Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
1.
Int J Biol Macromol ; 269(Pt 2): 131805, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677673

RESUMEN

Endothelial repair is essential for restoring tissue fluid homeostasis following lung injury. R-spondin3 (RSPO3), a secreted protein mainly produced by endothelial cells (ECs), has shown its protective effect on endothelium. However, the specific mechanisms remain unknown. To explore whether and how RSPO3 regulates endothelial regeneration after inflammatory vascular injury, the role of RSPO3 in sepsis-induced pulmonary endothelial injury was investigated in EC-specific RSPO3 knockdown, inducible EC-specific RSPO3 deletion mice, EC-specific RSPO3 overexpression mice, systemic RSPO3-administration mice, in isolated mouse lung vascular endothelial cells (MLVECs), and in plasma from septic patients. Here we show that plasma RSPO3 levels are decreased in septic patients and correlated with endothelial injury markers and PaO2/FiO2 index. Both pulmonary EC-specific knockdown of RSPO3 and inducible EC-specific RSPO3 deletion inhibit pulmonary ECs proliferation and exacerbate ECs injury, whereas intra-pulmonary EC-specific RSPO3 overexpression promotes endothelial recovery and attenuates ECs injury during endotoxemia. We show that RSPO3 mediates pulmonary endothelial regeneration by a LGR4-dependent manner. Except for ß-catenin, integrin-linked kinase (ILK)/Akt is also identified as a novel downstream effector of RSPO3/LGR4 signaling. These results conclude that EC-derived RSPO3 mediates pulmonary endothelial regeneration by LGR4-dependent activation of ß-catenin and ILK signaling pathways after inflammatory vascular injury.


Asunto(s)
Células Endoteliales , Pulmón , Proteínas Serina-Treonina Quinasas , Receptores Acoplados a Proteínas G , Regeneración , Transducción de Señal , Trombospondinas , beta Catenina , Animales , Trombospondinas/metabolismo , Trombospondinas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , beta Catenina/metabolismo , beta Catenina/genética , Células Endoteliales/metabolismo , Pulmón/patología , Pulmón/metabolismo , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología , Proliferación Celular , Masculino , Sepsis/metabolismo , Inflamación/metabolismo , Inflamación/patología
2.
J Mol Cell Cardiol ; 192: 13-25, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38653384

RESUMEN

The RNA-binding zinc finger protein 36 (ZFP36) family participates in numerous physiological processes including transition and differentiation through post-transcriptional regulation. ZFP36L1 is a member of the ZFP36 family. This study aimed to evaluate the role of ZFP36L1 in restenosis. We found that the expression of ZFP36L1 was inhibited in VSMC-phenotypic transformation induced by TGF-ß, PDGF-BB, and FBS and also in the rat carotid injury model. In addition, we found that the overexpression of ZFP36L1 inhibited the proliferation and migration of VSMCs and promoted the expression of VSMC contractile genes; whereas ZFP36L1 interference promoted the proliferation and migration of VSMCs and suppressed the expression of contractile genes. Furthermore, the RNA binding protein immunoprecipitation and double luciferase reporter gene experiments shows that ZFP36L1 regulates the phenotypic transformation of VSMCs through the posttranscriptional regulation of KLF16. Finally, our research results in the rat carotid balloon injury animal model further confirmed that ZFP36L1 regulates the phenotypic transformation of VSMCs through the posttranscriptional regulation of KLF16 and further plays a role in vascular injury and restenosis in vivo.


Asunto(s)
Factor 1 de Respuesta al Butirato , Proliferación Celular , Factores de Transcripción de Tipo Kruppel , Músculo Liso Vascular , Lesiones del Sistema Vascular , Animales , Humanos , Masculino , Ratas , Factor 1 de Respuesta al Butirato/metabolismo , Factor 1 de Respuesta al Butirato/genética , Movimiento Celular/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Ratas Sprague-Dawley , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología
3.
Chin J Nat Med ; 22(1): 62-74, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38278560

RESUMEN

Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.


Asunto(s)
Cadherinas , Traumatismos de las Arterias Carótidas , Diterpenos , Lesiones del Sistema Vascular , Ratones , Ratas , Animales , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Remodelación Vascular , Proliferación Celular , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Traumatismos de las Arterias Carótidas/patología , Simulación del Acoplamiento Molecular , Músculo Liso Vascular , Movimiento Celular , Ratones Endogámicos C57BL , Transducción de Señal , Succinatos/metabolismo , Succinatos/farmacología , Potasio/metabolismo , Potasio/farmacología , Células Cultivadas
4.
Cell Mol Life Sci ; 81(1): 59, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279051

RESUMEN

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation is the leading cause of vascular stenosis or restenosis. Therefore, investigating the molecular mechanisms and pivotal regulators of the proliferative VSMC phenotype is imperative for precisely preventing neointimal hyperplasia in vascular disease. METHODS: Wire-induced vascular injury and aortic culture models were used to detect the expression of staphylococcal nuclease domain-containing protein 1 (SND1). SMC-specific Snd1 knockout mice were used to assess the potential roles of SND1 after vascular injury. Primary VSMCs were cultured to evaluate SND1 function on VSMC phenotype switching, as well as to investigate the mechanism by which SND1 regulates the VSMC proliferative phenotype. RESULTS: Phenotype-switched proliferative VSMCs exhibited higher SND1 protein expression compared to the differentiated VSMCs. This result was replicated in primary VSMCs treated with platelet-derived growth factor (PDGF). In the injury model, specific knockout of Snd1 in mouse VSMCs reduced neointimal hyperplasia. We then revealed that ETS transcription factor ELK1 (ELK1) exhibited upregulation and activation in proliferative VSMCs, and acted as a novel transcription factor to induce the gene transcriptional activation of Snd1. Subsequently, the upregulated SND1 is associated with serum response factor (SRF) by competing with myocardin (MYOCD). As a co-activator of SRF, SND1 recruited the lysine acetyltransferase 2B (KAT2B) to the promoter regions leading to the histone acetylation, consequently promoted SRF to recognize the specific CArG motif, and enhanced the proliferation- and migration-related gene transcriptional activation. CONCLUSIONS: The present study identifies ELK1/SND1/SRF as a novel pathway in promoting the proliferative VSMC phenotype and neointimal hyperplasia in vascular injury, predisposing the vessels to pathological remodeling. This provides a potential therapeutic target for vascular stenosis.


Asunto(s)
Músculo Liso Vascular , Lesiones del Sistema Vascular , Ratones , Animales , Hiperplasia/metabolismo , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Proliferación Celular , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Constricción Patológica/metabolismo , Constricción Patológica/patología , Factores de Transcripción/metabolismo , Fenotipo , Neointima/genética , Neointima/metabolismo , Neointima/patología , Miocitos del Músculo Liso/metabolismo , Células Cultivadas , Movimiento Celular
5.
Acta Biomater ; 173: 247-260, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37939818

RESUMEN

Intimal hyperplasia is a common lesion that can be observed in diverse vascular diseases. Drug-eluting stents and drug-coated balloons, which can release anti-proliferative agents to inhibit smooth muscle cell (SMC) proliferation, are developed to prevent intimal hyperplasia. However, these intervention devices still cannot achieve satisfactory clinical outcomes. In contrast to endovascular drug delivery, vascular adventitial drug delivery is a new strategy. To develop a vascular adventitial drug delivery system to treat intimal hyperplasia post vascular injuries, we loaded miR-145-5p-agomir (miR-145) into an injectable and in-situ self-assembling RAD peptide hydrogel. In vitro data showed that the miR-145 could be well incorporated into the RAD peptide hydrogels and released in a slow and controlled manner. The released miR-145 could transfect SMCs successfully, and the transfected SMCs exhibited a reduced migration capacity and higher expressions of SMC contractile biomarkers as compared to the non-transfected SMCs. In vivo data showed that the retention of the miR-145 was greatly elongated by the RAD peptide hydrogels. In addition, the application of the miR-145-loaded RAD peptide hydrogels surrounding injured arteries decreased the proliferative SMCs, promoted the regeneration of endothelium, reduced the macrophage infiltration, inhibited the neointimal formation and prevented adverse ECM remodeling via downregulation of KLF4 expression. The RAD peptide hydrogels loaded with miR-145 can successfully inhibit intimal hyperplasia after vascular injuries and thus hold great potential as an innovative extravascular drug delivery approach to treat vascular diseases. STATEMENT OF SIGNIFICANCE: Intimal hyperplasia is a common lesion that can be observed in diverse vascular diseases. Drug-eluting stents and drug-coated balloons, which can release anti-proliferative agents to inhibit smooth muscle cell (SMC) proliferation, are developed to prevent intimal hyperplasia. However, these intervention devices still cannot achieve satisfactory clinical outcomes. In contrast to endovascular drug delivery, vascular adventitial drug delivery is a new strategy. Our work here demonstrates that the RAD peptide hydrogels loaded with miR-145-5p-agomir (miR-145) can successfully reverse intimal hyperplasia after vascular injuries and thus hold great potential as an innovative vascular adventitial drug delivery approach to treat vascular diseases. Our work proposes a possible paradigm shift from endovascular drug delivery to extravascular drug delivery for vascular disorder treatment.


Asunto(s)
MicroARNs , Lesiones del Sistema Vascular , Humanos , Lesiones del Sistema Vascular/terapia , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Hiperplasia/metabolismo , Hiperplasia/patología , Músculo Liso Vascular/metabolismo , Hidrogeles/farmacología , Hidrogeles/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular , Células Cultivadas
6.
J Vasc Res ; 61(3): 99-108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38151007

RESUMEN

INTRODUCTION: This study aimed to determine whether bone morphogenetic protein-4 (BMP-4), which increases in response to intimal hyperplasia, promotes phenotype transition in vascular smooth muscle cells (VSMCs). METHODS: Balloon injury was used to induce intimal hyperplasia in rats. Hematoxylin-eosin staining was used to detect the alteration of vascular structure. Serum levels of BMP-4 and lactate were detected by ELISA. Human aortic smooth muscle cells (HA-SMCs) were cultured. Protein and mRNA expression levels were detected through Western blot and real-time PCR. Cell migration was measured by transwell assay. RESULTS: Our data showed that serum concentration of BMP-4 was upregulated after balloon injury. Treatment with BMP-4 inhibitor DMH1 (4-(6-(4-isopropoxyphenyl)pyrazolo(1,5-a)pyrimidin-3-yl)quinoline) suppressed the abnormal expression of BMP-4 and inhibited the intimal hyperplasia induced by balloon injury. Compared to BMP-4-negative medium, BMP-4-positive medium was associated with higher synthetic VSMC marker expression levels and lower in contractile gene markers in cultured HA-SMCs. Transfection of monocarboxylic acid transporters-4 (MCT-4) siRNA inhibited the excretion of lactate induced by BMP-4. CONCLUSION: Our analyses provided evidence that BMP-4 and its regulator Smad-4 are key regulators in MCT-4-mediated lactate excretion. This indicates that BMP-4 stimulates the phenotypic transition of VSMCs via SMAD-4/MCT-4 signaling pathway.


Asunto(s)
Proteína Morfogenética Ósea 4 , Movimiento Celular , Modelos Animales de Enfermedad , Hiperplasia , Transportadores de Ácidos Monocarboxílicos , Músculo Liso Vascular , Miocitos del Músculo Liso , Neointima , Fenotipo , Ratas Sprague-Dawley , Transducción de Señal , Proteína Smad4 , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/efectos de los fármacos , Animales , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/efectos de los fármacos , Proteína Morfogenética Ósea 4/metabolismo , Proteína Morfogenética Ósea 4/genética , Humanos , Proteína Smad4/metabolismo , Proteína Smad4/genética , Masculino , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Ácido Láctico/metabolismo , Ácido Láctico/sangre , Angioplastia de Balón/efectos adversos , Lesiones del Sistema Vascular/patología , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/genética , Plasticidad de la Célula/efectos de los fármacos
7.
Sci Total Environ ; 912: 169515, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38154651

RESUMEN

Nanoplastics pose several health hazards, especially vascular toxicity. Transfer RNA-derived small RNAs (tsRNAs) are novel noncoding RNAs associated with different pathological processes. However, their biological roles and mechanisms in aberrant vascular smooth muscle cell (VSMC) plasticity and vascular injury are unclear. This study investigated the potent effects of tsRNAs on vascular injury induced by short- and long-term exposure to polystyrene nanoplastics (PS-NPs). Mice were exposed to PS-NPs (100 nm) at different doses (10-100 µg/mL) for 30 or 180 days. High-throughput sequencing was used to analyze tsRNA expression patterns in arterial tissues obtained from an in vivo model. Additionally, quantitative real-time polymerase chain reaction, fluorescent in situ hybridization assays, and dual-luciferase reporter assays were performed to measure the expression and impact of tiRNA-Glu-CTC on VSMCs exposed to PS-NPs. Short-term (≥50 µg/mL, moderate concentration) and long-term (≥10 µg/mL, low concentration) PS-NP exposure induced vascular injury in vivo. Cellular experiments showed that the moderate concentration of PS-NPs induced VSMC phenotypic switching, whereas a high concentration of PS-NPs (100 µg/mL) promoted VSMC apoptosis. PS-NP induced severe mitochondrial damage in VSMCs, including overexpression of reactive oxygen species, accumulation of mutated mtDNA, and dysregulation of genes related to mitochondrial synthesis and division. Compared with the control group, 13 upregulated and 12 downregulated tRNA-derived stress-induced RNAs (tiRNAs) were observed in the long-term PS-NP (50 µg/mL) exposure group. Bioinformatics analysis indicated that differentially expressed tiRNAs targeted genes that were involved in vascular smooth muscle contraction and calcium signaling pathways. Interestingly, tiRNA-Glu-CTC was overexpressed in vivo and in vitro following PS-NP exposure. Functionally, the tiRNA-Glu-CTC inhibitor mitigated VSMC phenotypic switching and mitochondrial damage induced by PS-NP exposure, whereas tiRNA-Glu-CTC mimics had the opposite effect. Mechanistically, tiRNA-Glu-CTC mimics induced VSMC phenotypic switching by downregulating Cacna1f expression. PS-NP exposure promoted VSMC phenotypic switching and vascular injury by targeting the tiRNA-Glu-CTC/Cacna1f axis.


Asunto(s)
Lesiones del Sistema Vascular , Ratones , Animales , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Músculo Liso Vascular/metabolismo , Microplásticos/metabolismo , Hibridación Fluorescente in Situ , Proliferación Celular , ARN/metabolismo , Células Cultivadas
8.
Cell Tissue Res ; 394(3): 455-469, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37907763

RESUMEN

Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the intimal hyperplasia in type 2 diabetes mellitus (T2DM) patients after percutaneous coronary intervention. We aimed to investigate the role of lncRNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) in VSMC proliferation and migration, as well as the underlying mechanism. T2DM model mice with carotid balloon injury were used in vivo and mouse aortic vascular smooth muscle cells (MOVAS) stimulated by insulin were used in vitro to assess the role of CDKN2B-AS1 in VSMC proliferation and migration following vascular injury in T2DM state. To investigate cell viability and migration, MTT assay and Transwell assay were conducted. To elucidate the underlying molecular mechanisms, the methylation-specific polymerase chain reaction, RNA immunoprecipitation, RNA-pull down, co-immunoprecipitation, and chromatin immunoprecipitation were performed. In vivo, CDKN2B-AS1 was up-regulated in common carotid artery tissues. In vitro, insulin treatment increased CDKN2B-AS1 level, enhanced MOVAS cell proliferation and migration, while the promoting effect was reversed by CDKN2B-AS1 knockdown. CDKN2B-AS1 forms a complex with enhancer of zeste homolog 2 (EZH2) and DNA methyltransferase (cytosine-5) 1 (DNMT1) to regulate smooth muscle 22 alpha (SM22α) methylation levels. In insulin-stimulated cells, SM22α knockdown abrogated the inhibitory effect of CDKN2B-AS1 knockdown on cell viability and migration. Injection of lentivirus-sh-CDKN2B-AS1 relieved intimal hyperplasia in T2DM mice with carotid balloon injury. Up-regulation of CDKN2B-AS1 induced by insulin promotes cell proliferation and migration by targeting SM22α through forming a complex with EZH2 and DNMT1, thereby aggravating the intimal hyperplasia after vascular injury in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , ARN Largo no Codificante , Lesiones del Sistema Vascular , Animales , Ratones , Movimiento Celular , Proliferación Celular , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Hiperplasia , Insulina/farmacología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología
10.
Front Endocrinol (Lausanne) ; 14: 1035029, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38027164

RESUMEN

Objective: Diabetes pathology relies on exosomes (Exos). This study investigated how peripheral blood Exo-containing microRNAs (miRNAs) cause vascular injury in type 2 diabetes (T2D). Methods: We removed DEmiRNA from T2D chip data from the GEO database. We isolated Exo from 15 peripheral blood samples from T2D patients and 15 healthy controls and measured Exo DEmiRNA levels. We employed the intersection of Geneards and mirWALK database queries to find T2D peripheral blood mRNA-related chip target genes. Next, we created a STRING database candidate target gene interaction network map. Next, we performed GO and KEGG enrichment analysis on T2D-related potential target genes using the ClusterProfiler R package. Finally, we selected T2D vascular damage core genes and signaling pathways using GSEA and PPI analysis. Finally, we used HEK293 cells for luciferase assays, co-cultured T2D peripheral blood-derived Exo with HVSMC, and detected HVSMC movement alterations. Results: We found 12 T2D-related DEmiRNAs in GEO. T2D patient-derived peripheral blood Exo exhibited significantly up-regulated miR-135a-3p by qRT-PCR. Next, we projected miR-135a-3p's downstream target mRNA and screened 715 DEmRNAs to create a regulatory network diagram. DEmRNAs regulated biological enzyme activity and vascular endothelial cells according to GO function and KEGG pathway analysis. ErbB signaling pathway differences stood out. PPI network study demonstrated that DEmRNA ATM genes regulate the ErbB signaling pathway. The luciferase experiment validated miR-135a-3p and ATM target-binding. Co-culture of T2D patient-derived peripheral blood Exo with HVSMC cells increases HVSMC migration, ErbB2, Bcl-2, and VEGF production, and decreases BAX and ATM. However, miR-135a-3p can reverse the production of the aforesaid functional proteins and impair HVSMC cell movement. Conclusion: T2D patient-derived peripheral blood Exo carrying miR-135a-3p enter HVSMC, possibly targeting and inhibiting ATM, activating the ErbB signaling pathway, promoting abnormal HVSMC proliferation and migration, and aggravating vascular damage.


Asunto(s)
Diabetes Mellitus Tipo 2 , Exosomas , MicroARNs , Lesiones del Sistema Vascular , Humanos , Células Endoteliales/metabolismo , Exosomas/genética , Exosomas/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Células HEK293 , MicroARNs/genética , MicroARNs/metabolismo , Luciferasas/metabolismo , ARN Mensajero/metabolismo
11.
J Cardiovasc Pharmacol ; 82(3): 221-228, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37381169

RESUMEN

ABSTRACT: Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) cause neointimal hyperplasia after percutaneous vascular interventions. Nuclear receptor subfamily 1 group D member 1 (NR1D1), a crucial member of circadian clock, is involved in the regulation of atherosclerosis and cellular proliferation. However, whether NR1D1 affects vascular neointimal hyperplasia remains unclear. In this study, we found that activating NR1D1 reduced injury-induced vascular neointimal hyperplasia. Overexpression of NR1D1 reduced the number of Ki-67-positive VSMCs and migrated VSMCs after platelet-derived growth factor (PDGF)-BB treatment. Mechanistically, NR1D1 suppressed the phosphorylation of AKT and 2 main effectors of the mammalian target of rapamycin complex 1 (mTORC1), S6, and 4EBP1 in PDGF-BB-challenged VSMCs. Re-activation of mTORC1 by Tuberous sclerosis 1 siRNA (si Tsc1 ) and re-activation of AKT by SC-79 abolished NR1D1-mediated inhibitory effects on proliferation and migration of VSMCs. Moreover, decreased mTORC1 activity induced by NR1D1 was also reversed by SC-79. Simultaneously, Tsc1 knockdown abolished the vascular protective effects of NR1D1 in vivo. In conclusion, NR1D1 reduces vascular neointimal hyperplasia by suppressing proliferation and migration of VSMCs in an AKT/mTORC1-dependent manner.


Asunto(s)
Músculo Liso Vascular , Lesiones del Sistema Vascular , Humanos , Hiperplasia/metabolismo , Músculo Liso Vascular/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proliferación Celular , Becaplermina/farmacología , Lesiones del Sistema Vascular/patología , Neointima/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Miocitos del Músculo Liso/metabolismo , Movimiento Celular , Células Cultivadas
12.
J Thromb Haemost ; 21(9): 2339-2353, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37331517

RESUMEN

Mechanotransduction is the ability of cells to "feel" or sense their mechanical microenvironment and integrate and convert these physical stimuli into adaptive biochemical cellular responses. This phenomenon is vital for the physiology of numerous nucleated cell types to affect their various cellular processes. As the main drivers of hemostasis and clot retraction, platelets also possess this ability to sense the dynamic mechanical microenvironments of circulation and convert those signals into biological responses integral to clot formation. Like other cell types, platelets leverage their "hands" or receptors/integrins to mechanotransduce important signals in responding to vascular injury to achieve hemostasis. The clinical relevance of cellular mechanics and mechanotransduction is imperative as pathologic alterations or aberrant mechanotransduction in platelets has been shown to lead to bleeding and thrombosis. As such, the aim of this review is to provide an overview of the most recent research related to platelet mechanotransduction, from platelet generation to platelet activation, within the hemodynamic environment and clot contraction at the site of vascular injury, thereby covering the entire "life cycle" of platelets. Additionally, we describe the key mechanoreceptors in platelets and discuss the new biophysical techniques that have enabled the field to understand how platelets sense and respond to their mechanical microenvironment via those receptors. Finally, the clinical significance and importance of continued exploration of platelet mechanotransduction have been discussed as the key to better understanding of both thrombotic and bleeding disorders lies in a more complete mechanistic understanding of platelet function by way of mechanotransduction.


Asunto(s)
Trombosis , Lesiones del Sistema Vascular , Humanos , Plaquetas/metabolismo , Mecanotransducción Celular/fisiología , Lesiones del Sistema Vascular/patología , Hemostasis , Activación Plaquetaria/fisiología , Trombosis/metabolismo
13.
Cell Biol Int ; 47(9): 1573-1588, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37303238

RESUMEN

Intimal thickening caused by the excessive multiplication of vascular smooth muscle cells (VSMCs) is the pathological process central to cardiovascular diseases, including restenosis. In response to vascular injury, VSMCs would undergo phenotypic switching from a fully differentiated, low proliferative rate phenotype to a more pro-proliferative, promigratory, and incompletely-differentiated state. The lack of a full understanding of the molecular pathways coupling the vascular injury stimuli to VSMCs phenotype switching largely limits the development of medical therapies for treating intima hyperplasia-related diseases. The role of signal transducers and activators of transcription 6 (STAT6) in modulating the proliferation and differentiation of various cell types, especially macrophage, has been well investigated, but little is known about its pathophysiological role and target genes in restenosis after vascular injury. In the present work, Stat6-/- mice were observed to exhibit less severe intimal hyperplasia compared with Stat6+/+ mice after carotid injury. The expression of STAT6 was upregulated in VSMCs located in the injured vascular walls. STAT6 deletion leads to decreased proliferation and migration of VSMCs while STAT6 overexpression enhances the proliferation and migration of VSMCs companies with reduced expression of VSMCs marker genes and organized stress fibers. The effect of STAT6 in mouse VSMCs was conserved in human aortic SMCs. RNA-deep-sequencing and experiments verification revealed LncRNA C7orf69/LOC100996318-miR-370-3p/FOXO1-ER stress signaling as the downstream network mediating the pro-dedifferentiation effect of STAT6 in VSMCs. These findings broaden our understanding of vascular pathological molecules and throw a beam of light on the therapy of a variety of proliferative vascular diseases.


Asunto(s)
Miocitos del Músculo Liso , Neointima , Factor de Transcripción STAT6 , Animales , Ratones , Factor de Transcripción STAT6/metabolismo , Miocitos del Músculo Liso/citología , Músculo Liso Vascular/citología , Neointima/patología , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Ratones Noqueados , Humanos , Ratones Endogámicos BALB C , Masculino , Femenino , Persona de Mediana Edad , Anciano , Células Cultivadas , Aorta/citología , Desdiferenciación Celular
14.
Endocrinology ; 164(7)2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37289080

RESUMEN

Cardiovascular disease (CVD) is the leading cause of death worldwide and is primarily associated with obesity, visceral adiposity, and unhealthy perivascular adipose tissue (PVAT). The inflammatory polarization of immune cells residing in adipose tissue and abnormal levels of adipose-related cytokines are crucial factors contributing to the pathogenesis of metabolic disorders. We reviewed the most relevant papers in the English literature regarding PVAT and obesity-related inflammation and CVD, aiming to explore potential therapeutic targets for metabolic alterations related to CV health. Such an understanding will help determine the pathogenetic relationship between obesity and vascular injury in efforts to ameliorate obesity-related inflammatory responses. In the context of obesity, dysregulation of adipose tissue immune function, which consists of immune cells and adipose-derived cytokines, plays a crucial role in vascular injury and endothelial dysfunction, especially the PVAT. Metabolic changes between typical VAT and PVAT in obese conditions would be beneficial in improving the risk of obesity-induced endothelial dysfunction and CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Lesiones del Sistema Vascular , Humanos , Adiposidad , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Citocinas/metabolismo
15.
BMC Cardiovasc Disord ; 23(1): 239, 2023 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149580

RESUMEN

BACKGROUND: Restenosis after percutaneous coronary intervention (PCI) limits therapeutic revascularization. Neuropeptide Y (NPY), co-stored and co-released with the sympathetic nervous system, is involved in this process, but its exact role and underlying mechanisms remain to be fully understood. This study aimed to investigate the role of NPY in neointima formation after vascular injury. METHODS: Using the left carotid arteries of wild-type (WT, NPY-intact) and NPY-deficient (NPY-/-) mice, ferric chloride-mediated carotid artery injury induced neointima formation. Three weeks after injury, the left injured carotid artery and contralateral uninjured carotid artery were collected for histological analysis and immunohistochemical staining. RT-qPCR was used to detect the mRNA expression of several key inflammatory markers and cell adhesion molecules in vascular samples. Raw264.7 cells were treated with NPY, lipopolysaccharide (LPS), and lipopolysaccharide-free, respectively, and RT-qPCR was used to detect the expression of these inflammatory mediators. RESULTS: Compared with WT mice, NPY-/- mice had significantly reduced neointimal formation three weeks after injury. Mechanistically, immunohistochemical analysis showed there were fewer macrophages and more vascular smooth muscle cells in the neointima of NPY-/- mice. Moreover, the mRNA expression of key inflammatory markers such as interleukin-6 (IL-6), transforming growth factor-ß1 (TGF-ß1), and intercellular adhesion molecule-1 (ICAM-1) was significantly lower in the injured carotid arteries of NPY-/- mice, compared to that in the injured carotid arteries of WT mice. In RAW264.7 macrophages, NPY significantly promoted TGF-ß1 mRNA expression under unactivated but not LPS-stimulated condition. CONCLUSIONS: Deletion of NPY attenuated neointima formation after artery injury, at least partly, through reducing the local inflammatory response, suggesting that NPY pathway may provide new insights into the mechanism of restenosis.


Asunto(s)
Traumatismos de las Arterias Carótidas , Neuropéptido Y , Intervención Coronaria Percutánea , Lesiones del Sistema Vascular , Animales , Ratones , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/patología , Proliferación Celular , Miocitos del Músculo Liso/metabolismo , Neointima/patología , Neuropéptido Y/genética , ARN Mensajero , Factor de Crecimiento Transformador beta1/genética , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología
16.
Int J Cardiovasc Imaging ; 39(7): 1367-1374, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37027104

RESUMEN

PURPOSE: The association between the extent of the wire and device bias as assessed by optical coherence tomography (OCT) in the healthy portion of the vessel and the risk of coronary artery injury after orbital atherectomy (OA) has not been fully elucidated. Thus, purpose of this study is to investigate the association between pre-OA OCT findings and post-OA coronary artery injury by OCT. METHODS: We enrolled 148 de novo lesions having calcified lesion required OA (max Ca angle > 90°) in 135 patients who underwent both pre- and post-OA OCT. In pre-OA OCT, OCT catheter contact angle and the presence or absences of guide-wire (GW) contact with the normal vessel intima were assessed. Also, in post-OA OCT, we assessed there was post-OA coronary artery injury (OA injury), defined as disappearance of both of intima and medial wall of normal vessel, or not. RESULTS: OA injury was found in 19 lesions (13%). Pre-PCI OCT catheter contact angle with the normal coronary artery was significantly larger (median 137°; inter quartile range [IQR] 113-169 vs. median 0°; IQR 0-0, P < 0.001) and more GW contact with the normal vessel was found (63% vs. 8%, P < 0.001). Pre-PCI OCT catheter contact angle > 92° and GW contact with the normal vessel intima were associated with post-OA vascular injury (Both: 92% (11/12), Either: 32% (8/25), Neither: 0% (0/111), P < 0.001). CONCLUSION: Pre-PCI OCT findings, such as catheter contact angle > 92° and guide-wire contact to the normal coronary artery, were associated with post-OA coronary artery injury.


Asunto(s)
Aterectomía Coronaria , Enfermedad de la Arteria Coronaria , Intervención Coronaria Percutánea , Calcificación Vascular , Lesiones del Sistema Vascular , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/terapia , Enfermedad de la Arteria Coronaria/patología , Aterectomía Coronaria/efectos adversos , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/patología , Intervención Coronaria Percutánea/efectos adversos , Lesiones del Sistema Vascular/diagnóstico por imagen , Lesiones del Sistema Vascular/etiología , Lesiones del Sistema Vascular/patología , Tomografía de Coherencia Óptica/métodos , Resultado del Tratamiento , Valor Predictivo de las Pruebas , Aterectomía , Calcificación Vascular/diagnóstico por imagen , Calcificación Vascular/terapia , Calcificación Vascular/patología , Angiografía Coronaria
17.
JCI Insight ; 8(9)2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36976650

RESUMEN

Vascular smooth muscle-derived Sca1+ adventitial progenitor (AdvSca1-SM) cells are tissue-resident, multipotent stem cells that contribute to progression of vascular remodeling and fibrosis. Upon acute vascular injury, AdvSca1-SM cells differentiate into myofibroblasts and are embedded in perivascular collagen and the extracellular matrix. While the phenotypic properties of AdvSca1-SM-derived myofibroblasts have been defined, the underlying epigenetic regulators driving the AdvSca1-SM-to-myofibroblast transition are unclear. We show that the chromatin remodeler Smarca4/Brg1 facilitates AdvSca1-SM myofibroblast differentiation. Brg1 mRNA and protein were upregulated in AdvSca1-SM cells after acute vascular injury, and pharmacological inhibition of Brg1 by the small molecule PFI-3 attenuated perivascular fibrosis and adventitial expansion. TGF-ß1 stimulation of AdvSca1-SM cells in vitro reduced expression of stemness genes while inducing expression of myofibroblast genes that was associated with enhanced contractility; PFI blocked TGF-ß1-induced phenotypic transition. Similarly, genetic knockdown of Brg1 in vivo reduced adventitial remodeling and fibrosis and reversed AdvSca1-SM-to-myofibroblast transition in vitro. Mechanistically, TGF-ß1 promoted redistribution of Brg1 from distal intergenic sites of stemness genes and recruitment to promoter regions of myofibroblast-related genes, which was blocked by PFI-3. These data provide insight into epigenetic regulation of resident vascular progenitor cell differentiation and support that manipulating the AdvSca1-SM phenotype will provide antifibrotic clinical benefits.


Asunto(s)
Miofibroblastos , Lesiones del Sistema Vascular , Humanos , Miofibroblastos/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Cromatina/metabolismo , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Epigénesis Genética , Diferenciación Celular , Músculo Liso Vascular , Fibrosis , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Nephrol Dial Transplant ; 38(10): 2232-2247, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36914214

RESUMEN

BACKGROUND: Thromboembolic events are prevalent in chronic kidney disease (CKD) patients due to increased thrombin generation leading to a hypercoagulable state. We previously demonstrated that inhibition of protease-activated receptor-1 (PAR-1) by vorapaxar reduces kidney fibrosis. METHODS: We used an animal model of unilateral ischemia-reperfusion injury-induced CKD to explore the tubulovascular crosstalk mechanisms of PAR-1 in acute kidney injury (AKI)-to-CKD transition. RESULTS: During the early phase of AKI, PAR-1-deficient mice exhibited reduced kidney inflammation, vascular injury, and preserved endothelial integrity and capillary permeability. During the transition phase to CKD, PAR-1 deficiency preserved kidney function and diminished tubulointerstitial fibrosis via downregulated transforming growth factor-ß/Smad signaling. Maladaptive repair in the microvasculature after AKI further exacerbated focal hypoxia with capillary rarefaction, which was rescued by stabilization of hypoxia-inducible factor and increased tubular vascular endothelial growth factor A in PAR-1-deficient mice. Chronic inflammation was also prevented with reduced kidney infiltration by both M1- and M2-polarized macrophages. In thrombin-induced human dermal microvascular endothelial cells (HDMECs), PAR-1 mediated vascular injury through activation of NF-κB and ERK MAPK pathways. Gene silencing of PAR-1 exerted microvascular protection via a tubulovascular crosstalk mechanism during hypoxia in HDMECs. Finally, pharmacologic blockade of PAR-1 with vorapaxar improved kidney morphology, promoted vascular regenerative capacity, and reduced inflammation and fibrosis depending on the time of initiation. CONCLUSIONS: Our findings elucidate a detrimental role of PAR-1 in vascular dysfunction and profibrotic responses upon tissue injury during AKI-to-CKD transition and provide an attractive therapeutic strategy for post-injury repair in AKI.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Daño por Reperfusión , Lesiones del Sistema Vascular , Animales , Humanos , Ratones , Lesión Renal Aguda/etiología , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/tratamiento farmacológico , Células Endoteliales/metabolismo , Fibrosis , Hipoxia , Inflamación/patología , Riñón , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Daño por Reperfusión/complicaciones , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Trombina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología
19.
Am J Transplant ; 23(2): 202-213, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36804130

RESUMEN

Heart transplant and recipient survival are limited by immune cell-mediated injury of the graft vasculature. We examined the role of the phosphoinositide 3-kinase-ß (PI3Kß) isoform in endothelial cells (EC) during coronary vascular immune injury and repair in mice. In minor histocompatibility-antigen mismatched allogeneic heart grafts, a robust immune response was mounted to each wild-type, PI3Kß inhibitor-treated, or endothelial-selective PI3Kß knockout (ECßKO) graft transplanted to wild-type recipients. However, microvascular EC loss and progressive occlusive vasculopathy only developed in control, but not PI3Kß-inactivated hearts. We observed a delay in inflammatory cell infiltration of the ECßKO grafts, particularly in the coronary arteries. Surprisingly, this was accompanied by an impaired display of proinflammatory chemokine and adhesion molecules by the ECßKO ECs. In vitro, tumor necrosis factor α-stimulated endothelial ICAM1 and VCAM1 expression was blocked by PI3Kß inhibition or RNA interference. Selective PI3Kß inhibition also blocked tumor necrosis factor α-stimulated degradation of inhibitor of nuclear factor kappa Bα and nuclear translocation of nuclear factor kappa B p65 in EC. These data identify PI3Kß as a therapeutic target to reduce vascular inflammation and injury.


Asunto(s)
Células Endoteliales , Lesiones del Sistema Vascular , Ratones , Animales , Células Endoteliales/patología , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Lesiones del Sistema Vascular/patología , Factor de Necrosis Tumoral alfa
20.
Life Sci ; 314: 121311, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549350

RESUMEN

Doxorubicin (DOX) is a widely used powerful anthracycline for treatment of many varieties of malignancies; however its cumulative and dose-dependent cardio-toxicity has been limited its clinical use. In the current study, in vivo and in vitro (neonatal rat's cardiomyocytes) experiments were conducted to identify the impact of nifuroxazide (NIFU) on DOX-induced cardiomyopathy, vascular injury, and hemato-toxcity and plot the underlying regulatory mechanisms. Cardiovascular injury was induced in vivo by I.P. injection of an overall dose of DOX (21 mg/kg) administered (3.5 mg/kg) twice weekly for 21 days. NIFU (10 and 30 mg/kg) was administered orally once daily for 21 days, 1 week after DOX injection initiation. In vivo experiments confirmed NIFU to restore blood cells counts and hemoglobin concentration. Moreover, NIFU normalized the myocardial functional status as confirmed by ECG examination and myocardial injury markers; CK-MB, LDH, and AST. NIFU restored the balance between TAC and both of ROS and MDA and down-regulated the protein expression of TLR4, NF-kB, TXNIP, NLR-family pyrin domain containing 3 (NLRP3), caspase-1, IL-1ß, and GSDMD-N terminal, with inhibition of the up-stream of NLRP3 and the down-stream DOX-induced pyroptosis. The in vitro assay confirmed well preserved cardiomyocytes' architecture, amelioration of NLRP3/IL-1 ß-mediated cell pyroptosis, enhanced cell viability, and improved spontaneous beating. Moreover, NIFU normalized the disturbed aortic oxidant-antioxidant balance; enhanced eNOS- mediated endothelial relaxation, and down regulated IL-1ß expression. Thus, NIFU may be proposed to serve as a cardioprotective agent to attenuate DOX-induced cardio-toxicity and vascular injury.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Lesiones del Sistema Vascular , Ratas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Doxorrubicina/toxicidad , Doxorrubicina/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Inflamasomas/metabolismo , Proteínas de Ciclo Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...