Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Neurol ; 335: 113516, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33172833

RESUMEN

The degree of brain injury is the governing factor for the magnitude of the patient's psycho- and physiological deficits post-injury, and the associated long-term consequences. The present scaling method used to segregate the patients among mild, moderate and severe phases of traumatic brain injury (TBI) has major limitations; however, a more continuous stratification of TBI is still elusive. With the anticipation that differentiating molecular markers could be the backbone of a robust method to triage TBI, we used a modified closed-head injury (CHI) Marmarou model with two impact heights (IH). By definition, IH directly correlates with the impact force causing TBI. In our modified CHI model, the rat skull was fitted with a helmet to permit a diffuse axonal injury. With the frontal cortex as the focal point of injury, the adjacent brain regions (hippocampus, HC and cerebellum, CB) were susceptible to diffuse secondary shock injury. At 8 days post injury (po.i.), rats impacted by 120 cm IH (IH120) took a longer time to find an escape route in the Barnes maze as compared to those impacted by 100 cm IH (IH100). Using a time-resolved interrogation of the transcriptomic landscape of HC and CB tissues, we mined those genes that altered their regulations in correlation with the variable IHs. At 14 days po.i., when all rats demonstrated nearly normal visuomotor performance, the bio-functional analysis suggested an advanced healing mechanism in the HC of IH100 group. In contrast, the HC of IH120 group displayed a delayed healing with evidence of active cell death networks. Combining whole genome rat microarrays with behavioral analysis provided the insight of neuroprotective signals that could be the foundation of the next generation triage for TBI patients.


Asunto(s)
Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/patología , Cerebelo/patología , Hipocampo/patología , Transcriptoma , Animales , Peso Corporal , Lesiones Traumáticas del Encéfalo/psicología , Corticosterona/sangre , Lesión Axonal Difusa/genética , Lesión Axonal Difusa/patología , Lóbulo Frontal/lesiones , Traumatismos Cerrados de la Cabeza/genética , Traumatismos Cerrados de la Cabeza/patología , Masculino , Aprendizaje por Laberinto , Análisis por Micromatrices , Desempeño Psicomotor , Ratas , Ratas Wistar , Recuperación de la Función
2.
Biochim Biophys Acta Gen Subj ; 1861(10): 2435-2441, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28596106

RESUMEN

BACKGROUND: Therapeutics specific to neural injury have long been anticipated but remain unavailable. Axons in the central nervous system do not readily regenerate after injury, leading to dysfunction of the nervous system. This failure of regeneration is due to both the low intrinsic capacity of axons for regeneration and the various inhibitors emerging upon injury. After many years of concerted efforts, however, these hurdles to axon regeneration have been partially overcome. SCOPE OF REVIEW: This review summarizes the mechanisms regulating axon regeneration. We highlight proteoglycans, particularly because it has become increasingly clear that these proteins serve as critical regulators for axon regeneration. MAJOR CONCLUSIONS: Studies on proteoglycans have revealed that glycans not only assist in the modulation of protein functions but also act as main players-e.g., as functional ligands mediating intracellular signaling through specific receptors on the cell surface. By regulating clustering of the receptors, glycans in the proteoglycan moiety, i.e., glycosaminoglycans, promote or inhibit axon regeneration. In addition, proteoglycans are involved in various types of neural plasticity, ranging from synaptic plasticity to experience-dependent plasticity. GENERAL SIGNIFICANCE: Although studies on proteins have progressively facilitated our understanding of the nervous system, glycans constitute a new frontier for further research and development in this field. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.


Asunto(s)
Química Encefálica , Encéfalo/metabolismo , Lesión Axonal Difusa/metabolismo , Regeneración Nerviosa/fisiología , Proteoglicanos/química , Animales , Encéfalo/patología , Secuencia de Carbohidratos , Factor Neurotrófico Ciliar/genética , Factor Neurotrófico Ciliar/metabolismo , Lesión Axonal Difusa/genética , Lesión Axonal Difusa/patología , Lesión Axonal Difusa/rehabilitación , Regulación de la Expresión Génica , Humanos , Factor Inhibidor de Leucemia/genética , Factor Inhibidor de Leucemia/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/citología , Neuronas/fisiología , Proteoglicanos/genética , Proteoglicanos/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
3.
Mediators Inflamm ; 2017: 1570917, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28293064

RESUMEN

Treatment of diffuse axonal injury (DAI) remains challenging in clinical practice due to the unclear pathophysiological mechanism. Uncontrolled, excessive inflammation is one of the most recognized mechanisms that contribute to the secondary injury after DAI. Toll like receptor 2 (TLR2) is highlighted for the initiation of a vicious self-propagating inflammatory circle. However, the role and detailed mechanism of TLR2 in secondary injury is yet mostly unknown. In this study, we demonstrated the expression of TLR2 levels in cortex, corpus callosum, and internal capsule and the localization of TLR2 in neurons and glial cells in rat DAI models. Intracerebral knockdown of TLR2 significantly downregulated TLR2 expression, attenuated cortical apoptosis, lessened glial response, and reduced the secondary axonal and neuronal injury in the cortex by inhibiting phosphorylation of mitogen-activated protein kinases (MAPK) including Erk, JNK, and p38, translocation of NF-κB p65 from the cytoplasm to the nucleus, and decreasing levels of proinflammatory cytokines including interleukin-6, interleukin-1ß, and tumor necrosis factor-α. On the contrary, administration of TLR2 agonist to DAI rats achieved an opposite effect. Collectively, we demonstrated that TLR2 was involved in mediating secondary injury after DAI by inducing inflammation via the MAPK and NF-κB pathways.


Asunto(s)
Lesión Axonal Difusa/metabolismo , Lesión Axonal Difusa/patología , Receptor Toll-Like 2/metabolismo , Animales , Lesión Axonal Difusa/genética , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Microscopía Electrónica de Transmisión , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Transducción de Señal/fisiología , Receptor Toll-Like 2/genética , Factor de Necrosis Tumoral alfa/metabolismo
4.
J Neuropathol Exp Neurol ; 75(7): 636-55, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27251042

RESUMEN

Exposure to repetitive mild traumatic brain injury (mTBI) is a risk factor for chronic traumatic encephalopathy, which is characterized by patchy deposition of hyperphosphorylated tau aggregates in neurons and astrocytes at the depths of cortical sulci. We developed an mTBI paradigm to explore effects of repetitive concussive-type injury over several months in mice with a human tau genetic background (hTau). Two injuries were induced in the hTau mice weekly over a period of 3 or 4 months and the effects were compared with those in noninjured sham animals. Behavioral and in vivo measures and detailed neuropathological assessments were conducted 6 months after the first injury. Our data confirm impairment in cerebral blood flow and white matter damage. This was accompanied by a 2-fold increase in total tau levels and mild increases in tau oligomers/conformers and pTau (Thr231) species in brain gray matter. There was no evidence of neurofibrillary/astroglial tangles, neuropil threads, or perivascular foci of tau immunoreactivity. There were neurobehavioral deficits (ie, disinhibition and impaired cognitive performance) in the mTBI animals. These data support the relevance of this new mTBI injury model for studying the consequences of chronic repetitive mTBI in humans, and the role of tau in TBI.


Asunto(s)
Velocidad del Flujo Sanguíneo/fisiología , Conmoción Encefálica/metabolismo , Circulación Cerebrovascular/fisiología , Lesión Axonal Difusa/metabolismo , Gliosis/metabolismo , Proteínas tau/metabolismo , Animales , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Encéfalo/patología , Conmoción Encefálica/genética , Conmoción Encefálica/patología , Enfermedad Crónica , Lesión Axonal Difusa/genética , Lesión Axonal Difusa/patología , Gliosis/genética , Gliosis/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Distribución Aleatoria , Proteínas tau/genética
5.
J Neuroinflammation ; 11: 122, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25026958

RESUMEN

BACKGROUND: A20 (TNFAIP3) is a pleiotropic NFκB-dependent gene that terminates NFκB activation in response to inflammatory stimuli. The potent anti-inflammatory properties of A20 are well characterized in several organs. However, little is known about its role in the brain. In this study, we investigated the brain phenotype of A20 heterozygous (HT) and knockout (KO) mice. METHODS: The inflammatory status of A20 wild type (WT), HT and KO brain was determined by immunostaining, quantitative PCR, and Western blot analysis. Cytokines secretion was evaluated by ELISA. Quantitative results were statistically analyzed by ANOVA followed by a post-hoc test. RESULTS: Total loss of A20 caused remarkable reactive microgliosis and astrogliosis, as determined by F4/80 and GFAP immunostaining. Glial activation correlated with significantly higher mRNA and protein levels of the pro-inflammatory molecules TNF, IL-6, and MCP-1 in cerebral cortex and hippocampus of A20 KO, as compared to WT. Basal and TNF/LPS-induced cytokine production was significantly higher in A20 deficient mouse primary astrocytes and in a mouse microglia cell line. Brain endothelium of A20 KO mice demonstrated baseline activation as shown by increased vascular immunostaining for ICAM-1 and VCAM-1, and mRNA levels of E-selectin. In addition, total loss of A20 increased basal brain oxidative/nitrosative stress, as indicated by higher iNOS and NADPH oxidase subunit gp91phox levels, correlating with increased protein nitration, gauged by nitrotyrosine immunostaining. Notably, we also observed lower neurofilaments immunostaining in A20 KO brains, suggesting higher susceptibility to axonal injury. Importantly, A20 HT brains showed an intermediate phenotype, exhibiting considerable, albeit not statistically significant, increase in markers of basal inflammation when compared to WT. CONCLUSIONS: This is the first characterization of spontaneous neuroinflammation caused by total or partial loss of A20, suggesting its key role in maintenance of nervous tissue homeostasis, particularly control of inflammation. Remarkably, mere partial loss of A20 was sufficient to cause chronic, spontaneous low-grade cerebral inflammation, which could sensitize these animals to neurodegenerative diseases. These findings carry strong clinical relevance in that they question implication of identified A20 SNPs that lower A20 expression/function (phenocopying A20 HT mice) in the pathophysiology of neuroinflammatory diseases.


Asunto(s)
Encéfalo/metabolismo , Cisteína Endopeptidasas/deficiencia , Citocinas/metabolismo , Encefalitis/genética , Encefalitis/patología , Regulación de la Expresión Génica/genética , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Encéfalo/patología , Células Cultivadas , Cisteína Endopeptidasas/genética , Lesión Axonal Difusa/etiología , Lesión Axonal Difusa/genética , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Lipopolisacáridos/farmacología , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , NADPH Oxidasa 2 , NADPH Oxidasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Prosencéfalo/citología , Receptores de Vasopresinas/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
6.
Gene Ther ; 20(8): 797-806, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23324824

RESUMEN

Inflammation can be prevented in most inflammatory brain diseases, while tissue repair of the lesioned central nervous system (CNS) is still a major challenge. The CNS is difficult to access for protein therapeutics due to the blood-brain barrier. Here, we show that genetically engineered embryonic stem cell-derived microglia (ESdM) are a suitable therapeutic vehicle for neurotrophin-3 (NT3) in experimental autoimmune encephalomyelitis (EAE). The intravenously transplanted ESdM migrated into the inflammatory CNS lesions and engrafted there as microglial cells. EAE afflicted mice treated with ESdM that were genetically modified to express NT3 showed stable recovery from disease symptoms. The NT3-transduced ESdM created an anti-inflammatory cytokine milieu in the spinal cord and promoted neuronal sprouting. Furthermore, mice treated with NT3-transduced ESdM showed less axonal injury and reduced demyelination. Thus, genetically modified ESdM represent a suitable tool to introduce therapeutic neuroprotective and repair-promoting proteins into the CNS in neuroinflammatory diseases.


Asunto(s)
Enfermedades del Sistema Nervioso Central/genética , Enfermedades del Sistema Nervioso Central/terapia , Encefalomielitis Autoinmune Experimental/terapia , Inflamación/terapia , Neurotrofina 3/genética , Animales , Barrera Hematoencefálica/metabolismo , Ingeniería Celular , Enfermedades del Sistema Nervioso Central/patología , Lesión Axonal Difusa/genética , Lesión Axonal Difusa/metabolismo , Células Madre Embrionarias/trasplante , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Humanos , Inflamación/genética , Inflamación/metabolismo , Ratones , Microglía/metabolismo , Microglía/patología , Neurotrofina 3/metabolismo , Médula Espinal/metabolismo
7.
Int Rev Neurobiol ; 105: 91-115, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23206597

RESUMEN

Injury to the central nervous system often leads to irreversible deficits because of the failure of damaged axons to regrow and restore the functional neural circuitry. Coordinated orchestration of multiple cellular processes including cytoskeletal dynamics and gene expression are essential for both developmental and regenerative axon growth. Recently, mounting evidence suggests that cyclin-dependent kinase 5 (Cdk5), a neuronal kinase implicated in almost all aspects of brain development and function, regulates multiple players required for axon formation and regeneration. Indeed, Cdk5 functions as a "plastic" kinase that maintains the axon growth ability by enabling efficient cytoskeletal reorganization, enhancing protein translation, reducing protein degradation, and promoting injury-induced gene transcription. Here, we summarize the up-to-date information on the mechanisms underlying the axon growth and regeneration after injury.


Asunto(s)
Axones/enzimología , Quinasa 5 Dependiente de la Ciclina/metabolismo , Regeneración Nerviosa/fisiología , Animales , Quinasa 5 Dependiente de la Ciclina/genética , Lesión Axonal Difusa/enzimología , Lesión Axonal Difusa/genética , Lesión Axonal Difusa/patología , Humanos , Biosíntesis de Proteínas/fisiología , Transducción de Señal/fisiología , Transcripción Genética/fisiología
8.
J Neurosci ; 28(23): 6010-21, 2008 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-18524906

RESUMEN

Drosophila melanogaster is a leading genetic model system in nervous system development and disease research. Using the power of fly genetics in traumatic axonal injury research will significantly speed up the characterization of molecular processes that control axonal regeneration in the CNS. We developed a versatile and physiologically robust preparation for the long-term culture of the whole Drosophila brain. We use this method to develop a novel Drosophila model for CNS axonal injury and regeneration. We first show that, similar to mammalian CNS axons, injured adult wild-type fly CNS axons fail to regenerate, whereas adult-specific enhancement of protein kinase A activity increases the regenerative capacity of lesioned neurons. Combined, these observations suggest conservation of neuronal regeneration mechanisms after injury. We next exploit this model to explore pathways that induce robust regeneration and find that adult-specific activation of c-Jun N-terminal protein kinase signaling is sufficient for de novo CNS axonal regeneration injury, including the growth of new axons past the lesion site and into the normal target area.


Asunto(s)
Axones/patología , Axones/fisiología , Encéfalo/crecimiento & desarrollo , Lesión Axonal Difusa/patología , Lesión Axonal Difusa/fisiopatología , Regeneración Nerviosa/fisiología , Factores de Edad , Animales , Encéfalo/citología , Células Cultivadas , Lesión Axonal Difusa/genética , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Regeneración Nerviosa/genética , Técnicas de Cultivo de Órganos
9.
Brain Res ; 1075(1): 1-12, 2006 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-16460709

RESUMEN

Three experimental models of axonal injuries in adult rat spinal motoneurons were established to investigate changes of gene expression in response to such injuries. We took advantage of cDNA microarray analysis to determine the differential expression of genes in injured motoneurons following distal axotomy or root avulsion in the absence or presence of BDNF. The major finding was that, in response to proximal axonal injury (avulsion), expression of genes that are known to facilitate neuronal survival and axonal regeneration (e.g., IGFRII, PI3K, IGFBP-6, GSTs, GalR2) were down-regulated; but following treatment with BDNF they were up-regulated. In addition, the expression of genes known to be involved in apoptosis and DNA damage (e.g., ANX5, TS, ALR) were down-regulated in BDNF-treated animals with avulsion. Furthermore, many functional families of genes previously shown to play roles in the pathophysiology of axonal injury, including SNAP-25A, SV2B, Ras-related ras3a/4b, ERK1/2, 14-3-3 proteins, proteasome proteins, oncogenes, GAP-43, and NMDAR1, were altered after either distal axotomy or avulsion injury. Some of the changes in gene expression, including Lim-2, FRAG1, GlaR2, GSTs, ALR, TS, ANX3/5, and nhe1/2, are first reported here in injured motoneurons. The differential expression of genes identified by the expression arrays was confirmed by gene-specific RT-PCR for eight genes (GAP-43, IGFR II, Lim-2, MIF, NDAP1, TS, PCC3, and FRAG1) and by in situ hybridization for Lim-2. These results suggest that abnormal regulation of particular biochemical pathways may induce motoneuron death after ventral root avulsion in adult animals. This study presents an approach for selecting specific genes and their products that may be involved in motoneuron degeneration following axonal injuries.


Asunto(s)
Regulación de la Expresión Génica , Neuronas Motoras/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Traumatismos de la Médula Espinal/genética , Médula Espinal/fisiopatología , Animales , Cartilla de ADN , Lesión Axonal Difusa/genética , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Masculino , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
J Neurotrauma ; 22(10): 1066-80, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16238484

RESUMEN

Traumatic axonal injury (TAI) following traumatic brain injury (TBI) contributes to morbidity and mortality. TAI involves intra-axonal changes assumed to progress to impaired axonal transport (IAT), disconnection, and axonal bulb formation. Immunocytochemical studies employing antibodies to amyloid precursor protein (APP), a marker of IAT and RMO14, a marker of neurofilament compaction (NFC), have shown that TAI involves both NFC and IAT, with the suggestion that NFC leads to IAT. Recently, new data has suggested that NFC may occur independently of IAT. The objective of this study was to determine quantitatively the precise relationship between NFC and IAT. Following TBI, rats were studied at 30 min, 3 h, and 24 h. Using single-label immunocytochemistry employing the antibodies RM014, APP, or a combined labeling strategy targeting APP/RMO14 in aggregate, the immunoreactive (IR) profiles were counted in the corticospinal tract (CSpT) and medial lemniscus (ML). In the CSpT, the number of axons demonstrating RMO14-IR approximated the number of axons showing APP-IR, with the APP-IR population showing a significant increase over 24 h (p < 0.05). The sum of both single-label counts equaled the aggregate APP/RMO14 numbers, demonstrating little relationship between NFC and IAT. In the ML, 75% of fibers demonstrated a separation of APP-IR and NFC-IR; however, 25% of the ML fibers showed co-localization of APP-IR and RMO14. The results of these studies indicate that, in the majority of damaged axons, NFC is not associated with IAT. Our findings argue for the use of multiple markers when evaluating the extent of TAI or the efficacy of therapies targeting the treatment of TAI.


Asunto(s)
Transporte Axonal/fisiología , Axones/patología , Lesiones Encefálicas/patología , Lesión Axonal Difusa/genética , Proteínas de Neurofilamentos/fisiología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Axones/metabolismo , Lesiones Encefálicas/fisiopatología , Lesión Axonal Difusa/etiología , Lesión Axonal Difusa/metabolismo , Lesión Axonal Difusa/patología , Modelos Animales de Enfermedad , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Masculino , Ratas
11.
Neurosci Lett ; 380(3): 280-3, 2005 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-15862902

RESUMEN

The metabotropic glutamate receptors (mGluRs), as one of the newly found glutamate receptors, play an important role in the physiological processes of the central nervous system. The authors examined the changes of expression patterns of mGluRs after diffuse brain injuries (DBI) in rats. DBI was produced by Marmarou's methods. The mRNA expression of mGluRs was detected by hybridization in situ at different time points after brain injuries. Compared with normal control and sham-operated control, the animals with DBI showed a significantly increased expression of group I and group III mGluRs (except mGluR6, P<0.05). The increased peak of group I appeared at 24 h after injuries and group III at 6 h after injuries. While, group II mGluRs decreased after DBI (P<0.05) and the lowest point occurred at 48 h after DBI. The difference of time sequence of the expression alterations between group I and group III mGluRs may reflect a self-protection first mechanism of the damaged neurons. It may provide new insight for the development of new pharmaceuticals in the treatment of DBI.


Asunto(s)
Lesiones Encefálicas/metabolismo , Corteza Cerebral/metabolismo , Lesión Axonal Difusa/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Receptores de Glutamato Metabotrópico/genética , Animales , Lesiones Encefálicas/genética , Lesiones Encefálicas/fisiopatología , Corteza Cerebral/fisiopatología , Lesión Axonal Difusa/genética , Lesión Axonal Difusa/fisiopatología , Modelos Animales de Enfermedad , Expresión Génica/fisiología , Ácido Glutámico/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Regulación hacia Arriba/genética
12.
J Neurol Neurosurg Psychiatry ; 75(11): 1629-31, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15489403

RESUMEN

Hereditary neuropathy with liability to pressure palsy (HNPP) is characterised by recurrent mononeuropathies following minor trauma. We describe a case of fulminant HNPP beginning on the first day of military physical training. Protracted weakness, muscle atrophy, hand contractures, and multifocal sensory loss developed during a further three weeks of basic training. Nerve conduction changes were typical of HNPP, but without segmental slowing. Electromyographically, there was prominent acute denervation in muscles of the hands and right shoulder. Sural nerve biopsy demonstrated tomaculae and remyelination. Genetic testing revealed PMP-22 gene deletion. This case report demonstrates that HNPP can present with rapidly progressive peripheral nerve dysfunction and electrophysiological evidence of focal axonal loss.


Asunto(s)
Lesión Axonal Difusa/diagnóstico , Trastornos Heredodegenerativos del Sistema Nervioso/diagnóstico , Personal Militar , Síndromes de Compresión Nerviosa/diagnóstico , Parálisis/diagnóstico , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Educación y Entrenamiento Físico , Adulto , Axones/patología , Biopsia , Diagnóstico Diferencial , Lesión Axonal Difusa/genética , Femenino , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Humanos , Músculo Esquelético/inervación , Músculo Esquelético/patología , Proteínas de la Mielina/genética , Vaina de Mielina/patología , Síndromes de Compresión Nerviosa/genética , Examen Neurológico , Parálisis/genética , Enfermedades del Sistema Nervioso Periférico/genética , Degeneración Retrógrada/diagnóstico , Degeneración Retrógrada/genética , Nervio Sural/patología
13.
Neurosci Lett ; 317(1): 29-32, 2002 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-11750989

RESUMEN

Limited optic nerve crush is a model of diffuse mechanical axon injury, the most prevalent cause of secondary neurodegeneration after closed head neurotrauma. In this report, a protocol is presented which allows for the rapid screening of differential gene expression in the inner retina, as well as the optic nerve, in response to partial nerve crush. To prove the reliability of the method, prototypically, the differential expression profiles of three candidate genes (kinesin light chain, ferritin, RYB-A) were verified. The method seems to be suitable to address the question of how differential gene expression contributes to degeneration, survival and axonal repair after partial nerve crush.


Asunto(s)
Lesión Axonal Difusa/genética , Regulación de la Expresión Génica/fisiología , Pruebas Genéticas/métodos , Degeneración Nerviosa/genética , Regeneración Nerviosa/genética , Traumatismos del Nervio Óptico/genética , Retina/metabolismo , Animales , Supervivencia Celular/genética , Proteínas de Unión al ADN/genética , Lesión Axonal Difusa/metabolismo , Lesión Axonal Difusa/fisiopatología , Ferritinas/genética , Cinesinas , Masculino , Proteínas Asociadas a Microtúbulos/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Hibridación de Ácido Nucleico/métodos , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/fisiopatología , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Retina/fisiopatología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética/genética , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...