea/efectos de los fármacos , Reología , Liberación de Fármacos , Femenino , Piel/metabolismo , Piel/efectos de los fármacos
4.
Poult Sci ; 103(8): 103876, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38833746

RESUMEN

The aim of this study was to elucidate the different effects and difference mechanism of gelling properties among egg white (EW) treated with different heating intensities and the composite addition of rhamnolipid and soybean lecithin. Particle size analyzer, potentiometric analyzer, surface hydrophobicity method, and Fourier transform infrared spectroscopy techniques were used to determine the physicochemical properties and molecular structure, respectively. Low-field nuclear magnetic resonance, magnetic resonance imaging, texture profile analysis, and scanning electron microscopy techniques were used to analyze the gelling properties and gel structure, respectively. And we illuminate the different mechanisms in the gelling properties of the EW with various treatments and key internal factors that play important roles in improving gelling properties by establishing the link between the gelling properties and relevant characteristics by mixed effects model and visual network analysis. The results indicate raising the content of rhamnolipid decreased the migration of immobilized water in the EW gel and the free water content. At the heating intensities of 55 °C/3.5, 65 °C/2.5, and 67 °C/1.5 min, with an increase in rhamnolipid, the gel's cohesiveness, gumminess, and chewiness gradually increased. The mixed effects model indicated that heating intensities and composite ratios have a 2-way interaction on zeta potential, the relaxation time of bound water (T21), the content of bound water (P21), the content of immobilized water (P22), and fractal dimension (df) attributes (P < 0.05). The visual network analysis showed that the protein solubility, the relaxation time of immobilized water (T22), surface hydrophobicity, zeta potential, average particle size (d43) and the relaxation time of free water (T23) are critical contributors to the different gelling properties of EW subjected to various treatments and the improvement of gelling properties. This study will provide theoretical guidance for the development of egg white products and the expansion of egg white's application scope in the egg product processing industry.


Asunto(s)
Pollos , Clara de Huevo , Geles , Lecitinas , Tensoactivos , Clara de Huevo/química , Tensoactivos/química , Animales , Lecitinas/química , Geles/química , Calor , Glucolípidos/química , Manipulación de Alimentos/métodos , Glycine max/química
5.
Molecules ; 29(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38930869

RESUMEN

This research aimed to encapsulate the Capparis spinosa fruit extract to increase its stability for incorporation into food products such as jelly or jelly powder. After extraction, the nanoliposomes containing the extract were prepared in ratios of 60-0, 50-10, 40-20, and 30-30 lecithin-to-cholesterol. The effects of lecithin-to-cholesterol concentrations on the related parameters were then evaluated. The results showed that the average particle size was in the range of 95.05 to 164.25 nm, and with an increasing cholesterol concentration, the particle size of the nanoliposomes increased. The addition of cholesterol increased the zeta potential from -60.40 to -68.55 millivolt. Furthermore, cholesterol led to an increase in encapsulation efficiency, and even improved the stability of phenolic compounds loaded in nanoliposomes during storage time. Fourier transform infrared (FTIR) spectroscopy confirmed the successful loading of the extract. Field emission scanning electron microscopy (FE-SEM) analysis revealed nano-sized spherical and almost-elliptical liposomes. For jelly powders, the water solubility index ranged from 39.5 to 43.7% (p > 0.05), and the hygroscopicity values ranged between 1.22 and 9.36 g/100 g (p < 0.05). In conclusion, nanoencapsulated Capparis spinosa extract displayed improved stability and can be used in jelly preparation without any challenge or unfavorable perception.


Asunto(s)
Capparis , Liposomas , Nanopartículas , Tamaño de la Partícula , Extractos Vegetales , Liposomas/química , Extractos Vegetales/química , Capparis/química , Nanopartículas/química , Lecitinas/química , Colesterol/química , Composición de Medicamentos/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Solubilidad
6.
Commun Biol ; 7(1): 749, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902371

RESUMEN

Dietary emulsifiers are linked to various diseases. The recent discovery of the role of gut microbiota-host interactions on health and disease warrants the safety reassessment of dietary emulsifiers through the lens of gut microbiota. Lecithin, sucrose fatty acid esters, carboxymethylcellulose (CMC), and mono- and diglycerides (MDG) emulsifiers are common dietary emulsifiers with high exposure levels in the population. This study demonstrates that sucrose fatty acid esters and carboxymethylcellulose induce hyperglycemia and hyperinsulinemia in a mouse model. Lecithin, sucrose fatty acid esters, and CMC disrupt glucose homeostasis in the in vitro insulin-resistance model. MDG impairs circulating lipid and glucose metabolism. All emulsifiers change the intestinal microbiota diversity and induce gut microbiota dysbiosis. Lecithin, sucrose fatty acid esters, and CMC do not impact mucus-bacterial interactions, whereas MDG tends to cause bacterial encroachment into the inner mucus layer and enhance inflammation potential by raising circulating lipopolysaccharide. Our findings demonstrate the safety concerns associated with using dietary emulsifiers, suggesting that they could lead to metabolic syndromes.


Asunto(s)
Disbiosis , Emulsionantes , Microbioma Gastrointestinal , Enfermedades Metabólicas , Animales , Disbiosis/inducido químicamente , Disbiosis/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Masculino , Enfermedades Metabólicas/inducido químicamente , Enfermedades Metabólicas/microbiología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/etiología , Ratones Endogámicos C57BL , Carboximetilcelulosa de Sodio , Sacarosa/efectos adversos , Sacarosa/administración & dosificación , Sacarosa/metabolismo , Resistencia a la Insulina , Lecitinas
7.
Nanomedicine (Lond) ; 19(15): 1407-1423, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38920352

RESUMEN

Aim: To investigate the effect of surfactant type on curcumin-loaded (CUR) PLGA nanoparticles (NPs) to modulate monocyte functions. Materials & methods: The nanoprecipitation method was used, and PLGA NPs were designed using Pluronic F127 (F127) and/or lecithin (LEC) as surfactants. Results: The Z-average of the NPs was <200 nm, they had a spherical shape, Derjaguin-Muller-Toporov modulus >0.128 MPa, they were stable during storage at 4°C, ζ-potential ∼-40 mV, polydispersity index <0.26 and % EE of CUR >94%. PLGA-LEC/F127 NPs showed favorable physicochemical and nanomechanical properties. These NPs were bound and internalized mainly by monocytes, suppressed monocyte-induced reactive oxygen species production, and decreased the ability of monocytes to modulate T-cell proliferation. Conclusion: These results demonstrate the potential of these NPs for targeted therapy.


This study explores how different surfactants affect curcumin-loaded PLGA nanoparticles, a biodegradable polymer. The nanoparticles were designed using Pluronic F127 and/or lecithin as surfactants. They are less than 200 nm and spherical. They are stable when stored at 4 °C, with a surface charge of about -40 mV, and can encapsulate more than 94% of curcumin.The results of this study are promising, showing that PLGA nanoparticles using a mixture of lecithin and Pluronic F127 as surfactants have favorable properties toward monocyte adhesion. They are primarily taken up by monocytes, a type of white blood cell, and demonstrate a remarkable ability to reduce the production of reactive oxygen species, which can cause cell damage, as well as the ability of monocytes to stimulate the proliferation of T cells. This underscores the potential of these nanoparticles in targeted therapy, particularly in diseases where monocytes play a pivotal role, such as chronic inflammatory conditions.


Asunto(s)
Curcumina , Lecitinas , Monocitos , Nanopartículas , Poloxámero , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Especies Reactivas de Oxígeno , Curcumina/química , Curcumina/farmacología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Humanos , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Lecitinas/química , Especies Reactivas de Oxígeno/metabolismo , Poloxámero/química , Proliferación Celular/efectos de los fármacos , Tamaño de la Partícula , Tensoactivos/química , Portadores de Fármacos/química , Linfocitos T/efectos de los fármacos
8.
Int J Pharm ; 661: 124378, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38925241

RESUMEN

Currently, to overcome the short half-life of the local anesthetic ropivacaine, drug delivery systems such as nanoparticles and liposomes have been used to prolong the analgesic effect, but they are prone to abrupt release from the site of administration or have poor slow-release effects, which increases the risk of cardiotoxicity. In this study, injectable lipid suspensions based on ropivacaine-docusate sodium hydrophobic ion pairing (HIP) were designed to significantly prolong the duration of analgesia. The resulting ion-paired lipid suspension (HIP/LIPO) had a micrometer scale and a high zeta potential, which facilitates stable in situ retention. The strong interaction between docusate sodium and ropivacaine was verified using thermal and spectroscopic analyses, and the formation of micron-sized polymorphic vesicles was attributed to the mutual stabilizing interactions between ropivacaine-docusate sodium HIP, docusate sodium and lecithin. The HIP/LIPO delivery system could maintain drug release for more than 5 days in vitro and achieve high analgesic efficacy for more than 10 days in vivo, reducing the side effects associated with high drug doses. The stable HIP/LIPO delivery system is a promising strategy that offers a clinically beneficial alternative for postoperative pain management and other diseases.


Asunto(s)
Anestésicos Locales , Preparaciones de Acción Retardada , Liberación de Fármacos , Ropivacaína , Ropivacaína/administración & dosificación , Ropivacaína/farmacocinética , Ropivacaína/química , Anestésicos Locales/administración & dosificación , Anestésicos Locales/química , Animales , Masculino , Ratas Sprague-Dawley , Anestesia Local/métodos , Ácidos Decanoicos/química , Ácidos Decanoicos/administración & dosificación , Tamaño de la Partícula , Liposomas , Sistemas de Liberación de Medicamentos , Amidas/química , Amidas/administración & dosificación , Ratas , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/prevención & control , Lípidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Lecitinas/química , Inyecciones
9.
Reprod Domest Anim ; 59(5): e14570, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38700367

RESUMEN

The cryopreservation process induces alterations in cellular parameters and epigenetic patterns in bull sperm, which can be prevented by adding cryoprotectants in the freezing extenders. The purpose of this study was to compare the protective effects of two extenders based on soybean lecithin (SLE) and egg yolk (EYE) on epigenetic patterns and quality parameters of sperm such as motility parameters, mitochondrial membrane integrity, DNA fragmentation, viability, and apoptotic-like changes of bull sperm after cryopreservation. Results demonstrated that cryopreservation significantly (p < .05) reduced the level of DNA global methylation, H3K9 histone acetylation, and H3K4 histone methylation in both frozen groups compared to the fresh sperm. Also, the level of H3K9 acetylation was lower in the frozen SLE group (21.2 ± 1.86) compared to EYE group (15.2 ± 1.86). In addition, the SLE frozen group had a higher percentage of viability, progressive motility, and linearity (LIN) in SLE frozen group compared to EYE frozen group. However, no difference was observed in mitochondrial membrane integrity and DNA fragmentation between SLE and EYE frozen groups. While soybean-lecithin-based extender showed some initial positive impacts of epigenetics and semen parameters, further investigations can provide useful information for better freezing.


Asunto(s)
Criopreservación , Crioprotectores , Fragmentación del ADN , Metilación de ADN , Epigénesis Genética , Preservación de Semen , Motilidad Espermática , Espermatozoides , Masculino , Criopreservación/veterinaria , Animales , Bovinos , Espermatozoides/efectos de los fármacos , Espermatozoides/fisiología , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Motilidad Espermática/efectos de los fármacos , Crioprotectores/farmacología , Metilación de ADN/efectos de los fármacos , Yema de Huevo/química , Lecitinas/farmacología , Histonas/metabolismo , Histonas/genética , Glycine max/química , Análisis de Semen/veterinaria , Acetilación
10.
Int J Biol Macromol ; 268(Pt 2): 131996, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38697417

RESUMEN

This research investigated the effect of lecithin on the complexation of lauric acid with maize starch, potato starch, waxy maize starch, and high amylose maize starch. Rapid visco analysis showed that lecithin altered the setback pattern of potato starch-lauric acid and maize starch-lauric acid mixtures but not waxy maize starch-lauric acid. Further investigation, including differential scanning calorimetry, complex index, and X-ray diffraction, showed that lecithin enhanced the complexation of maize starch, potato starch, and high amylose maize starch with lauric acid. Fourier transform infrared and Raman spectroscopy revealed increasingly ordered structures formed in maize starch-lauric acid-lecithin, potato starch-lauric acid-lecithin, and high amylose maize starch-lauric acid-lecithin systems compared to corresponding binary systems. These highly ordered complexes of maize starch, potato starch, and high amylose maize starch also demonstrated greater resistance to in vitro enzymatic hydrolysis. Waxy maize starch complexation however remained unaffected by lecithin. The results of this study show that lecithin impacts complexation between fatty acids and native starches containing amylose, with the starch source being critical. Lecithin minimally impacted the complexation of low amylose starch and fatty acids.


Asunto(s)
Amilosa , Ácidos Láuricos , Lecitinas , Almidón , Zea mays , Ácidos Láuricos/química , Lecitinas/química , Almidón/química , Amilosa/química , Zea mays/química , Solanum tuberosum/química , Hidrólisis , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Rastreo Diferencial de Calorimetría
11.
Pak J Pharm Sci ; 37(1): 139-145, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38741410

RESUMEN

Liposomes, a nanoscale carrier, plays an important role in the delivery of drug, affects the in vivo efficacy of drugs. In this paper, silymarin(SM)-loaded liposomes was optimized using the response surface method (RSM), with entrapment efficiency (EE%) as an index. The formulation was optimized as follow: lecithin (7.8mg/mL), SM/lecithin (1/26) and lecithin/cholesterol (10/1). The optimized SM liposomes had a high EE (96.58 ±3.06%), with a particle size of 290.3 ±10.5nm and a zeta potential of +22.98 ±1.73mV. In vitro release tests revealed that SM was released in a sustained-release manner, primarily via diffusion mechanism. In vitro cytotoxicity studies demonstrated that the prepared SM liposomes had stronger inhibitory effects than the model drug. Overall, these results indicate that this liposome system is suitable for intravenous delivery to enhance the antitumor effects of SM.


Asunto(s)
Lecitinas , Liposomas , Tamaño de la Partícula , Silimarina , Silimarina/farmacología , Silimarina/química , Silimarina/administración & dosificación , Humanos , Lecitinas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Liberación de Fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Colesterol/química , Química Farmacéutica , Composición de Medicamentos
12.
Food Res Int ; 187: 114430, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763679

RESUMEN

Oleogels have been explored as fat substitutes due to their healthier composition compared to trans and saturated fats, also presenting interesting technological perspectives. The aim of this study was to investigate the compositional perspective of multicomponent oleogels. Structuring ability of lecithin (LEC) (20 or 90 wt% of phosphatidylcholine - PC) combined with glycerol monostearate (GMS), sorbitan monostearate (SMS) or sucrose monostearate (SAC) in sunflower oil was evaluated from oleogels properties. The thermal and rheological properties, microstructure and stability of the oleogels were affected by the difference in the chemical composition of LEC and the ratio between LEC and different surfactants. Interestingly, low-phosphatidylcholine LEC (L20) performed better, although systems formed with reduced amounts of LEC tended to be softer (LEC-GMS) and present high oil holding capacity (LEC-SMS). The mixtures of LEC and monostearate-based surfactants showed different behaviors, depending on the surfactant polar head. In LEC-GMS systems, LEC hindered the self-assembly of GMS in sunflower oil, compromising mechanical properties and increasing oil release. When combined with SMS, LEC acted as a crystal habit modifier of SMS, forming a more homogeneous microstructure and producing stronger oleogels with greater oil binding capacity. However, above the threshold concentration, LEC prevented SMS self-assembly, resulting in a weaker gel. A positive interaction was found in LEC-SAC formulations in specific ratios, since SAC cannot act as a single oleogelator. Results show the impact of solubility balance played by LEC and fatty-acid derivatives surfactant when combined and used as oleogelators. This knowledge can contribute to a rational perspective in the preparation and modulation of the properties of edible oleogels.


Asunto(s)
Lecitinas , Compuestos Orgánicos , Reología , Aceite de Girasol , Tensoactivos , Lecitinas/química , Compuestos Orgánicos/química , Aceite de Girasol/química , Tensoactivos/química , Hexosas/química , Sustitutos de Grasa/química , Glicéridos/química , Sacarosa/química
13.
Food Res Int ; 186: 114350, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729698

RESUMEN

In this study, three types of ß-sitosterol-based oleogels (ß-sitosterol + Î³-oryzanol oleogels, ß-sitosterol + lecithin, oleogels and ß-sitosterol + monostearate oleogels), loaded with astaxanthin, were employed as the oil phase to create oleogel-based emulsions (SO, SL, and SM) using high-pressure homogenization. The microstructure revealed that fine-scale crystals were dispersed within the oil phase of the droplets in the ß-sitosterol oleogel-based emulsion. The bioaccessibility of astaxanthin was found to be 58.13 %, 51.24 %, 36.57 %, and 45.72 % for SM, SL, SO, and the control group, respectively. Interestingly, the release of fatty acids was positively correlated with the availability of astaxanthin (P = 0.981). Further analysis of FFAs release and kinetics indicated that the structural strength of the oil-phase in the emulsions influenced the degree and rate of lipolysis. Additionally, the micellar fraction analysis suggested that the nature and composition of the oleogelators in SM and SL also impacted lipolysis and the bioaccessibility of astaxanthin. Furthermore, interfacial binding of lipase and isothermal titration calorimetry (ITC) measurements revealed that the oleogel network within the oil phase of the emulsion acted as a physical barrier, hindering the interaction between lipase and lipid. Overall, ß-sitosterol oleogel-based emulsions offer a versatile platform for delivering hydrophobic molecules, enhancing the bioavailability of active compounds, and achieving sustained release.


Asunto(s)
Emulsiones , Compuestos Orgánicos , Sitoesteroles , Xantófilas , Sitoesteroles/química , Xantófilas/química , Compuestos Orgánicos/química , Disponibilidad Biológica , Lipólisis , Lecitinas/química , Ácidos Grasos/química , Fenilpropionatos
14.
Food Chem ; 452: 139391, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38713980

RESUMEN

Edible insects with high fat and phosphorus content are a potential novel source of lecithin, however, studies on their minor lipids are limited. In this study, lecithin was extracted from black soldier fly larvae and yellow mealworm. Herein, the effects of lecithin extraction method, matrix and ultrasound pretreatment were explored based on the fatty acid composition and phospholipid profile with soy lecithin as a reference. The use of a wet matrix and ultrasound pretreatment increased the extraction efficiency of total PLs from both insects. Insect lecithin contained a considerable amount of sphingomyelin compared to soy lecithin. In insect lecithin, a total of 47 glycerophospholipid and sphingomyelin molecular species, as well as four molecular species of fatty acyl esters of hydroxy fatty acid, were detected. This study is the first comprehensive investigation of insects as a new source of lecithin with applications in food, cosmetics and in the pharmaceutical industry.


Asunto(s)
Larva , Lecitinas , Animales , Lecitinas/química , Larva/química , Larva/crecimiento & desarrollo , Insectos Comestibles/química , Dípteros/química , Dípteros/crecimiento & desarrollo , Tenebrio/química , Simuliidae/química , Ácidos Grasos/química , Ácidos Grasos/aislamiento & purificación , Fosfolípidos/química , Fosfolípidos/aislamiento & purificación , Lípidos/química , Lípidos/aislamiento & purificación
15.
J Phys Chem B ; 128(22): 5427-5436, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38808516

RESUMEN

5-Fluorouracil (5-FU) is an antineoplastic agent known for its low bioavailability and limited cellular penetration, often resulting in adverse effects on healthy cells. Thus, finding vehicles that enhance bioavailability, enable controlled release, and mitigate adverse effects is crucial. The study focuses on encapsulating 5-FU within soy lecithin vesicles (SLVs) and assessing its impact on the carrier's properties and functionality. Results show that incorporating 5-FU does not affect SLVs' size or polydispersity, even postlyophilization. Liberation of 5-FU from SLVs requires system disruption rather than spontaneous release, with an encapsulation efficiency of approximately 43% determined using Square Wave Voltammetry. Cytotoxicity assays on colorectal cancer cells reveal SLV-based delivery's significant efficacy, surpassing free drug solution effects with 45% cell viability after 72 h vs 73% viability. The research addresses 5-FU's limited bioavailability by creating a biocompatible nanocarrier for efficient drug delivery, highlighting SLVs as promising for targeted cancer therapy due to sustained antiproliferative effects and improved cellular uptake. The study underscores the importance of tailored drug delivery systems in enhancing therapeutic outcomes and suggests SLV/5-FU formulations as a potential advancement in cancer treatment strategies.


Asunto(s)
Supervivencia Celular , Portadores de Fármacos , Fluorouracilo , Glycine max , Lecitinas , Fluorouracilo/química , Fluorouracilo/farmacología , Lecitinas/química , Humanos , Portadores de Fármacos/química , Supervivencia Celular/efectos de los fármacos , Glycine max/química , Liberación de Fármacos , Técnicas Electroquímicas , Nanopartículas/química
16.
J Food Sci ; 89(6): 3290-3305, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38767864

RESUMEN

A better understanding of how emulsifier type could differently influence the behavior of nanostructured lipid carriers (NLC) under the gastrointestinal digestion process, as well as at the cellular level, is of utmost importance for the NLC-based formulations' optimization and risk assessment in the food field. In this study, NLC composed by fully hydrogenated soybean and high-oleic sunflower oils were prepared using soy lecithin (NLC Lß) or Tween 80 (NLC Tß) as an emulsifier. ß-Carotene was entrapped within NLC developed as a promising strategy to overcome ß-carotene's low bioavailability and stability. The effect of emulsifier type on the digestibility of ß-carotene-loaded NLC was evaluated using an in vitro dynamic digestion model mimicking peristalsis motion. The influence of ß-carotene-loaded NLC on cell viability was assessed using Caco-2 cells in vitro. NLC Tß remained stable in the gastric compartment, presenting particle size (PS) similar to the initial NLC (PS: 245.68 and 218.18 nm, respectively), while NLC Lß showed lower stability (PS > 1000 nm) in stomach and duodenum phases. NLC Tß also provided high ß-carotene protection and delivery capacity (i.e., ß-carotene bioaccessibility increased 10-fold). Based on the results of digestion studies, NLC Tß has shown better physical stability during the passage through the in vitro dynamic gastrointestinal system than NLC Lß. Moreover, the developed NLC did not compromise cell viability up to 25 µg/mL of ß-carotene. Thus, the NLC developed proved to be a biocompatible structure and able to incorporate and protect ß-carotene for further food applications. PRACTICAL APPLICATION: The findings of this study hold significant implications for industrial applications in terms of developing nanostructured lipid carriers from natural raw materials widely available and used to produce other lipid-based products in the food industry, as an alternative to synthetic ones. In this respect, the ß-carotene-loaded NLC developed in this study would find a great industrial application in the food industry, which is in constant search to develop functional foods capable of increasing the bioavailability of bioactive compounds.


Asunto(s)
Digestión , Emulsionantes , Nanoestructuras , beta Caroteno , beta Caroteno/química , beta Caroteno/farmacocinética , Células CACO-2 , Humanos , Emulsionantes/química , Nanoestructuras/química , Disponibilidad Biológica , Portadores de Fármacos/química , Tamaño de la Partícula , Lípidos/química , Polisorbatos/química , Lecitinas/química , Supervivencia Celular/efectos de los fármacos , Aceite de Girasol/química
17.
Primates ; 65(4): 341-353, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761269

RESUMEN

There are more than 200 species and subspecies of Neotropical Primates of which more than 40% are listed as threatened by the IUCN Red List of Threatened Species. Both in situ and ex situ conservation programs can benefit from the use of assisted reproductive technologies. The objective of this study was to evaluate, for the first time, cryopreservation techniques for Alouatta caraya semen. Semen samples were collected from five adult males, analyzed, and frozen in either Test-egg yolk or Test-soy lecithin-based extenders containing either 3 or 4% glycerol. Frozen-thawed samples were analyzed at 10, 40, and 80 min post-thaw. Egg yolk-based extenders were overall better than soy lecithin-based extenders. There was no significant difference between 3 and 4% glycerol in any of the parameters analyzed, however, 4% glycerol in egg yolk-based extender produced more favorable results for total motility, intact plasma membrane, lipid peroxidation, and DNA fragmentation index. This study brought novel information on semen characteristics and cryopreservation aspects for A. caraya, which can help shape future experiments to improve the outcome of frozen-thawed sperm for this and other species of Neotropical primates.


Asunto(s)
Alouatta , Criopreservación , Crioprotectores , Yema de Huevo , Preservación de Semen , Espermatozoides , Animales , Masculino , Criopreservación/veterinaria , Criopreservación/métodos , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Yema de Huevo/química , Espermatozoides/fisiología , Alouatta/fisiología , Lecitinas , Glycine max/química , Glicerol , Motilidad Espermática/efectos de los fármacos
18.
Reprod Domest Anim ; 59(5): e14613, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38812417

RESUMEN

Spermatozoa can experience negative changes when subjected to freezing and thawing, including lowered motility, viability and acrosome response. Herein, the effects of different concentrations of soybean lecithin nanoparticles on cryopreserved Holstein bull semen were examined. Semen was collected, cryopreserved and utilized for sperm kinetic parameter analysis following dilution, equilibration and thawing with 0.5% soybean lecithin (E1), the control extender, and 0.75% (E2), 0.5% (E3), 0.25% (E4) and 0.125% (E5) of lecithin nanoparticles. Results revealed that following dilution, the progressive motility (PM) at E3, E4 and E5 of lecithin nanoparticles was higher (p < .05) than it was for E2. After equilibration, compared to the E1, E2, and E3 values, the PM, vitality, normal morphology, membrane integrity and intact acrosome values at the E5 were consistently greater (p < .05). Comparing the percentages of intact acrosome and membrane integrity at E2 and E3 to E4 and E5, a substantial decrease (p < .05) was seen. Following thawing, the percentage of PM improved at E2 and E5, even though their mean PM values were similar (p > .05) compared to E1, E3 and E4. Vigour and progression parameters of sperm (DAP, DCL, DSL, VAP, VCL, VSL and STR) at E5 were higher (p < .05) than those at E1, E2, E3 and E4. In conclusion, the cryopreserved sperm from Holstein bulls revealed outstanding properties both after equilibration and after thawing with 0.125% lecithin nanoparticles, and they were sensitive to high dosages.


Asunto(s)
Criopreservación , Glycine max , Lecitinas , Nanopartículas , Preservación de Semen , Semen , Animales , Bovinos , Masculino , Inseminación Artificial , Análisis de Semen , Motilidad Espermática , Espermatozoides , Preservación de Semen/métodos
19.
Biomacromolecules ; 25(6): 3554-3565, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729918

RESUMEN

Hydrogels are considered as a potential cartilage replacement material based on their structure being similar to natural cartilage, which are of great significance in repairing cartilage defects. However, it is difficult for the existing hydrogels to combine the high load bearing and low friction properties (37 °C) of cartilage through sample methods. Herein, we report a facile and new fabrication strategy to construct the PNIPAm/EYL hydrogel by using the macrophase separation of supersaturated N-isopropylacrylamide (NIPAm) monomer solution to promote the formation of liposomes from egg yolk lecithin (EYL) and asymmetric template method. The PNIPAm/EYL hydrogels possess a relatively high compressive strength (more than 12 MPa), fracture energy (9820 J/m2), good fatigue resistance, lubricating properties, and excellent biocompatibility. Compared with the PNIPAm hydrogel, the friction coefficient (COF 0.046) of PNIPAm/EYL hydrogel is reduced by 50%. More importantly, the COF (0.056) of PNIPAm/EYL hydrogel above lower critical solution temperature (LCST) does not increase significantly, exhibiting heat-tolerant lubricity. The finite element analysis further proves that PNIPAm/EYL hydrogel can effectively disperse the applied stress and dissipate energy under load conditions. This work not only provides new insights for the design of high-strength lubricating hydrogels but also lays a foundation for the treatment of cartilage injury as a substitute material.


Asunto(s)
Resinas Acrílicas , Hidrogeles , Hidrogeles/química , Resinas Acrílicas/química , Animales , Calor , Lubricantes/química , Cartílago/química , Lecitinas/química , Fuerza Compresiva , Liposomas/química , Yema de Huevo/química , Materiales Biocompatibles/química
20.
Food Chem ; 454: 139698, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38795617

RESUMEN

Enzymatic browning and microbial growth are two natural phenomena that occur when fruits and vegetables are exposed to abnormal conditions, i.e., temperatures in the range of 12-22 °C, leading to their spoilage. Controlling the temperatures during the supply chain aims to optimize the product's shelf life. Irreversible thermochromic beads were fabricated using a simple extrusion technique containing fatty acid, lecithin, and anthocyanin solution-alginate. The pigmentation durability was adjusted based on electrostatic interactions, as evidenced by the reduction in dye leaching in the case of the produced bead at pH = 6 to less than 0.007 after 45 min. Characterization shows that the chosen combination of fatty acids and the quinonoid molecule is useful for producing thermochromic beads, with a color change at 12 °C-22 °C, from blue to purple. Using the prepared thermochromic beads in the supply chain of fresh-cut salad and brussels sprouts showed a great result for monitoring their freshness after 21 ± 1 min.


Asunto(s)
Ácidos Grasos , Flavonoides , Embalaje de Alimentos , Lecitinas , Lecitinas/química , Ácidos Grasos/química , Embalaje de Alimentos/instrumentación , Flavonoides/química , Verduras/química , Frutas/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...