Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.325
Filtrar
1.
PeerJ ; 12: e17197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708341

RESUMEN

Waterborne transmission of the bacterium Legionella pneumophila has emerged as a major cause of severe nosocomial infections of major public health impact. The major route of transmission involves the uptake of aerosolized bacteria, often from the contaminated hot water systems of large buildings. Public health regulations aimed at controlling the mesophilic pathogen are generally concerned with acute pasteurization and maintaining high temperatures at the heating systems and throughout the plumbing of hot water systems, but L. pneumophila is often able to survive these treatments due to both bacterium-intrinsic and environmental factors. Previous work has established an experimental evolution system to model the observations of increased heat resistance in repeatedly but unsuccessfully pasteurized L. pneumophila populations. Here, we show rapid fixation of novel alleles in lineages selected for resistance to heat shock and shifts in mutational profile related to increases in the temperature of selection. Gene-level and nucleotide-level parallelisms between independently-evolving lineages show the centrality of the DnaJ/DnaK chaperone system in the heat resistance of L. pneumophila. Inference of epistatic interactions through reverse genetics shows an unexpected interaction between DnaJ/DnaK and the polyhydroxybutyrate-accumulation energy storage mechanism used by the species to survive long-term starvation in low-nutrient environments.


Asunto(s)
Respuesta al Choque Térmico , Legionella pneumophila , Legionella pneumophila/genética , Respuesta al Choque Térmico/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Calor , Evolución Molecular
2.
Curr Microbiol ; 81(6): 165, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714565

RESUMEN

Legionella pneumophila (Lp) is a Gram-negative bacterium found in natural and artificial aquatic environments and inhalation of contaminated aerosols can cause severe pneumonia known as Legionnaires' Disease (LD). In Brazil there is hardly any information about this pathogen, so we studied the genetic variation of forty Legionella spp. isolates obtained from hotels, malls, laboratories, retail centers, and companies after culturing in BCYE medium. These isolates were collected from various sources in nine Brazilian states. Molecular identification of the samples was carried out using Sequence-Based Typing (SBT), which consists of sequencing and analysis of seven genes (flaA, pilE, asd, mip, mompS, proA, and neuA) to define a Sequence Type (ST). Eleven STs were identified among 34/40 isolates, of which eight have been previously described (ST1, ST80, ST152, ST242, ST664, ST1185, ST1464, ST1642) and three were new STs (ST2960, ST2962, and ST2963), the former identified in five different cooling towers in the city of São Paulo. The ST1 that is widely distributed in many countries was also the most prevalent in this study. In addition, other STs that we observed have also been associated with legionellosis in other countries, reinforcing the potential of these isolates to cause LD in Brazil. Unfortunately, no human isolates could be characterized until presently, but our observations strongly suggest the need of surveillance implementation system and control measures of Legionella spp. in Brazil, including the use of more sensitive genotyping procedures besides ST.


Asunto(s)
Variación Genética , Legionella pneumophila , Microbiología del Agua , Brasil , Legionella pneumophila/genética , Legionella pneumophila/aislamiento & purificación , Legionella pneumophila/clasificación , Humanos , Filogenia , Genotipo
3.
Elife ; 122024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771316

RESUMEN

Rab GTPases are representative targets of manipulation by intracellular bacterial pathogens for hijacking membrane trafficking. Legionella pneumophila recruits many Rab GTPases to its vacuole and exploits their activities. Here, we found that infection-associated regulation of Rab10 dynamics involves ubiquitin signaling cascades mediated by the SidE and SidC families of Legionella ubiquitin ligases. Phosphoribosyl-ubiquitination of Rab10 catalyzed by the SidE ligases is crucial for its recruitment to the bacterial vacuole. SdcB, the previously uncharacterized SidC-family effector, resides on the vacuole and contributes to retention of Rab10 at the late stages of infection. We further identified MavC as a negative regulator of SdcB. By the transglutaminase activity, MavC crosslinks ubiquitin to SdcB and suppresses its function, resulting in elimination of Rab10 from the vacuole. These results demonstrate that the orchestrated actions of many L. pneumophila effectors fine-tune the dynamics of Rab10 during infection.


Asunto(s)
Proteínas Bacterianas , Legionella pneumophila , Vacuolas , Proteínas de Unión al GTP rab , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Legionella pneumophila/metabolismo , Legionella pneumophila/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Humanos , Vacuolas/metabolismo , Vacuolas/microbiología , Interacciones Huésped-Patógeno , Ubiquitinación , Animales , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
4.
PLoS Pathog ; 20(5): e1011783, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739652

RESUMEN

Legionella pneumophila strains harboring wild-type rpsL such as Lp02rpsLWT cannot replicate in mouse bone marrow-derived macrophages (BMDMs) due to induction of extensive lysosome damage and apoptosis. The bacterial factor directly responsible for inducing such cell death and the host factor involved in initiating the signaling cascade that leads to lysosome damage remain unknown. Similarly, host factors that may alleviate cell death induced by these bacterial strains have not yet been investigated. Using a genome-wide CRISPR/Cas9 screening, we identified Hmg20a and Nol9 as host factors important for restricting strain Lp02rpsLWT in BMDMs. Depletion of Hmg20a protects macrophages from infection-induced lysosomal damage and apoptosis, allowing productive bacterial replication. The restriction imposed by Hmg20a was mediated by repressing the expression of several endo-lysosomal proteins, including the small GTPase Rab7. We found that SUMOylated Rab7 is recruited to the bacterial phagosome via SulF, a Dot/Icm effector that harbors a SUMO-interacting motif (SIM). Moreover, overexpression of Rab7 rescues intracellular growth of strain Lp02rpsLWT in BMDMs. Our results establish that L. pneumophila exploits the lysosomal network for the biogenesis of its phagosome in BMDMs.


Asunto(s)
Legionella pneumophila , Lisosomas , Macrófagos , Fagosomas , Proteínas de Unión al GTP rab , Proteínas de Unión a GTP rab7 , Legionella pneumophila/metabolismo , Legionella pneumophila/genética , Animales , Proteínas de Unión al GTP rab/metabolismo , Ratones , Fagosomas/metabolismo , Fagosomas/microbiología , Lisosomas/metabolismo , Lisosomas/microbiología , Macrófagos/microbiología , Macrófagos/metabolismo , Enfermedad de los Legionarios/metabolismo , Enfermedad de los Legionarios/microbiología , Sumoilación , Ratones Endogámicos C57BL , Endosomas/metabolismo , Endosomas/microbiología
5.
Euro Surveill ; 29(20)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38757288

RESUMEN

Wastewater treatment plants (WWTPs) are increasingly identified as Legionnaires' disease (LD) sources. An outbreak investigation was initiated following five LD cases reported in September 2022 in Houten, the Netherlands. Case identification was based on the European LD case definition, with symptom onset from 1 September 2022, residence in or within 5 km of Houten, or visit to Houten within the incubation period, without other likely sources. We sampled potential sources and genotyped environmental and clinical isolates. We identified 15 LD cases with onset between 13 September and 23 October 2022. A spatial source identification and wind direction model suggested an industrial (iWWTP) and a municipal WWTP (mWWTP) as potential sources, with the first discharging water into the latter. Both tested positive for Legionella pneumophila serogroups 1 and 6 with multiple sequence types (ST). We detected L. pneumophila sg1 ST42 in the mWWTP, matching with one of three available clinical isolates. Following control measures at the WWTPs, no further cases were observed. This outbreak underlines that municipal and industrial WWTPs can play an important role in community LD cases and outbreaks, especially those with favourable conditions for Legionella growth and dissemination, or even non-favourable conditions for growth but with the influx of contaminated water.


Asunto(s)
Brotes de Enfermedades , Legionella pneumophila , Enfermedad de los Legionarios , Aguas Residuales , Microbiología del Agua , Enfermedad de los Legionarios/epidemiología , Enfermedad de los Legionarios/microbiología , Humanos , Países Bajos/epidemiología , Aguas Residuales/microbiología , Legionella pneumophila/aislamiento & purificación , Legionella pneumophila/genética , Masculino , Persona de Mediana Edad , Anciano , Femenino , Purificación del Agua , Adulto , Genotipo
6.
Curr Microbiol ; 81(6): 141, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625380

RESUMEN

Legionella pneumophila can be transmitted to people, especially immunocompromised patients, via hospital water pipe systems and cause severe pneumonia. The aim of our study was to investigate the presence of major virulence factor genes, ability of biofilms formation, and correlation between presence of Legionella isolates and temperature, pH, and residual chlorine of water. Hundred water samples were collected from nine hospitals in Tehran, Iran. Temperature, pH, and residual chlorine were determined during sampling. Different virulence genes and the ability to form biofilms were subsequently analyzed among the L. pneumophila isolates. Results showed that 12 (12%) samples were positive in culture method and all of the isolates were positive as L. pneumophila species (mip). A correlation was found between Legionella culture positivity and temperature and pH of water, but there was no significant correlation between residual chlorine of water samples and the presence of Legionella. The isolation of Legionella rate in summer and spring was higher than winter and autumn. Twelve (100%) isolates were positive for mip genes, 9 (75%) for dot genes, 8 (66.66%) for hsp, 6 (50%) for lvh, and 4 (33.33%) for rtx. All of the isolates displayed strong ability for biofilm production every three days. Two of these isolates (16.6%) displayed weak ability to form biofilm on the first day of incubation. This study revealed that water sources in hospitals were colonized by virulent Legionella and should be continuously monitored to avoid elevated concentrations of Legionella with visible biofilm formation.


Asunto(s)
Legionella pneumophila , Legionella , Humanos , Legionella pneumophila/genética , Virulencia/genética , Cloro/farmacología , Irán , Biopelículas , Hospitales
7.
Analyst ; 149(10): 2978-2987, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38602145

RESUMEN

Cultivation-independent molecular biological methods are essential to rapidly quantify pathogens like Legionella pneumophila (L. pneumophila) which is important to control aerosol-generating engineered water systems. A standard addition method was established to quantify L. pneumophila in the very complex matrix of process water and air of exhaust air purification systems in animal husbandry. Therefore, cryopreserved standards of viable L. pneumophila were spiked in air and water samples to calibrate the total bioanalytical process which includes cell lysis, DNA extraction, and qPCR. A standard addition algorithm was employed for qPCR to determine the initial concentration of L. pneumophila. In mineral water, the recovery rate of this approach (73%-134% within the concentration range of 100-5000 Legionella per mL) was in good agreement with numbers obtained from conventional genomic unit (GU) calibration with DNA standards. In air samples of biotrickling filters, in contrast, the conventional DNA standard approach resulted in a significant overestimation of up to 729%, whereas our standard addition gave a more realistic recovery of 131%. With this proof-of-principle study, we were able to show that the molecular biology-based standard addition approach is a suitable method to determine realistic concentrations of L. pneumophila in air and process water samples of biotrickling filter systems. Moreover, this quantification strategy is generally a promising method to quantify pathogens in challenging samples containing a complex microbiota and the classical GU approach used for qPCR leads to unreliable results.


Asunto(s)
Legionella pneumophila , Reacción en Cadena en Tiempo Real de la Polimerasa , Legionella pneumophila/aislamiento & purificación , Legionella pneumophila/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Filtración/métodos , Filtración/instrumentación , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , ADN Bacteriano/análisis , Microbiología del Agua , Microbiología del Aire
8.
Sci Total Environ ; 927: 172410, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608884

RESUMEN

There is little evidence of the long-term consequences of maintaining sanitary hot water at high temperatures on the persistence of Legionella in the plumbing system. The aims of this study were to describe the persistence and genotypic variability of L. pneumophila in a hospital building with two entirely independent hot water distribution systems, and to estimate the thermotolerance of the genotypic variants by studying the quantity of VBNC L. pneumophila. Eighty isolates from 55 water samples obtained between the years 2012-2017 were analyzed. All isolates correspond to L. pneumophila serogroup 6. The isolates were discriminated in four restriction patterns by pulsed-field gel electrophoresis. In one installation, pattern A + Aa predominated, accounting for 75.8 % of samples, while the other installation exhibited pattern B as the most frequent (81.8 % of samples; p < 0.001). The mean temperature of the isolates was: 52.6 °C (pattern A + Aa) and 55.0 °C (pattern B), being significantly different. Nine strains were selected as representative among patterns to study their thermotolerance by flow-cytometry after 24 h of thermic treatment. VBNC bacteria were detected in all samples. After thermic treatment at 50 °C, 52.0 % of bacteria had an intact membrane, and after 55 °C this percentage decreased to 23.1 %. Each pattern exhibited varying levels of thermotolerance. These findings indicate that the same hospital building can be colonized with different predominant types of Legionella if it has independent hot water installations. Maintaining a minimum temperature of 50 °C at distal points of the system would allow the survival of replicative L. pneumophila. However, the presence of Legionella in hospital water networks is underestimated if culture is considered as the standard method for Legionella detection, because VBNC do not grow on culture plates. This phenomenon can carry implications for the Legionella risk management plans in hospitals that adjust their control measures based on the microbiological surveillance of water.


Asunto(s)
Hospitales , Legionella pneumophila , Microbiología del Agua , Legionella pneumophila/aislamiento & purificación , Legionella pneumophila/genética , Legionella pneumophila/fisiología , Abastecimiento de Agua , Calor
9.
Emerg Infect Dis ; 30(5): 1022-1025, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38666647

RESUMEN

We investigated molecular evolution and spatiotemporal dynamics of atypical Legionella pneumophila serogroup 1 sequence type 1905 and determined its long-term persistence and linkage to human disease in dispersed locations, far beyond the large 2014 outbreak epicenter in Portugal. Our finding highlights the need for public health interventions to prevent further disease spread.


Asunto(s)
Brotes de Enfermedades , Evolución Molecular , Legionella pneumophila , Enfermedad de los Legionarios , Análisis Espacio-Temporal , Legionella pneumophila/genética , Legionella pneumophila/clasificación , Portugal/epidemiología , Humanos , Enfermedad de los Legionarios/epidemiología , Enfermedad de los Legionarios/microbiología , Historia del Siglo XXI , Recurrencia , Filogenia , Serogrupo
10.
Virulence ; 15(1): 2327096, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38466143

RESUMEN

Legionella pneumophila (L. pneumophila) is a prevalent pathogenic bacterium responsible for significant global health concerns. Nonetheless, the precise pathogenic mechanisms of L. pneumophila have still remained elusive. Autophagy, a direct cellular response to L. pneumophila infection and other pathogens, involves the recognition and degradation of these invaders in lysosomes. Histone deacetylase 6 (HDAC6), a distinctive member of the histone deacetylase family, plays a multifaceted role in autophagy regulation. This study aimed to investigate the role of HDAC6 in macrophage autophagy via the autophagolysosomal pathway, leading to alleviate L. pneumophila-induced pneumonia. The results revealed a substantial upregulation of HDAC6 expression level in murine lung tissues infected by L. pneumophila. Notably, mice lacking HDAC6 exhibited a protective response against L. pneumophila-induced pulmonary tissue inflammation, which was characterized by the reduced bacterial load and diminished release of pro-inflammatory cytokines. Transcriptomic analysis has shed light on the regulatory role of HDAC6 in L. pneumophila infection in mice, particularly through the autophagy pathway of macrophages. Validation using L. pneumophila-induced macrophages from mice with HDAC6 gene knockout demonstrated a decrease in cellular bacterial load, activation of the autophagolysosomal pathway, and enhancement of cellular autophagic flux. In summary, the findings indicated that HDAC6 knockout could lead to the upregulation of p-ULK1 expression level, promoting the autophagy-lysosomal pathway, increasing autophagic flux, and ultimately strengthening the bactericidal capacity of macrophages. This contributes to the alleviation of L. pneumophila-induced pneumonia.


Asunto(s)
Legionella pneumophila , Legionella , Enfermedad de los Legionarios , Neumonía , Animales , Ratones , Autofagia , Histona Desacetilasa 6/genética , Legionella pneumophila/genética , Enfermedad de los Legionarios/genética , Macrófagos
11.
J Clin Microbiol ; 62(4): e0130523, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38511938

RESUMEN

The unprecedented precision and resolution of whole genome sequencing (WGS) can provide definitive identification of infectious agents for epidemiological outbreak tracking. WGS approaches, however, are frequently impeded by low pathogen DNA recovery from available primary specimens or unculturable samples. A cost-effective hybrid capture assay for Legionella pneumophila WGS analysis directly on primary specimens was developed. DNA from a diverse range of sputum and autopsy specimens PCR-positive for L. pneumophila serogroup 1 (LPSG1) was enriched with this method, and WGS was performed. All tested specimens were determined to be enriched for Legionella reads (up to 209,000-fold), significantly improving the discriminatory power to compare relatedness when no clinical isolate was available. We found the WGS data from some enriched specimens to differ by less than five single-nucleotide polymorphisms (SNPs) when compared to the WGS data of a matched culture isolate. This testing and analysis retrospectively provided previously unconfirmed links to environmental sources for clinical specimens of sputum and autopsy lung tissue. The latter provided the additional information needed to identify the source of these culture-negative cases associated with the South Bronx 2015 Legionnaires' disease (LD) investigation in New York City. This new method provides a proof of concept for future direct clinical specimen hybrid capture enrichment combined with WGS and bioinformatic analysis during outbreak investigations.IMPORTANCELegionnaires' disease (LD) is a severe and potentially fatal type of pneumonia primarily caused by inhalation of Legionella-contaminated aerosols from man-made water or cooling systems. LD remains extremely underdiagnosed as it is an uncommon form of pneumonia and relies on clinicians including it in the differential and requesting specialized testing. Additionally, it is challenging to obtain clinical lower respiratory specimens from cases with LD, and when available, culture requires specialized media and growth conditions, which are not available in all microbiology laboratories. In the current study, a method for Legionella pneumophila using hybrid capture by RNA baiting was developed, which allowed us to generate sufficient genome resolution from L. pneumophila serogroup 1 PCR-positive clinical specimens. This new approach offers an additional tool for surveillance of future LD outbreaks where isolation of Legionella is not possible and may help solve previously unanswered questions from past LD investigations.


Asunto(s)
Legionella pneumophila , Legionella , Enfermedad de los Legionarios , Neumonía , Humanos , Enfermedad de los Legionarios/diagnóstico , Estudios Retrospectivos , Legionella pneumophila/genética , Secuenciación Completa del Genoma , Brotes de Enfermedades , ADN
12.
Microbiol Spectr ; 12(4): e0345923, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38363136

RESUMEN

Public bath facilities are a major source of Legionella infections in Japan. In this study, we performed 16S rRNA gene amplicon sequencing to characterize the bacterial community in bath and shower water from public bath facilities, along with chemical parameters, and investigated the effect of the bacterial microbiome on the presence of Legionella species. Although no significant difference in bacterial community richness was observed between bath and shower water samples, there was a remarkable difference in the bacterial community structure between them. Distance-based redundancy analysis revealed that several factors (free residual chlorine, pH, and conductivity) were correlated with the bacterial community in bath water. The most abundant bacterial genera in the samples were Pseudomonas (13.7%) in bath water and Phreatobacter (13.6%) in shower water, as indicated by the taxonomic composition, and the dominant bacteria differed between these environmental samples. Legionella pneumophila was the most frequently detected Legionella species, with additional 15 other Legionella species detected in water samples. In Legionella-positive water samples, several unassigned and uncultured bacteria were enriched together. In addition, the co-occurrence network showed that Legionella was strongly interconnected with two uncultured bacteria. Corynebacterium and Sphingomonas negatively correlated with Legionella species. The present study reveals the ecology of Legionella species, especially their interactions with other bacteria that are poorly understood to date. IMPORTANCE: Public bath facilities are major sources of sporadic cases and outbreaks of Legionella infections. Recently, 16S rRNA gene amplicon sequencing has been used to analyze bacterial characteristics in various water samples from both artificial and natural environments, with a particular focus on Legionella bacterial species. However, the relationship between the bacterial community and Legionella species in the water from public bath facilities remains unclear. In terms of hygiene management, it is important to reduce the growth of Legionella species by disinfecting the water in public bath facilities. Our findings contribute to the establishment of appropriate hygiene management practices and provide a basis for understanding the potential health effects of using bath and shower water available in public bath facilities.


Asunto(s)
Legionella pneumophila , Legionella , Legionelosis , Microbiota , Humanos , Legionella/genética , ARN Ribosómico 16S/genética , Agua , Genes de ARNr , Microbiología del Agua , Legionella pneumophila/genética
13.
Eur J Clin Microbiol Infect Dis ; 43(5): 991-997, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38379053

RESUMEN

Fourier-transform infrared (FTIR) spectroscopy using the IR Biotyper and core genome single nucleotide polymorphism (cgSNP) analysis were performed on 12 Legionella isolates associated with an outbreak at a spa house in Kanagawa Prefecture, Japan, and 3 non-outbreak isolates. The discriminative power of FTIR spectroscopy for 48-h incubation conditions of L. pneumophila in this outbreak was lower than cgSNP-based typing but higher than serogroup typing. FTIR spectroscopy could screen outbreak isolates from a group of genetically related isolates and may be useful as an initial typing method in Legionella outbreak investigations.


Asunto(s)
Brotes de Enfermedades , Legionelosis , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Humanos , Japón/epidemiología , Legionelosis/epidemiología , Legionelosis/diagnóstico , Legionelosis/microbiología , Polimorfismo de Nucleótido Simple , Técnicas de Tipificación Bacteriana/métodos , Legionella pneumophila/genética , Legionella pneumophila/aislamiento & purificación , Legionella pneumophila/clasificación , Legionella/genética , Legionella/aislamiento & purificación , Legionella/clasificación
14.
mBio ; 15(3): e0322123, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38335095

RESUMEN

The survival of Legionella spp. as intracellular pathogens relies on the combined action of protein effectors delivered inside their eukaryotic hosts by the Dot/Icm (defective in organelle trafficking/intracellular multiplication) type IVb secretion system. The specific repertoire of effector arsenals varies dramatically across over 60 known species of this genera with Legionella pneumophila responsible for most cases of Legionnaires' disease in humans encoding over 360 Dot/Icm effectors. However, a small subset of "core" effectors appears to be conserved across all Legionella species raising an intriguing question of their role in these bacteria's pathogenic strategy, which for most of these effectors remains unknown. L. pneumophila Lpg0103 effector, also known as VipF, represents one of the core effector families that features a tandem of Gcn5-related N-acetyltransferase (GNAT) domains. Here, we present the crystal structure of the Lha0223, the VipF representative from Legionella hackeliae in complex with acetyl-coenzyme A determined to 1.75 Å resolution. Our structural analysis suggested that this effector family shares a common fold with the two GNAT domains forming a deep groove occupied by residues conserved across VipF homologs. Further analysis suggested that only the C-terminal GNAT domain of VipF effectors retains the active site composition compatible with catalysis, whereas the N-terminal GNAT domain binds the ligand in a non-catalytical mode. We confirmed this by in vitro enzymatic assays which revealed VipF activity not only against generic small molecule substrates, such as chloramphenicol, but also against poly-L-lysine and histone-derived peptides. We identified the human eukaryotic translation initiation factor 3 (eIF3) complex co-precipitating with Lpg0103 and demonstrated the direct interaction between the several representatives of the VipF family, including Lpg0103 and Lha0223 with the K subunit of eIF3. According to our data, these interactions involve primarily the C-terminal tail of eIF3-K containing two lysine residues that are acetylated by VipF. VipF catalytic activity results in the suppression of eukaryotic protein translation in vitro, revealing the potential function of VipF "core" effectors in Legionella's pathogenic strategy.IMPORTANCEBy translocating effectors inside the eukaryotic host cell, bacteria can modulate host cellular processes in their favor. Legionella species, which includes the pneumonia-causing Legionella pneumophila, encode a widely diverse set of effectors with only a small subset that is conserved across this genus. Here, we demonstrate that one of these conserved effector families, represented by L. pneumophila VipF (Lpg0103), is a tandem Gcn5-related N-acetyltransferase interacting with the K subunit of human eukaryotic initiation factor 3 complex. VipF catalyzes the acetylation of lysine residues on the C-terminal tail of the K subunit, resulting in the suppression of eukaryotic translation initiation factor 3-mediated protein translation in vitro. These new data provide the first insight into the molecular function of this pathogenic factor family common across Legionellae.


Asunto(s)
Legionella pneumophila , Legionella , Enfermedad de los Legionarios , Humanos , Acetiltransferasas/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Lisina/metabolismo , Factor 3 Procariótico de Iniciación/metabolismo , Legionella/genética , Legionella pneumophila/genética , Biosíntesis de Proteínas , Proteínas Bacterianas/metabolismo
15.
Sci Rep ; 14(1): 5018, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424185

RESUMEN

Labelling of nucleic acid amplicons during polymerase chain reaction (PCR) or isothermal techniques is possible by using both labelled primers and labelled nucleotides. While the former is the widely used method, the latter can offer significant advantages in terms of signal enhancement and improving the detection limit of an assay. Advantages and disadvantages of both methods depend on different factors, including amplification method, detection method and amplicon length. In this study, both methods for labelling PCR products for lateral flow assay (LFA) analysis (LFA-PCR) were analysed and compared. It was shown that labelling by means of nucleotides results in an increase in label incorporation rates. Nonetheless, this advantage is negated by the need for post-processing and competitive interactions. In the end, it was possible to achieve a detection limit of 3 cell equivalents for the detection of the Legionella-DNA used here via primer labelling. Labelling via nucleotides required genomic DNA of at least 3000 cell equivalents as starting material as well as an increased personnel and experimental effort.


Asunto(s)
Legionella pneumophila , Legionella pneumophila/genética , Nucleótidos , ADN , Cartilla de ADN/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Sensibilidad y Especificidad
16.
Arch Microbiol ; 206(2): 87, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305908

RESUMEN

Here, we studied the effect of low-shear modeled microgravity (LSMMG) on cross stress resistance (heat, acid, and oxidative), fatty acid content, and pathogenicity along with alteration in expression of stress-/virulence-associated genes in Legionella pneumophila. The stress resistance analysis result indicated that bacteria cultivated under LSMMG environments showed higher resistance with elevated D-values at 55 °C and in 1 mM of hydrogen peroxide (H2O2) conditions compared to normal gravity (NG)-grown bacteria. On the other hand, there was no significant difference in tolerance (p < 0.05) toward simulated gastric fluid (pH-2.5) acid conditions. In fatty acid analysis, our result showed that a total amount of saturated and cyclic fatty acids was increased in LSMMG-grown cells; as a consequence, they might possess low membrane fluidity. An upregulated expression level was noticed for stress-related genes (hslV, htrA, grpE, groL, htpG, clpB, clpX, dnaJ, dnaK, rpoH, rpoE, rpoS, kaiB, kaiC, lpp1114, ahpC1, ahpC2, ahpD, grlA, and gst) under LSMMG conditions. The reduced virulence (less intracellular bacteria and less % of induce apoptosis in RAW 264.7 macrophages) of L. pneumophila under LSMMG conditions may be because of downregulation related genes (dotA, dotB, dotC, dotD, dotG, dotH, dotL, dotM, dotN, icmK, icmB, icmS, icmT, icmW, ladC, rtxA, letA, rpoN, fleQ, fleR, and fliA). In the LSMMG group, the expression of inflammation-related factors, such as IL-1α, TNF-α, IL-6, and IL-8, was observed to be reduced in infected macrophages. Also, scanning electron microscopy (SEM) analysis showed less number of LSMMG-cultivated bacteria attached to the host macrophages compared to NG. Thus, our study provides understandings about the changes in lipid composition and different genes expression due to LSMMG conditions, which apparently influence the alterations of L. pneumophila' stress/virulence response.


Asunto(s)
Legionella pneumophila , Ingravidez , Virulencia/genética , Lípidos de la Membrana , Legionella pneumophila/genética , Peróxido de Hidrógeno , Ácidos Grasos , Macrófagos/microbiología , Proteínas Bacterianas/genética
17.
Appl Environ Microbiol ; 90(3): e0129223, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289130

RESUMEN

Fundamental to effective Legionnaires' disease outbreak control is the ability to rapidly identify the environmental source(s) of the causative agent, Legionella pneumophila. Genomics has revolutionized pathogen surveillance, but L. pneumophila has a complex ecology and population structure that can limit source inference based on standard core genome phylogenetics. Here, we present a powerful machine learning approach that assigns the geographical source of Legionnaires' disease outbreaks more accurately than current core genome comparisons. Models were developed upon 534 L. pneumophila genome sequences, including 149 genomes linked to 20 previously reported Legionnaires' disease outbreaks through detailed case investigations. Our classification models were developed in a cross-validation framework using only environmental L. pneumophila genomes. Assignments of clinical isolate geographic origins demonstrated high predictive sensitivity and specificity of the models, with no false positives or false negatives for 13 out of 20 outbreak groups, despite the presence of within-outbreak polyclonal population structure. Analysis of the same 534-genome panel with a conventional phylogenomic tree and a core genome multi-locus sequence type allelic distance-based classification approach revealed that our machine learning method had the highest overall classification performance-agreement with epidemiological information. Our multivariate statistical learning approach maximizes the use of genomic variation data and is thus well-suited for supporting Legionnaires' disease outbreak investigations.IMPORTANCEIdentifying the sources of Legionnaires' disease outbreaks is crucial for effective control. Current genomic methods, while useful, often fall short due to the complex ecology and population structure of Legionella pneumophila, the causative agent. Our study introduces a high-performing machine learning approach for more accurate geographical source attribution of Legionnaires' disease outbreaks. Developed using cross-validation on environmental L. pneumophila genomes, our models demonstrate excellent predictive sensitivity and specificity. Importantly, this new approach outperforms traditional methods like phylogenomic trees and core genome multi-locus sequence typing, proving more efficient at leveraging genomic variation data to infer outbreak sources. Our machine learning algorithms, harnessing both core and accessory genomic variation, offer significant promise in public health settings. By enabling rapid and precise source identification in Legionnaires' disease outbreaks, such approaches have the potential to expedite intervention efforts and curtail disease transmission.


Asunto(s)
Legionella pneumophila , Enfermedad de los Legionarios , Humanos , Legionella pneumophila/genética , Enfermedad de los Legionarios/epidemiología , Tipificación de Secuencias Multilocus/métodos , Genómica/métodos , Epidemiología Molecular/métodos , Brotes de Enfermedades
18.
Mol Cell ; 84(1): 14-16, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181756

RESUMEN

The Legionella pneumophila effector SidI inhibits host mRNA translation and must be regulated for intracellular replication. Subramanian et al.1 reveal the mechanism of SidI translation inhibition and how stress signaling in response to sustained SidI activity drives host cell death.


Asunto(s)
Legionella pneumophila , Imitación Molecular , Legionella pneumophila/genética , Muerte Celular , Biosíntesis de Proteínas , Transducción de Señal
19.
Mol Microbiol ; 121(2): 167-195, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37908155

RESUMEN

Legionella pneumophila is a gram-negative bacteria found in natural and anthropogenic aquatic environments such as evaporative cooling towers, where it reproduces as an intracellular parasite of cohabiting protozoa. If L. pneumophila is aerosolized and inhaled by a susceptible person, bacteria may colonize their alveolar macrophages causing the opportunistic pneumonia Legionnaires' disease. L. pneumophila utilizes an elaborate regulatory network to control virulence processes such as the Dot/Icm Type IV secretion system and effector repertoire, responding to changing nutritional cues as their host becomes depleted. The bacteria subsequently differentiate to a transmissive state that can survive in the environment until a replacement host is encountered and colonized. In this review, we discuss the lifecycle of L. pneumophila and the molecular regulatory network that senses nutritional depletion via the stringent response, a link to stationary phase-like metabolic changes via alternative sigma factors, and two-component systems that are homologous to stress sensors in other pathogens, to regulate differentiation between the intracellular replicative phase and more transmissible states. Together, we highlight how this prototypic intracellular pathogen offers enormous potential in understanding how molecular mechanisms enable intracellular parasitism and pathogenicity.


Asunto(s)
Legionella pneumophila , Humanos , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Virulencia , Factor sigma/metabolismo , Proteínas Bacterianas/metabolismo
20.
Jpn J Infect Dis ; 77(2): 118-120, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38030269

RESUMEN

Legionella pneumophila serogroup (SG) 1, the main cause of Legionnaires' disease, can be diagnosed using urinary antigen testing kits. However, lower respiratory tract specimen cultures are required to identify L. pneumophila SG 2-15. We attempted to detect L. pneumophila SG-specific genes in a culture-negative sputum specimen from a patient with pneumonia who was suspected to have Legionnaires' disease. Two multiplex PCR methods targeting L. pneumophila were modified and amplicons considered to be SG13 specific were detected. Direct sequencing revealed that the amplicons were identical to the nucleotide sequence of L. pneumophila SG13. Based on the presentation and clinical course (fever, muscle pain, disturbance of consciousness, high C-reactive protein titer, rhabdomyolysis, hypophosphatemia, and symptomatic improvement with levofloxacin treatment), in combination with the detection of L. pneumophila SG-specific genes, we suspected L. pneumophila SG13 pneumonia. L. pneumophila non-SG1 pneumonia is thought to be underestimated because of its difficult laboratory diagnosis. The modified multiplex PCR system for lower respiratory tract specimens revealed in this study is likely to improve the diagnosis of Legionnaires' disease caused by L. pneumophila SG13 and other SGs.


Asunto(s)
Legionella pneumophila , Enfermedad de los Legionarios , Neumonía , Humanos , Legionella pneumophila/genética , Enfermedad de los Legionarios/diagnóstico , Enfermedad de los Legionarios/tratamiento farmacológico , Serogrupo , Esputo , Neumonía/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA