Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
Int J Biol Macromol ; 269(Pt 2): 131805, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677673

RESUMEN

Endothelial repair is essential for restoring tissue fluid homeostasis following lung injury. R-spondin3 (RSPO3), a secreted protein mainly produced by endothelial cells (ECs), has shown its protective effect on endothelium. However, the specific mechanisms remain unknown. To explore whether and how RSPO3 regulates endothelial regeneration after inflammatory vascular injury, the role of RSPO3 in sepsis-induced pulmonary endothelial injury was investigated in EC-specific RSPO3 knockdown, inducible EC-specific RSPO3 deletion mice, EC-specific RSPO3 overexpression mice, systemic RSPO3-administration mice, in isolated mouse lung vascular endothelial cells (MLVECs), and in plasma from septic patients. Here we show that plasma RSPO3 levels are decreased in septic patients and correlated with endothelial injury markers and PaO2/FiO2 index. Both pulmonary EC-specific knockdown of RSPO3 and inducible EC-specific RSPO3 deletion inhibit pulmonary ECs proliferation and exacerbate ECs injury, whereas intra-pulmonary EC-specific RSPO3 overexpression promotes endothelial recovery and attenuates ECs injury during endotoxemia. We show that RSPO3 mediates pulmonary endothelial regeneration by a LGR4-dependent manner. Except for ß-catenin, integrin-linked kinase (ILK)/Akt is also identified as a novel downstream effector of RSPO3/LGR4 signaling. These results conclude that EC-derived RSPO3 mediates pulmonary endothelial regeneration by LGR4-dependent activation of ß-catenin and ILK signaling pathways after inflammatory vascular injury.


Asunto(s)
Células Endoteliales , Pulmón , Proteínas Serina-Treonina Quinasas , Receptores Acoplados a Proteínas G , Regeneración , Transducción de Señal , Trombospondinas , beta Catenina , Animales , Trombospondinas/metabolismo , Trombospondinas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , beta Catenina/metabolismo , beta Catenina/genética , Células Endoteliales/metabolismo , Pulmón/patología , Pulmón/metabolismo , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología , Proliferación Celular , Masculino , Sepsis/metabolismo , Inflamación/metabolismo , Inflamación/patología
2.
J Mol Cell Cardiol ; 192: 13-25, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38653384

RESUMEN

The RNA-binding zinc finger protein 36 (ZFP36) family participates in numerous physiological processes including transition and differentiation through post-transcriptional regulation. ZFP36L1 is a member of the ZFP36 family. This study aimed to evaluate the role of ZFP36L1 in restenosis. We found that the expression of ZFP36L1 was inhibited in VSMC-phenotypic transformation induced by TGF-ß, PDGF-BB, and FBS and also in the rat carotid injury model. In addition, we found that the overexpression of ZFP36L1 inhibited the proliferation and migration of VSMCs and promoted the expression of VSMC contractile genes; whereas ZFP36L1 interference promoted the proliferation and migration of VSMCs and suppressed the expression of contractile genes. Furthermore, the RNA binding protein immunoprecipitation and double luciferase reporter gene experiments shows that ZFP36L1 regulates the phenotypic transformation of VSMCs through the posttranscriptional regulation of KLF16. Finally, our research results in the rat carotid balloon injury animal model further confirmed that ZFP36L1 regulates the phenotypic transformation of VSMCs through the posttranscriptional regulation of KLF16 and further plays a role in vascular injury and restenosis in vivo.


Asunto(s)
Factor 1 de Respuesta al Butirato , Proliferación Celular , Factores de Transcripción de Tipo Kruppel , Músculo Liso Vascular , Miocitos del Músculo Liso , Estabilidad del ARN , Lesiones del Sistema Vascular , Animales , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Miocitos del Músculo Liso/metabolismo , Ratas , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología , Factor 1 de Respuesta al Butirato/metabolismo , Factor 1 de Respuesta al Butirato/genética , Masculino , Movimiento Celular/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación de la Expresión Génica , Ratas Sprague-Dawley , Humanos , Modelos Animales de Enfermedad
3.
Cell Commun Signal ; 22(1): 138, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374138

RESUMEN

BACKGROUND: Applications of nonthermal plasma have expanded beyond the biomedical field to include antibacterial, anti-inflammatory, wound healing, and tissue regeneration. Plasma enhances epithelial cell repair; however, the potential damage to deep tissues and vascular structures remains under investigation. RESULT: This study assessed whether liquid plasma (LP) increased nitric oxide (NO) production in human umbilical vein endothelial cells by modulating endothelial NO synthase (eNOS) phosphorylation and potential signaling pathways. First, we developed a liquid plasma product and confirmed the angiogenic effect of LP using the Matrigel plug assay. We found that the NO content increased in plasma-treated water. NO in plasma-treated water promoted cell migration and angiogenesis in scratch and tube formation assays via vascular endothelial growth factor mRNA expression. In addition to endothelial cell proliferation and migration, LP influenced extracellular matrix metabolism and matrix metalloproteinase activity. These effects were abolished by treatment with NG-L-monomethyl arginine, a specific inhibitor of NO synthase. Furthermore, we investigated the signaling pathways mediating the phosphorylation and activation of eNOS in LP-treated cells and the role of LKB1-adenosine monophosphate-activated protein kinase in signaling. Downregulation of adenosine monophosphate-activated protein kinase by siRNA partially inhibited LP-induced eNOS phosphorylation, angiogenesis, and migration. CONCLUSION: The present study suggests that LP treatment may be a novel strategy for promoting angiogenesis in vascular damage. Video Abstract.


Asunto(s)
Matriz Extracelular , Óxido Nítrico Sintasa de Tipo III , Plasma , Lesiones del Sistema Vascular , Humanos , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/farmacología , Angiogénesis , Matriz Extracelular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacología , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa/farmacología , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismo , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/terapia , Plasma/metabolismo
4.
Cell Mol Biol Lett ; 29(1): 2, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172726

RESUMEN

Neointimal hyperplasia is a pathological vascular remodeling caused by abnormal proliferation and migration of subintimal vascular smooth muscle cells (VSMCs) following intimal injury. There is increasing evidence that tRNA-derived small RNA (tsRNA) plays an important role in vascular remodeling. The purpose of this study is to search for tsRNAs signature of neointima formation and to explore their potential functions. The balloon injury model of rat common carotid artery was replicated to induce intimal hyperplasia, and the differentially expressed tsRNAs (DE-tsRNAs) in arteries with intimal hyperplasia were screened by small RNA sequencing and tsRNA library. A total of 24 DE-tsRNAs were found in the vessels with intimal hyperplasia by small RNA sequencing. In vitro, tRF-Glu-CTC inhibited the expression of fibromodulin (FMOD) in VSMCs, which is a negative modulator of TGF-ß1 activity. tRF-Glu-CTC also increased VSMC proliferation and migration. In vivo experiments showed that inhibition of tRF-Glu-CTC expression after balloon injury of rat carotid artery can reduce the neointimal area. In conclusion, tRF-Glu-CTC expression is increased after vascular injury and inhibits FMOD expression in VSMCs, which influences neointima formation. On the other hand, reducing the expression of tRF-Glu-CTC after vascular injury may be a potential approach to prevent vascular stenosis.


Asunto(s)
Traumatismos de las Arterias Carótidas , Lesiones del Sistema Vascular , Animales , Ratas , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Fibromodulina/metabolismo , Hiperplasia/complicaciones , Hiperplasia/metabolismo , Hiperplasia/patología , Miocitos del Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/patología , Neointima/prevención & control , Ratas Sprague-Dawley , ARN/metabolismo , ARN de Transferencia/metabolismo , Remodelación Vascular , Lesiones del Sistema Vascular/metabolismo
5.
Chin J Nat Med ; 22(1): 62-74, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38278560

RESUMEN

Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.


Asunto(s)
Cadherinas , Traumatismos de las Arterias Carótidas , Diterpenos , Lesiones del Sistema Vascular , Ratones , Ratas , Animales , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Remodelación Vascular , Proliferación Celular , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Traumatismos de las Arterias Carótidas/patología , Simulación del Acoplamiento Molecular , Músculo Liso Vascular , Movimiento Celular , Ratones Endogámicos C57BL , Transducción de Señal , Succinatos/metabolismo , Succinatos/farmacología , Potasio/metabolismo , Potasio/farmacología , Células Cultivadas
6.
Cell Mol Life Sci ; 81(1): 59, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279051

RESUMEN

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation is the leading cause of vascular stenosis or restenosis. Therefore, investigating the molecular mechanisms and pivotal regulators of the proliferative VSMC phenotype is imperative for precisely preventing neointimal hyperplasia in vascular disease. METHODS: Wire-induced vascular injury and aortic culture models were used to detect the expression of staphylococcal nuclease domain-containing protein 1 (SND1). SMC-specific Snd1 knockout mice were used to assess the potential roles of SND1 after vascular injury. Primary VSMCs were cultured to evaluate SND1 function on VSMC phenotype switching, as well as to investigate the mechanism by which SND1 regulates the VSMC proliferative phenotype. RESULTS: Phenotype-switched proliferative VSMCs exhibited higher SND1 protein expression compared to the differentiated VSMCs. This result was replicated in primary VSMCs treated with platelet-derived growth factor (PDGF). In the injury model, specific knockout of Snd1 in mouse VSMCs reduced neointimal hyperplasia. We then revealed that ETS transcription factor ELK1 (ELK1) exhibited upregulation and activation in proliferative VSMCs, and acted as a novel transcription factor to induce the gene transcriptional activation of Snd1. Subsequently, the upregulated SND1 is associated with serum response factor (SRF) by competing with myocardin (MYOCD). As a co-activator of SRF, SND1 recruited the lysine acetyltransferase 2B (KAT2B) to the promoter regions leading to the histone acetylation, consequently promoted SRF to recognize the specific CArG motif, and enhanced the proliferation- and migration-related gene transcriptional activation. CONCLUSIONS: The present study identifies ELK1/SND1/SRF as a novel pathway in promoting the proliferative VSMC phenotype and neointimal hyperplasia in vascular injury, predisposing the vessels to pathological remodeling. This provides a potential therapeutic target for vascular stenosis.


Asunto(s)
Músculo Liso Vascular , Lesiones del Sistema Vascular , Ratones , Animales , Hiperplasia/metabolismo , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Proliferación Celular , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Constricción Patológica/metabolismo , Constricción Patológica/patología , Factores de Transcripción/metabolismo , Fenotipo , Neointima/genética , Neointima/metabolismo , Neointima/patología , Miocitos del Músculo Liso/metabolismo , Células Cultivadas , Movimiento Celular
7.
Mol Imaging Biol ; 26(1): 124-137, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37530966

RESUMEN

PURPOSE: Vascular endothelium plays a central role in the pathogenesis of acute and chronic radiation injuries, yet the mechanisms which promote sustained endothelial dysfunction and contribute to late responding organ failure are unclear. We employed 2nd window (> 1100 nm emission) Near-Infrared (NIR) imaging using indocyanine green (ICG) to track and define the role of the notch ligand Delta-like ligand 4 (Dll4) in mediating vascular injury in two late-responding radiosensitive organs: the lung and kidney. PROCEDURES: Consomic strains of female Salt Sensitive or SS (Dll4-high) and SS with 3rd chromosome inherited from Brown Norway, SS.BN3 (Dll4-low) rats at ages 11-12 weeks were used to demonstrate the impact of reduced Dll4 expression on long-term vascular integrity, renal function, and survival following high-dose 13 Gy partial body irradiation at 42- and 90 days post-radiation. 2nd window dynamic NIR fluorescence imaging with ICG was analyzed with physiology-based pharmacokinetic modeling and confirmed with assays of endothelial Dll4 expression to assess the role of endogenous Dll4 expression on radiation injury protection. RESULTS: We show that SS.BN3 (Dll4-low) rats are relatively protected from vascular permeability disruption compared to the SS (Dll4-high) strain. We further demonstrated that SS.BN3 (Dll4-low) rats have reduced radiation induced loss of CD31+ vascular endothelial cells, and increased Dll4 vascular expression is correlated with vascular dysfunction. CONCLUSIONS: Together, these data suggest Dll4 plays a key role in pathogenesis of radiation-induced vascular injury to the lung and kidney.


Asunto(s)
Proteínas de la Membrana , Traumatismos por Radiación , Lesiones del Sistema Vascular , Ratas , Femenino , Animales , Células Endoteliales/metabolismo , Lesiones del Sistema Vascular/diagnóstico por imagen , Lesiones del Sistema Vascular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
8.
Mol Cell Biochem ; 479(4): 951-961, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37256444

RESUMEN

Dihydroartemisinin (DHA) inhibits restenosis following balloon angioplasty. However, data on the mechanisms of DHA activity in restenosis remains scant. Here, we investigated the role of circRNAs in mediating the inhibitory activity of DHA in neointimal formation. We used total RNA sequencing data to profile the expression of mRNA, circRNA and small RNA in sham, vascular balloon injury (VBI) and DHA-treated groups. CCK8 and EdU assays were employed to analyze cell proliferation, while qRT-PCR and Western blot were used to analyze the RNA or protein expression. In addition, we used RNA immunoprecipitation and luciferase reporter assay to assess the binding of circHSPA4 with miR-19a-5p. RNA sequencing demonstrated that circHSPA4 was upregulated in VBI. Treatment with DHA effectively suppressed the upregulation of the circHSPA4. In addition, analysis of platelet-derived growth family factor bb (PDGFbb)-induced HA-VSMCs showed upregulation of circHSPA4, which was associated with cell proliferation and differentiation. CircHSPA4 was shown to induce dedifferentiation and proliferation of smooth muscle cells. PDGFBB-induced overexpression of CircHSPA4 in HA-VSMCs led to suppression of miR-19a-5p, a phenomenon that was reversed by DHA, in concentration-dependent fashion. In addition, miR-19a-5p reduced the dedifferentiation and proliferation of the smooth muscle cells. Our data demonstrated that CircHSPA4 regulates proliferation and differentiation of smooth muscle cells. DHA and miR-19a-5p modulates CircHSPA4 and can be used as coated drugs on balloon catheter to improve the success rate of vascular remodeling.


Asunto(s)
Angioplastia de Balón , Artemisininas , MicroARNs , Lesiones del Sistema Vascular , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Células Cultivadas , Becaplermina/metabolismo , Becaplermina/farmacología , Proliferación Celular/genética , Miocitos del Músculo Liso/metabolismo , Lesiones del Sistema Vascular/metabolismo , Movimiento Celular/genética
9.
Acta Biomater ; 173: 247-260, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37939818

RESUMEN

Intimal hyperplasia is a common lesion that can be observed in diverse vascular diseases. Drug-eluting stents and drug-coated balloons, which can release anti-proliferative agents to inhibit smooth muscle cell (SMC) proliferation, are developed to prevent intimal hyperplasia. However, these intervention devices still cannot achieve satisfactory clinical outcomes. In contrast to endovascular drug delivery, vascular adventitial drug delivery is a new strategy. To develop a vascular adventitial drug delivery system to treat intimal hyperplasia post vascular injuries, we loaded miR-145-5p-agomir (miR-145) into an injectable and in-situ self-assembling RAD peptide hydrogel. In vitro data showed that the miR-145 could be well incorporated into the RAD peptide hydrogels and released in a slow and controlled manner. The released miR-145 could transfect SMCs successfully, and the transfected SMCs exhibited a reduced migration capacity and higher expressions of SMC contractile biomarkers as compared to the non-transfected SMCs. In vivo data showed that the retention of the miR-145 was greatly elongated by the RAD peptide hydrogels. In addition, the application of the miR-145-loaded RAD peptide hydrogels surrounding injured arteries decreased the proliferative SMCs, promoted the regeneration of endothelium, reduced the macrophage infiltration, inhibited the neointimal formation and prevented adverse ECM remodeling via downregulation of KLF4 expression. The RAD peptide hydrogels loaded with miR-145 can successfully inhibit intimal hyperplasia after vascular injuries and thus hold great potential as an innovative extravascular drug delivery approach to treat vascular diseases. STATEMENT OF SIGNIFICANCE: Intimal hyperplasia is a common lesion that can be observed in diverse vascular diseases. Drug-eluting stents and drug-coated balloons, which can release anti-proliferative agents to inhibit smooth muscle cell (SMC) proliferation, are developed to prevent intimal hyperplasia. However, these intervention devices still cannot achieve satisfactory clinical outcomes. In contrast to endovascular drug delivery, vascular adventitial drug delivery is a new strategy. Our work here demonstrates that the RAD peptide hydrogels loaded with miR-145-5p-agomir (miR-145) can successfully reverse intimal hyperplasia after vascular injuries and thus hold great potential as an innovative vascular adventitial drug delivery approach to treat vascular diseases. Our work proposes a possible paradigm shift from endovascular drug delivery to extravascular drug delivery for vascular disorder treatment.


Asunto(s)
MicroARNs , Lesiones del Sistema Vascular , Humanos , Lesiones del Sistema Vascular/terapia , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Hiperplasia/metabolismo , Hiperplasia/patología , Músculo Liso Vascular/metabolismo , Hidrogeles/farmacología , Hidrogeles/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular , Células Cultivadas
10.
Burns ; 50(3): 585-596, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37945506

RESUMEN

Individuals who present to a hospital for treatment of a burn of any magnitude are more frequently hospitalised for ischemic heart disease, even decades after injury. Blood platelets are key mediators of cardiovascular disease. To investigate platelet involvement in post-burn cardiovascular risk, platelet reactivity was assessed in patients at 2- and 6-weeks after non-severe (TBSA < 20%) burn injury, and in a murine model 30 days after 8% TBSA full-thickness burn injury. Platelets were stimulated with canonical agonists and function reported by GPIIb/IIIa PAC1-binding site, CD62P expression, and formation of monocyte-platelet aggregates. In vivo thrombosis in a modified Folts model of vascular injury was assessed. Burn survivors had elevated frequencies of circulating monocyte-platelet aggregates, and platelets were hyperreactive, primarily to collagen stimulation. Burn plasma did not cause hyper-reactivity when incubated with control platelets. Platelets from burn injured mice also demonstrated increased response to collagen peptides but did not show any change in thrombosis following vascular injury. This study demonstrates the persistence of a small but significant platelet hyperreactivity following burn injury. Although our data does not suggest this heightened platelet sensitivity modulates thrombosis following vascular injury, the contribution of sub-clinical platelet hyperreactivity to accelerating atherogenesis merits further investigation.


Asunto(s)
Quemaduras , Trombosis , Lesiones del Sistema Vascular , Humanos , Animales , Ratones , Plaquetas/metabolismo , Lesiones del Sistema Vascular/metabolismo , Quemaduras/complicaciones , Quemaduras/metabolismo , Colágeno/metabolismo , Agregación Plaquetaria
11.
J Vasc Res ; 61(3): 99-108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38151007

RESUMEN

INTRODUCTION: This study aimed to determine whether bone morphogenetic protein-4 (BMP-4), which increases in response to intimal hyperplasia, promotes phenotype transition in vascular smooth muscle cells (VSMCs). METHODS: Balloon injury was used to induce intimal hyperplasia in rats. Hematoxylin-eosin staining was used to detect the alteration of vascular structure. Serum levels of BMP-4 and lactate were detected by ELISA. Human aortic smooth muscle cells (HA-SMCs) were cultured. Protein and mRNA expression levels were detected through Western blot and real-time PCR. Cell migration was measured by transwell assay. RESULTS: Our data showed that serum concentration of BMP-4 was upregulated after balloon injury. Treatment with BMP-4 inhibitor DMH1 (4-(6-(4-isopropoxyphenyl)pyrazolo(1,5-a)pyrimidin-3-yl)quinoline) suppressed the abnormal expression of BMP-4 and inhibited the intimal hyperplasia induced by balloon injury. Compared to BMP-4-negative medium, BMP-4-positive medium was associated with higher synthetic VSMC marker expression levels and lower in contractile gene markers in cultured HA-SMCs. Transfection of monocarboxylic acid transporters-4 (MCT-4) siRNA inhibited the excretion of lactate induced by BMP-4. CONCLUSION: Our analyses provided evidence that BMP-4 and its regulator Smad-4 are key regulators in MCT-4-mediated lactate excretion. This indicates that BMP-4 stimulates the phenotypic transition of VSMCs via SMAD-4/MCT-4 signaling pathway.


Asunto(s)
Proteína Morfogenética Ósea 4 , Movimiento Celular , Modelos Animales de Enfermedad , Hiperplasia , Transportadores de Ácidos Monocarboxílicos , Músculo Liso Vascular , Miocitos del Músculo Liso , Neointima , Fenotipo , Ratas Sprague-Dawley , Transducción de Señal , Proteína Smad4 , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/efectos de los fármacos , Animales , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/efectos de los fármacos , Proteína Morfogenética Ósea 4/metabolismo , Proteína Morfogenética Ósea 4/genética , Humanos , Proteína Smad4/metabolismo , Proteína Smad4/genética , Masculino , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Ácido Láctico/metabolismo , Ácido Láctico/sangre , Angioplastia de Balón/efectos adversos , Lesiones del Sistema Vascular/patología , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/genética , Plasticidad de la Célula/efectos de los fármacos
12.
Sci Total Environ ; 912: 169515, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38154651

RESUMEN

Nanoplastics pose several health hazards, especially vascular toxicity. Transfer RNA-derived small RNAs (tsRNAs) are novel noncoding RNAs associated with different pathological processes. However, their biological roles and mechanisms in aberrant vascular smooth muscle cell (VSMC) plasticity and vascular injury are unclear. This study investigated the potent effects of tsRNAs on vascular injury induced by short- and long-term exposure to polystyrene nanoplastics (PS-NPs). Mice were exposed to PS-NPs (100 nm) at different doses (10-100 µg/mL) for 30 or 180 days. High-throughput sequencing was used to analyze tsRNA expression patterns in arterial tissues obtained from an in vivo model. Additionally, quantitative real-time polymerase chain reaction, fluorescent in situ hybridization assays, and dual-luciferase reporter assays were performed to measure the expression and impact of tiRNA-Glu-CTC on VSMCs exposed to PS-NPs. Short-term (≥50 µg/mL, moderate concentration) and long-term (≥10 µg/mL, low concentration) PS-NP exposure induced vascular injury in vivo. Cellular experiments showed that the moderate concentration of PS-NPs induced VSMC phenotypic switching, whereas a high concentration of PS-NPs (100 µg/mL) promoted VSMC apoptosis. PS-NP induced severe mitochondrial damage in VSMCs, including overexpression of reactive oxygen species, accumulation of mutated mtDNA, and dysregulation of genes related to mitochondrial synthesis and division. Compared with the control group, 13 upregulated and 12 downregulated tRNA-derived stress-induced RNAs (tiRNAs) were observed in the long-term PS-NP (50 µg/mL) exposure group. Bioinformatics analysis indicated that differentially expressed tiRNAs targeted genes that were involved in vascular smooth muscle contraction and calcium signaling pathways. Interestingly, tiRNA-Glu-CTC was overexpressed in vivo and in vitro following PS-NP exposure. Functionally, the tiRNA-Glu-CTC inhibitor mitigated VSMC phenotypic switching and mitochondrial damage induced by PS-NP exposure, whereas tiRNA-Glu-CTC mimics had the opposite effect. Mechanistically, tiRNA-Glu-CTC mimics induced VSMC phenotypic switching by downregulating Cacna1f expression. PS-NP exposure promoted VSMC phenotypic switching and vascular injury by targeting the tiRNA-Glu-CTC/Cacna1f axis.


Asunto(s)
Lesiones del Sistema Vascular , Ratones , Animales , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Músculo Liso Vascular/metabolismo , Microplásticos/metabolismo , Hibridación Fluorescente in Situ , Proliferación Celular , ARN/metabolismo , Células Cultivadas
13.
Cardiovasc Ther ; 2023: 8848808, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125702

RESUMEN

Coronary artery disease (CAD) is the most prevalent cardiovascular disease worldwide, resulting in myocardial infarction (MI) and even sudden death. Following percutaneous coronary intervention (PCI), restenosis caused by vascular remodeling is always formed at the stent implantation site. Here, we show that Ginkgolide B (GB), a naturally occurring terpene lactone, effectively suppresses vascular remodeling and subsequent restenosis in wild-type mice following left carotid artery (LCA) injury. Additional experiments reveal that GB exerts a protective effect on vascular remodeling and further restenosis through modulation of the Tgfß1/Smad signaling pathway in vivo and in human vascular smooth muscle cells (HVSMAs) but not in human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, the beneficial effect of GB is abolished after incubated with pirfenidone (PFD, a drug for idiopathic pulmonary fibrosis, IPF), which can inhibit Tgfß1. In Tgfß1-/- mice, treatment with pirfenidone capsules and Yinxingneizhi Zhusheye (including Ginkgolide B) fails to improve vascular remodeling and restenosis. In conclusion, our data identify that GB could be a potential novel therapeutic agent to block vessel injury-associated vascular remodeling and further restenosis and show significant repression of Tgfß1/Smad signaling pathway.


Asunto(s)
Intervención Coronaria Percutánea , Lesiones del Sistema Vascular , Humanos , Ratones , Animales , Remodelación Vascular/fisiología , Lesiones del Sistema Vascular/metabolismo , Transducción de Señal , Células Endoteliales de la Vena Umbilical Humana , Lactonas/farmacología
14.
Atherosclerosis ; 387: 117341, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37940399

RESUMEN

BACKGROUND AND AIMS: Smooth muscle cell (SMC) lineage cells in atherosclerosis and flow cessation-induced neointima are oligoclonal, being recruited from a tiny fraction of medial SMCs that modulate and proliferate. The present study aimed to investigate the clonal structure of SMC lineage cells healing more severe arterial injury. METHODS: Arterial injury (wire, stretch, and partial ligation) was inflicted on the right carotid artery in mice with homozygous, SMC-restricted, stochastically recombining reporter transgenes that produced mosaic expression of 10 distinguishable fluorescent phenotypes for clonal tracking. Healed arteries and contra-lateral controls were analyzed after 3 weeks. Additional analysis of cell death and proliferation after injury was performed in wildtype mice. RESULTS: The total number of SMC lineage cells in healed arteries was comparable to normal arteries but comprised significantly fewer fluorescent phenotypes. The population had a complex, intermixed, clonal structure. By statistical analysis of expected versus observed fractions of fluorescent phenotypes and visual inspection of coherent groups of same-colored cells, we concluded that >98% of SMC lineage cells in healed arteries belonged to a detectable clone, indicating that nearly all surviving SMCs after severe injury at some point undergo proliferation. This was consistent with serial observations in the first week after injury, which showed severe loss of medial cells followed by widespread proliferation. CONCLUSIONS: After severe arterial injury, many surviving SMCs proliferate to repair the media and form a neointima. This indicates that the fraction of medial SMCs that are mobilized to repair arteries increases with the level of injury.


Asunto(s)
Neointima , Lesiones del Sistema Vascular , Ratones , Animales , Neointima/metabolismo , Proliferación Celular , Músculo Liso Vascular/metabolismo , Células Clonales/metabolismo , Lesiones del Sistema Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Células Cultivadas
15.
Cell Tissue Res ; 394(3): 455-469, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37907763

RESUMEN

Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the intimal hyperplasia in type 2 diabetes mellitus (T2DM) patients after percutaneous coronary intervention. We aimed to investigate the role of lncRNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) in VSMC proliferation and migration, as well as the underlying mechanism. T2DM model mice with carotid balloon injury were used in vivo and mouse aortic vascular smooth muscle cells (MOVAS) stimulated by insulin were used in vitro to assess the role of CDKN2B-AS1 in VSMC proliferation and migration following vascular injury in T2DM state. To investigate cell viability and migration, MTT assay and Transwell assay were conducted. To elucidate the underlying molecular mechanisms, the methylation-specific polymerase chain reaction, RNA immunoprecipitation, RNA-pull down, co-immunoprecipitation, and chromatin immunoprecipitation were performed. In vivo, CDKN2B-AS1 was up-regulated in common carotid artery tissues. In vitro, insulin treatment increased CDKN2B-AS1 level, enhanced MOVAS cell proliferation and migration, while the promoting effect was reversed by CDKN2B-AS1 knockdown. CDKN2B-AS1 forms a complex with enhancer of zeste homolog 2 (EZH2) and DNA methyltransferase (cytosine-5) 1 (DNMT1) to regulate smooth muscle 22 alpha (SM22α) methylation levels. In insulin-stimulated cells, SM22α knockdown abrogated the inhibitory effect of CDKN2B-AS1 knockdown on cell viability and migration. Injection of lentivirus-sh-CDKN2B-AS1 relieved intimal hyperplasia in T2DM mice with carotid balloon injury. Up-regulation of CDKN2B-AS1 induced by insulin promotes cell proliferation and migration by targeting SM22α through forming a complex with EZH2 and DNMT1, thereby aggravating the intimal hyperplasia after vascular injury in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , ARN Largo no Codificante , Lesiones del Sistema Vascular , Animales , Ratones , Movimiento Celular , Proliferación Celular , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Hiperplasia , Insulina/farmacología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología
16.
Front Endocrinol (Lausanne) ; 14: 1035029, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38027164

RESUMEN

Objective: Diabetes pathology relies on exosomes (Exos). This study investigated how peripheral blood Exo-containing microRNAs (miRNAs) cause vascular injury in type 2 diabetes (T2D). Methods: We removed DEmiRNA from T2D chip data from the GEO database. We isolated Exo from 15 peripheral blood samples from T2D patients and 15 healthy controls and measured Exo DEmiRNA levels. We employed the intersection of Geneards and mirWALK database queries to find T2D peripheral blood mRNA-related chip target genes. Next, we created a STRING database candidate target gene interaction network map. Next, we performed GO and KEGG enrichment analysis on T2D-related potential target genes using the ClusterProfiler R package. Finally, we selected T2D vascular damage core genes and signaling pathways using GSEA and PPI analysis. Finally, we used HEK293 cells for luciferase assays, co-cultured T2D peripheral blood-derived Exo with HVSMC, and detected HVSMC movement alterations. Results: We found 12 T2D-related DEmiRNAs in GEO. T2D patient-derived peripheral blood Exo exhibited significantly up-regulated miR-135a-3p by qRT-PCR. Next, we projected miR-135a-3p's downstream target mRNA and screened 715 DEmRNAs to create a regulatory network diagram. DEmRNAs regulated biological enzyme activity and vascular endothelial cells according to GO function and KEGG pathway analysis. ErbB signaling pathway differences stood out. PPI network study demonstrated that DEmRNA ATM genes regulate the ErbB signaling pathway. The luciferase experiment validated miR-135a-3p and ATM target-binding. Co-culture of T2D patient-derived peripheral blood Exo with HVSMC cells increases HVSMC migration, ErbB2, Bcl-2, and VEGF production, and decreases BAX and ATM. However, miR-135a-3p can reverse the production of the aforesaid functional proteins and impair HVSMC cell movement. Conclusion: T2D patient-derived peripheral blood Exo carrying miR-135a-3p enter HVSMC, possibly targeting and inhibiting ATM, activating the ErbB signaling pathway, promoting abnormal HVSMC proliferation and migration, and aggravating vascular damage.


Asunto(s)
Diabetes Mellitus Tipo 2 , Exosomas , MicroARNs , Lesiones del Sistema Vascular , Humanos , Células Endoteliales/metabolismo , Exosomas/genética , Exosomas/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Células HEK293 , MicroARNs/genética , MicroARNs/metabolismo , Luciferasas/metabolismo , ARN Mensajero/metabolismo
17.
Prostaglandins Other Lipid Mediat ; 169: 106768, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37597762

RESUMEN

Tartary buckwheat protein-derived peptide (Ala-Phe-Tyr-Arg-Trp, AFYRW) is a natural active peptide that hampers the atherosclerosis process, but the underlying role of AFYRW in angiogenesis remains unknown. Here, we present a system-based study to evaluate the effects of AFYRW on H2O2-induced vascular injury in human umbilical vein endothelial cells (HUVECs). HUVECs were co-incubated with H2O2 for 2 h in the vascular injury model, and AFYRW was added 24 h in advance to investigate the protective mechanism of vascular injury. We identified that AFYRW inhibits oxidative stress, cell migration, cell invasion, and angiogenesis in H2O2-treated HUVECs. In addition, we found H2O2-induced upregulation of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), phosphorylation of nuclear factor-κB (NF-κB) p65 and nuclear translocation of NF-κB decreased by AFYRW. Taken together, AFYRW attenuated H2O2-induced vascular injury through the PI3K/AKT/NF-κB pathway. Thereby, AFYRW may serve as a therapeutic option for vascular injuries.


Asunto(s)
Fagopyrum , Lesiones del Sistema Vascular , Humanos , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasa/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Fagopyrum/metabolismo , Transducción de Señal , Lesiones del Sistema Vascular/tratamiento farmacológico , Lesiones del Sistema Vascular/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo
18.
Arterioscler Thromb Vasc Biol ; 43(9): 1599-1616, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37409533

RESUMEN

Because of structural and cellular differences (ie, degrees of matrix abundance and cross-linking, mural cell density, and adventitia), large and medium-sized vessels, in comparison to capillaries, react in a unique manner to stimuli that induce vascular disease. A stereotypical vascular injury response is ECM (extracellular matrix) remodeling that occurs particularly in larger vessels in response to injurious stimuli, such as elevated angiotensin II, hyperlipidemia, hyperglycemia, genetic deficiencies, inflammatory cell infiltration, or exposure to proinflammatory mediators. Even with substantial and prolonged vascular damage, large- and medium-sized arteries, persist, but become modified by (1) changes in vascular wall cellularity; (2) modifications in the differentiation status of endothelial cells, vascular smooth muscle cells, or adventitial stem cells (each can become activated); (3) infiltration of the vascular wall by various leukocyte types; (4) increased exposure to critical growth factors and proinflammatory mediators; and (5) marked changes in the vascular ECM, that remodels from a homeostatic, prodifferentiation ECM environment to matrices that instead promote tissue reparative responses. This latter ECM presents previously hidden matricryptic sites that bind integrins to signal vascular cells and infiltrating leukocytes (in coordination with other mediators) to proliferate, invade, secrete ECM-degrading proteinases, and deposit injury-induced matrices (predisposing to vessel wall fibrosis). In contrast, in response to similar stimuli, capillaries can undergo regression responses (rarefaction). In summary, we have described the molecular events controlling ECM remodeling in major vascular diseases as well as the differential responses of arteries versus capillaries to key mediators inducing vascular injury.


Asunto(s)
Enfermedades Vasculares , Lesiones del Sistema Vascular , Humanos , Células Endoteliales , Lesiones del Sistema Vascular/metabolismo , Matriz Extracelular/metabolismo , Adventicia , Enfermedades Vasculares/metabolismo , Remodelación Vascular
19.
J Am Heart Assoc ; 12(13): e029179, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37382154

RESUMEN

Background Different T-lymphocyte subsets, including CD1d-dependent natural killer T (NKT) cells, play distinct roles in hypertension, highlighting the importance of identifying key immune cells for its treatment. This study aimed to determine the unknown effects of CD1d-dependent NKT cells on hypertension and vascular injury. Methods and Results Hypertension models were induced in male CD1d knockout (CD1dko), wild-type, and adoptive bone marrow transfer mice by angiotensin II (Ang II) or deoxycorticosterone acetate salt. Blood pressure was measured by the tail-cuff system and radiotelemetry. Vascular injury was assessed by histologic studies or aortic ring assay. Inflammation was detected by flow cytometry, quantitative real-time polymerase chain reaction, or ELISA. Results showed that Ang II infusion significantly reduced CD1d expression and NKT cell numbers in the aorta of mice. CD1dko mice exhibited worsened blood pressure elevation, vascular injury, and inflammatory response induced by Ang II or deoxycorticosterone acetate salt. However, these effects were markedly reversed in wild-type mice treated with NKT cell-specific activator. Adoptive transfer of CD1dko bone marrow cells to wild-type mice also significantly worsened Ang II-induced responses. Mechanistically, CD1dko increased Ang II-induced interleukin-6 production and activated signal transducer and activator of transcription 3 and orphan nuclear receptor γ, subsequently inducing interleukin-17A production. Neutralizing interleukin-17A partially reversed Ang II-induced hypertension and vascular injury in CD1dko mice. In addition, levels of NKT cells were lower in the blood of patients with hypertension (n=57) compared with normotensive individuals (n=87). Conclusions These findings reveal a previously unknown role for CD1d-dependent NKT cells in hypertension and vascular injury, indicating that NKT cell activation could be a promising therapeutic target for hypertension.


Asunto(s)
Hipertensión , Células T Asesinas Naturales , Lesiones del Sistema Vascular , Animales , Masculino , Ratones , Acetatos/efectos adversos , Acetatos/metabolismo , Desoxicorticosterona/efectos adversos , Desoxicorticosterona/metabolismo , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Interleucina-17/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Células T Asesinas Naturales/metabolismo , Lesiones del Sistema Vascular/metabolismo
20.
J Biochem Mol Toxicol ; 37(9): e23419, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37341014

RESUMEN

In the context of diabetes mellitus (DM), the circulating cathepsin S (CTSS) level is significantly higher in the cardiovascular disease group. Therefore, this study was designed to investigate the role of CTSS in restenosis following carotid injury in diabetic rats. To induce DM, 60 mg/kg of streptozotocin (STZ) in citrate buffer was injected intraperitoneally into Sprague-Dawley rats. After successful modeling of DM, wire injury of the rat carotid artery was performed, followed by adenovirus transduction. Levels of blood glucose and Th17 cell surface antigens including ROR-γt, IL-17A, IL-17F, IL-22, and IL-23 in perivascular adipose tissues (PVAT) were evaluated. For in vitro analysis, human dendritic cells (DCs) were treated with 5.6-25 mM glucose for 24 h. The morphology of DCs was observed using an optical microscope. CD4+ T cells derived from human peripheral blood mononuclear cells were cocultured with DCs for 5 days. Levels of IL-6, CTSS, ROR-γt, IL-17A, IL-17F, IL-22 and IL-23 were measured. Flow cytometry was conducted to detect DC surface biomarkers (CD1a, CD83, and CD86) and Th17 cell differentiation. The collected DCs presented a treelike shape and were positive for CD1a, CD83, and CD86. Glucose impaired DC viability at the dose of 35 mM. Glucose treatment led to an increase in CTSS and IL-6 expression in DCs. Glucose-treated DCs promoted the differentiation of Th17 cells. CTSS depletion downregulated IL-6 expression and inhibited Th17 cell differentiation in vitro and in vivo. CTSS inhibition in DCs inhibits Th17 cell differentiation in PVAT tissues from diabetic rats following vascular injury.


Asunto(s)
Diabetes Mellitus Experimental , Lesiones del Sistema Vascular , Ratas , Humanos , Animales , Interleucina-17 , Células Th17/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Interleucina-6/metabolismo , Leucocitos Mononucleares/metabolismo , Diabetes Mellitus Experimental/metabolismo , Lesiones del Sistema Vascular/metabolismo , Ratas Sprague-Dawley , Diferenciación Celular , Células Dendríticas/metabolismo , Interleucina-23/metabolismo , Glucosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA