Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.415
Filtrar
1.
Cell Death Dis ; 15(7): 475, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961053

RESUMEN

Deregulated apoptosis signaling is characteristic for many cancers and contributes to leukemogenesis and treatment failure in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Apoptosis is controlled by different pro- and anti-apoptotic molecules. Inhibition of anti-apoptotic molecules like B-cell lymphoma 2 (BCL-2) has been developed as therapeutic strategy. Venetoclax (VEN), a selective BCL-2 inhibitor has shown clinical activity in different lymphoid malignancies and is currently evaluated in first clinical trials in BCP-ALL. However, insensitivity to VEN has been described constituting a major clinical concern. Here, we addressed and modeled VEN-resistance in BCP-ALL, investigated the underlying mechanisms in cell lines and patient-derived xenograft (PDX) samples and identified potential strategies to overcome VEN-insensitivity. Leukemia lines with VEN-specific resistance were generated in vitro and further characterized using RNA-seq analysis. Interestingly, gene sets annotated to the citric/tricarboxylic acid cycle and the respiratory electron transport chain were significantly enriched and upregulated, indicating increased mitochondrial metabolism in VEN-resistant ALL. Metabolic profiling showed sustained high mitochondrial metabolism in VEN-resistant lines as compared to control lines. Accordingly, primary PDX-ALL samples with intrinsic VEN-insensitivity showed higher oxygen consumption and ATP production rates, further highlighting that increased mitochondrial activity is a characteristic feature of VEN-resistant ALL. VEN-resistant PDX-ALL showed significant higher mitochondrial DNA content and differed in mitochondria morphology with significantly larger and elongated structures, further corroborating our finding of augmented mitochondrial metabolism upon VEN-resistance. Using Oligomycin, an inhibitor of the complex V/ATPase subunit, we found synergistic activity and apoptosis induction in VEN-resistant BCP-ALL cell lines and PDX samples, demonstrating that acquired and intrinsic VEN-insensitivity can be overcome by co-targeting BCL-2 and the OxPhos pathway. These findings of reprogrammed, high mitochondrial metabolism in VEN-resistance and synergistic activity upon co-targeting BCL-2 and oxidative phosphorylation strongly suggest further preclinical and potential clinical evaluation in VEN-resistant BCP-ALL.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Resistencia a Antineoplásicos , Mitocondrias , Fosforilación Oxidativa , Leucemia-Linfoma Linfoblástico de Células Precursoras , Sulfonamidas , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Humanos , Fosforilación Oxidativa/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Sulfonamidas/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animales , Línea Celular Tumoral , Ratones , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética
2.
Mol Biol Rep ; 51(1): 749, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874800

RESUMEN

Background The incidence of various types of cancers, including leukemia, is on the rise and many challenges in both drug resistance and complications related to chemotherapy appeared. Recently, the development and application of extracellular vesicles (EV) such as exosomes in the management of cancers, especially leukemia, holds great significance. In this article, we extracted exosomes from NALM6 cells and assessed their regulatory effects on proliferation and apoptosis in mesenchymal stem cells (MSCs). Method and result We first verified the exosomes using various techniques, including flow cytometry, transient electron microscopy, dynamic light scattering (DLS), and BCA protein assay. Then MTT analysis and flowcytometry (apoptosis and cell cycle assay) besides gene expressions were employed to determine the state of MSC proliferations. The results indicated that exosome-specific pan markers like CD9, CD63, and CD81 were present. Through DLS, we found out that the mean size of the exosomes was 89.68 nm. The protein content was determined to be 956.292 µg/ml. Analysis of MTT, flow cytometry (cell cycle and apoptosis assay), and RT-qPCR showed that in the dose of 50 µg/ml the proliferation of MSCs was increased significantly (p-value < 0.05). Conclusion All these data showed that exosomes use several signaling pathways to increase the MSCs' proliferation and drug resistance, ultimately leading to high mortalities and morbidities of acute lymphoblastic leukemia.


Asunto(s)
Apoptosis , Proliferación Celular , Exosomas , Células Madre Mesenquimatosas , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Humanos , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Tetraspanina 29/metabolismo , Tetraspanina 29/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Tetraspanina 30/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética
3.
Biochemistry (Mosc) ; 89(5): 883-903, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38880649

RESUMEN

Immune system and bone marrow stromal cells play an important role in maintaining normal hematopoiesis. Lymphoid neoplasia disturbs not only development of immune cells, but other immune response mechanisms as well. Multipotent mesenchymal stromal cells (MSCs) of the bone marrow are involved in immune response regulation through both intercellular interactions and secretion of various cytokines. In hematological malignancies, the bone marrow stromal microenvironment, including MSCs, is altered. Aim of this study was to describe the differences of MSCs' immunological function in the patients with acute lymphoblastic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL). In ALL, malignant cells arise from the early precursor cells localized in bone marrow, while in DLBCL they arise from more differentiated B-cells. In this study, only the DLBCL patients without bone marrow involvement were included. Growth parameters, surface marker expression, genes of interest expression, and secretion pattern of bone marrow MSCs from the patients with ALL and DLBCL at the onset of the disease and in remission were studied. MSCs from the healthy donors of corresponding ages were used as controls. It has been shown that concentration of MSCs in the bone marrow of the patients with ALL is reduced at the onset of the disease and is restored upon reaching remission; in the patients with DLBCL this parameter does not change. Proliferative capacity of MSCs did not change in the patients with ALL; however, the cells of the DLBCL patients both at the onset and in remission proliferated significantly faster than those from the donors. Expression of the membrane surface markers and expression of the genes important for differentiation, immunological status maintenance, and cytokine secretion differed significantly in the MSCs of the patients from those of the healthy donors and depended on nosology of the disease. Secretomes of the MSCs varied greatly; a number of proteins associated with immune response regulation, differentiation, and maintenance of hematopoietic stem cells were depleted in the secretomes of the cells from the patients. Lymphoid neoplasia leads to dramatic changes in the functional immunological status of MSCs.


Asunto(s)
Linfoma de Células B Grandes Difuso , Células Madre Mesenquimatosas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Linfoma de Células B Grandes Difuso/inmunología , Linfoma de Células B Grandes Difuso/patología , Linfoma de Células B Grandes Difuso/metabolismo , Masculino , Adulto , Femenino , Persona de Mediana Edad , Células de la Médula Ósea/inmunología , Proliferación Celular , Adulto Joven
4.
Mol Biol Rep ; 51(1): 775, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904729

RESUMEN

Acute leukemias (ALs) are the most common cancers in pediatric population. There are two types of ALs: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Some studies suggest that the Renin Angiotensin System (RAS) has a role in ALs. RAS signaling modulates, directly and indirectly, cellular activity in different cancers, affecting tumor cells and angiogenesis. Our review aimed to summarize the role of RAS in ALs and to explore future perspectives for the treatment of these hematological malignancies by modulating RAS molecules. The database including Pubmed, Scopus, Cochrane Library, and Scielo were searched to find articles about RAS molecules in ALL and in pediatric patients. The search terms were "RAS", "Acute Leukemia", "ALL", "Angiotensin-(1-7)", "Pediatric", "Cancer", "Angiotensin II", "AML". In the bone marrow, RAS has been found to play a key role in blood cell formation, affecting several processes including apoptosis, cell proliferation, mobilization, intracellular signaling, angiogenesis, fibrosis, and inflammation. Local tissue RAS modulates tumor growth and metastasis through autocrine and paracrine actions. RAS mainly acts via two molecules, Angiotensin II (Ang II) and Angiotensin (1-7) [Ang-(1-7)]. While Ang II promotes tumor cell growth and stimulates angiogenesis, Ang-(1-7) inhibits the proliferation of neoplastic cells and the angiogenesis, suggesting a potential therapeutic role of this molecule in ALL. The interaction between ALs and RAS reveals a complex network of molecules that can affect the hematopoiesis and the development of hematological cancers. Understanding these interactions could pave the way for innovative therapeutic approaches targeting RAS components.


Asunto(s)
Angiotensina II , Leucemia-Linfoma Linfoblástico de Células Precursoras , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/fisiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Angiotensina II/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Transducción de Señal , Angiotensina I/metabolismo , Neovascularización Patológica/metabolismo , Animales , Fragmentos de Péptidos/metabolismo
6.
Blood Cancer J ; 14(1): 96, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871704

RESUMEN

Childhood acute lymphoblastic leukemia (cALL) survivors suffer early-onset chronic diseases classically associated with aging. Normal aging is accompanied by organ dysfunctions, including immunological ones. We hypothesize that thymic immunosenescence occurs in cALL survivors and that its severity may correlate with early-onset chronic diseases. The PETALE study is a cALL survivor cohort with an extensive cardiovascular and metabolic evaluation. The thymic immunosenescence biomarker, signal joint T-cell receptor excision circles (TREC), was evaluated and was highly correlated with age in healthy participants (n = 281) and cALL survivors (n = 248). We observed a systematic thymic immunoage accentuation in each cALL survivor compared to controls ranging from 5.9 to 88.3 years. The immunoage gain was independent of age at diagnosis and treatment modalities and was more severe for females. Thymic aging was associated with several pathophysiological parameters, was greater in survivors suffering from metabolic syndrome, but there was no significant association with global physical condition. The decrease in TREC was independent from blood cell counts, which were normal, suggesting a segmental aging of the thymic compartment. Indeed, increased plasmatic T cell regulatory cytokines IL-6, IL-7 and GM-CSF accompanied high immunoage gain. Our data reveal that cALL or its treatment trigger a rapid immunoage gain followed by further gradual thymic immunosenescence, similar to normal aging. This leads to an enduring shift in accentuated immunoage compared to chronological age. Thus, accentuated thymic immunosenescence is a hallmark of cALL survivorship and TREC levels could be useful immunosenescence biomarkers to help monitoring the health of cancer survivors.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Timo , Humanos , Femenino , Masculino , Niño , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Adolescente , Adulto , Timo/patología , Timo/inmunología , Preescolar , Adulto Joven , Anciano , Persona de Mediana Edad , Anciano de 80 o más Años , Supervivientes de Cáncer , Inmunosenescencia , Supervivencia
7.
Leukemia ; 38(7): 1534-1540, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38714877

RESUMEN

CD19 CAR-T cells have led to durable remissions in patients with refractory B-cell malignancies; nevertheless, most patients eventually relapse in the long term. Many interventions aimed at improving current products have been reported, with a subset of them focusing on a direct or indirect link to the metabolic state of the CAR-T cells. We assessed clinical products from an ongoing clinical trial utilizing CD19-28z CAR-T cells from patients with acute lymphoblastic leukemia. CAR-T clinical products leading to a complete response had significantly higher mitochondrial function (by oxygen consumption rate) irrespective of mitochondrial content. Next, we replaced the carbon source of the media from glucose to galactose to impact cellular metabolism. Galactose-containing media increased mitochondrial activity in CAR-T cells, and improved in in-vitro efficacy, without any consistent phenotypic change in memory profile. Finally, CAR-T cells produced in galactose-based glucose-free media resulted in increased mitochondrial activity. Using an in-vivo model of Nalm6 injected mice, galactose-primed CAR-T cells significantly improved leukemia-free survival compared to standard glucose-cultured CAR-T cells. Our results prove the significance of mitochondrial metabolism on CAR-T cell efficacy and suggest a translational pathway to improve clinical products.


Asunto(s)
Galactosa , Inmunoterapia Adoptiva , Mitocondrias , Galactosa/metabolismo , Animales , Ratones , Mitocondrias/metabolismo , Humanos , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Antígenos CD19/metabolismo , Linfocitos T/metabolismo , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Hematology ; 29(1): 2356292, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38785187

RESUMEN

OBJECTIVES: This study aims to investigate the role of excessive Protein Tyrosine Phosphatase Non-Receptor Type 21 (PTPN21) in the proliferation of Acute Lymphoblastic Leukemia (ALL) cells with EGF stimulation. METHODS: PTPN21 was overexpressed in ALL cell lines by lentiviral transfection. Apoptosis was assayed by Annexin V/7-AAD staining. The proliferation and cell cycle of EGF-treated ALL cells were assessed by MTT and Ki-67/7-AAD staining respectively. The phosphorylation of Src tyrosine kinase and mediators of distinct MAPK pathways were assessed by Western blot. RESULTS: Overexpression of PTPN21 had minimal effect on the apoptosis of ALL cells, but significantly promoted the proliferation and cell cycle progression of ALL cells stimulated with EGF. The activity of Src tyrosine kinase and the MAPK pathways was elevated. Inhibition of MAPK pathways by specific inhibitors mitigated this pro-proliferative effect of excessive PTPN21 on EGF-stimulated ALL cells. CONCLUSION: PTPN21 may facilitate ALL progression by promoting cell proliferation via the Src/MAPK signaling pathways.


Asunto(s)
Proliferación Celular , Factor de Crecimiento Epidérmico , Sistema de Señalización de MAP Quinasas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Tirosina Fosfatasas no Receptoras , Humanos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo
9.
Expert Rev Hematol ; 17(6): 269-274, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38753450

RESUMEN

BACKGROUND: Despite advancements in chemotherapy and stem cell transplantation, the recurrence and chemoresistance of childhood acute lymphoblastic leukemia (cALL) remain a significant challenge, thus indicating the need for novel therapeutic targets. RESEARCH DESIGN AND METHODS: The protein levels of YAP1, p-YAP1, TAZ, and Cyr61 of cALL patients and healthy volunteers were measured by western blot analysis. Then the leukemic cell line SUP-B15 was transfected with sh-YAP1 and pcDNA3.1-YAP1 to knockdown or overexpress YAP1. The viability, chemosensitivity, apoptosis, migration, and invasion of SUP-B15 cells were determined by MTT, flow cytometry, and Transwell assay. RESULTS: The cALL patients had higher YAP1, TAZ, and Cyr61 protein expression and lower p-YAP1 protein expression in bone marrow tissues compared with healthy volunteers (p < 0.01). In SUP-B15 cells, YAP1 knockdown upregulated p-YAP1 protein expression (p < 0.01) and downregulated TAZ and Cyr61 protein expression (p < 0.01). In addition, knocking down YAP1 significantly inhibited cell viability, migration, and invasion, and induced apoptosis (p < 0.01). YAP1 knockdown also reduced the IC50 value following treatment with vincristine, daunorubicin, cyclophosphamide, and dexamethasone (p < 0.05). CONCLUSIONS: Disruption of the Hippo pathway attenuates the development of cALL by promoting cell proliferation while suppressing apoptosis and drug sensitivity.


Asunto(s)
Apoptosis , Proliferación Celular , Vía de Señalización Hippo , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Factores de Transcripción , Humanos , Apoptosis/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proliferación Celular/efectos de los fármacos , Niño , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Femenino , Línea Celular Tumoral , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Masculino , Transducción de Señal/efectos de los fármacos , Preescolar , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Resistencia a Antineoplásicos , Movimiento Celular , Adolescente
10.
Biomolecules ; 14(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38785930

RESUMEN

Herpesvirus entry mediator (HVEM) is a molecular switch that can modulate immune responses against cancer. The significance of HVEM as an immune checkpoint target and a potential prognostic biomarker in malignancies is still controversial. This study aims to determine whether HVEM is an immune checkpoint target with inhibitory effects on anti-tumor CD4+ T cell responses in vitro and whether HVEM gene expression is dysregulated in patients with acute lymphocytic leukemia (ALL). HVEM gene expression in tumor cell lines and peripheral blood mononuclear cells (PBMCs) from ALL patients and healthy controls was measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Tumor cells were left untreated (control) or were treated with an HVEM blocker before co-culturing with CD4+ T cells in vitro in a carboxyfluorescein succinimidyl ester (CFSE)-dependent proliferation assay. HVEM expression was upregulated in the chronic myelogenous leukemia cell line (K562) (FC = 376.3, p = 0.086) compared with normal embryonic kidney cells (Hek293). CD4+ T cell proliferation was significantly increased in the HVEM blocker-treated K562 cells (p = 0.0033). Significant HVEM differences were detected in ALL PBMCs compared with the controls, and these were associated with newly diagnosed ALL (p = 0.0011) and relapsed/refractory (p = 0.0051) B cell ALL (p = 0.0039) patients. A significant differentiation between malignant ALL and the controls was observed in a receiver operating characteristic (ROC) curve analysis with AUC = 0.78 ± 0.092 (p = 0.014). These results indicate that HVEM is an inhibitory molecule that may serve as a target for immunotherapy and a potential ALL biomarker.


Asunto(s)
Biomarcadores de Tumor , Miembro 14 de Receptores del Factor de Necrosis Tumoral , Humanos , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Miembro 14 de Receptores del Factor de Necrosis Tumoral/genética , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Masculino , Femenino , Pronóstico , Persona de Mediana Edad , Adulto , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/inmunología , Células K562 , Células HEK293 , Proliferación Celular , Anciano , Línea Celular Tumoral , Adulto Joven , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología
11.
Leukemia ; 38(6): 1223-1235, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38600316

RESUMEN

Due to the rarity of TP53 mutations in acute lymphoblastic leukemia (ALL), p53 re-activation by antagonism of the p53-MDM2 interaction represents a potential therapeutic strategy for the majority of ALL. Here, we demonstrate the potent antileukemic activity of the MDM2 antagonist idasanutlin in high-risk and relapsed ex vivo coculture models of TP53 wildtype ALL (n = 40). Insufficient clinical responses to monotherapy MDM2 inhibitors in other cancers prompted us to explore optimal drugs for combination therapy. Utilizing high-throughput combination screening of 1971 FDA-approved and clinically advanced compounds, we identified BCL-xL/BCL-2 inhibitor navitoclax as the most promising idasanutlin combination partner. The idasanutlin-navitoclax combination was synergistically lethal to prognostically-poor, primary-derived and primary patient blasts in ex vivo coculture, and reduced leukemia burden in two very high-risk ALL xenograft models at drug concentrations safely attained in patients; in fact, the navitoclax plasma concentrations were equivalent to those attained in contemporary "low-dose" navitoclax clinical trials. We demonstrate a preferential engagement of cell death over G1 cell cycle arrest, mechanistically implicating MCL-1-binding pro-apoptotic sensitizer NOXA. The proposed combination of two clinical-stage compounds independently under clinical evaluation for ALL is of high clinical relevance and warrants consideration for the treatment of patients with high-risk and relapsed ALL.


Asunto(s)
Compuestos de Anilina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Proto-Oncogénicas c-bcl-2 , Sulfonamidas , Proteína p53 Supresora de Tumor , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína bcl-X , Humanos , Proteína bcl-X/antagonistas & inhibidores , Proteína bcl-X/metabolismo , Animales , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Ratones , Proteína p53 Supresora de Tumor/metabolismo , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sulfonamidas/farmacología , Apoptosis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Sinergismo Farmacológico , Línea Celular Tumoral , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/metabolismo , Pirrolidinas , para-Aminobenzoatos
12.
Exp Biol Med (Maywood) ; 249: 10111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510491

RESUMEN

MicroRNAs (mRNAs) were believed to play an important role in cancers, and this study aimed to explore the mechanism of miRNA regulating Treg in B-cell acute lymphoblastic leukemia (B-ALL). Firstly, the differentially expressed miRNAs and target genes significantly associated with Tregs were screened out by high-throughput sequencing, and their enrichment pathways were analyzed. The binding relationship between miRNA and target genes was further verified, and the effects of miRNA on the proliferation and apoptosis of B-ALL Nalm-6 cells and Treg activation were analyzed. Results showed that differentially expressed miR-539-5p was significantly under-expressed, and its target gene BMP2 was significantly over-expressed in B-ALL, and significantly enriched in the TGF-ß1 pathway. In addition, both miR-539-5p and BMP2 were significantly correlated with Treg activity in B-ALL. In vitro experiments further confirmed that miR-539-5p could directly target BMP2. The low expression of miR-539-5p in B-ALL significantly promoted BMP2 expression to promote the proliferation and inhibit apoptosis of Nalm-6 cells. Furthermore, the high expression of BMP2 in B-ALL could cooperate with TGF-ß1 to promote the activation of human CD4+CD25-T cells to Treg, and significantly activate the TGF-ß/Smads/MAPK pathway. In vivo experiments also confirmed that overexpression of miR-539-5p significantly inhibited BMP2 to suppress Treg activation and Smad1 and Smad2 phosphorylation, and finally inhibit the B-ALL process. In conclusion, miR-539-5p was significantly under-expressed in B-ALL and could target BMP2 to promote its expression, and the overexpressed BMP2 further promoted Treg activation in B-ALL by regulating TGF-ß/Smads/MAPK pathway.


Asunto(s)
MicroARNs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Linfocitos T Reguladores , MicroARNs/genética , MicroARNs/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proliferación Celular/genética , Proteína Morfogenética Ósea 2/genética
13.
J Transl Med ; 22(1): 274, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38475814

RESUMEN

BACKGROUND: Chimeric antigen receptor natural killer (CAR-NK) cells represent a promising advancement in CAR cell therapy, addressing limitations observed in CAR-T cell therapy. However, our prior study revealed challenges in CAR-NK cells targeting CD19 antigens, as they failed to eliminate CD19+ Raji cells in NSG tumor-bearing mice, noting down-regulation or loss of CD19 antigen expression in some Raji cells. In response, this study aims to enhance CD19 CAR-NK cell efficacy and mitigate the risk of tumor recurrence due to target antigen escape by developing CD19 and CD20 (CD19/CD20) dual-targeted CAR-NK cells. METHODS: Initially, mRNA encoding anti-CD19 CARs (FMC63 scFv-CD8α-4-1BB-CD3ζ) and anti-CD20 CARs (LEU16 scFv-CD8α-4-1BB-CD3ζ) was constructed via in vitro transcription. Subsequently, CD19/CD20 dual-targeted CAR-NK cells were generated through simultaneous electrotransfection of CD19/CD20 CAR mRNA into umbilical cord blood-derived NK cells (UCB-NK). RESULTS: Following co-electroporation, the percentage of dual-CAR expression on NK cells was 86.4% ± 1.83%, as determined by flow cytometry. CAR expression was detectable at 8 h post-electric transfer, peaked at 24 h, and remained detectable at 96 h. CD19/CD20 dual-targeted CAR-NK cells exhibited increased specific cytotoxicity against acute lymphoblastic leukemia (ALL) cell lines (BALL-1: CD19+CD20+, REH: CD19+CD20-, Jurkat: CD19-CD20-) compared to UCB-NK, CD19 CAR-NK, and CD20 CAR-NK cells. Moreover, CD19/CD20 dual-targeted CAR-NK cells released elevated levels of perforin, IFN-γ, and IL-15. Multiple activation markers such as CD69 and cytotoxic substances were highly expressed. CONCLUSIONS: The creation of CD19/CD20 dual-targeted CAR-NK cells addressed the risk of tumor escape due to antigen heterogeneity in ALL, offering efficient and safe 'off-the-shelf' cell products. These cells demonstrate efficacy in targeting CD20 and/or CD19 antigens in ALL, laying an experimental foundation for their application in ALL treatment.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Ratones , Animales , Receptores Quiméricos de Antígenos/metabolismo , Antígenos CD19/genética , Antígenos CD19/metabolismo , Citotoxicidad Inmunológica/genética , Línea Celular Tumoral , Células Asesinas Naturales , Inmunoterapia Adoptiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , ARN Mensajero/metabolismo
14.
Talanta ; 274: 125979, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537358

RESUMEN

Terminal deoxynucleotidyl transferase (TdT), a specialized DNA polymerase, is recognized as a promising biomarker for acute leukemia. Herein, taking the advantage of the self-mediated strand elongation property of TdT, a simple and sensitive method for TdT activity assay was developed based on gold nanoparticles (AuNPs) labeling inductively coupled plasma mass spectrometry (ICP-MS). In the presence of TdT, the primer DNA on magnetic beads is elongated with an adenine-rich single stranded long chain that can label poly-thymine modified AuNPs. After acid elution, the labeled AuNPs were detected by ICP-MS, and the signal intensity of 197Au reflected the TdT activity. Under the optimal conditions, the limit of detection for TdT activity is down to 0.054 U mL-1, along with good selectivity and strong tolerance to other interfering proteins. Furthermore, it achieves a straightforward and accurate detection of TdT activity in acute lymphoblastic leukemia cells without sample pre-processing and tool enzyme addition. Therefore, the proposed method shows great promise as a valuable tool for TdT-related biological research and leukemia therapeutics.


Asunto(s)
ADN Nucleotidilexotransferasa , Oro , Espectrometría de Masas , Nanopartículas del Metal , ADN Nucleotidilexotransferasa/metabolismo , ADN Nucleotidilexotransferasa/química , Humanos , Oro/química , Nanopartículas del Metal/química , Espectrometría de Masas/métodos , Pruebas de Enzimas/métodos , ADN/química , ADN/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Límite de Detección
15.
Asian Pac J Cancer Prev ; 25(1): 325-332, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38285800

RESUMEN

INTRODUCTION: Up-regulation of the anti-apoptotic proteins such as Mcl-1 is associated with the primary and secondary resistance of tumor cells to ABT-737 Bcl-2 inhibitor. The combined treatment of Bcl-2 inhibitors with Mcl-1 inhibitors has been proposed as an attractive therapeutic strategy to overcome this drug resistance. Here, we investigated the effect of dihydroartemisinin on Mcl-1 expression and sensitization of T-ALL cells to ABT-737. METHODS: The cell growth and survival were tested by the cell proliferation and MTT assays, respectively. The mRNA levels of Bcl-2, Mcl-1, Bax and P21 were examined by qRT-PCR. Apoptosis were detected by Hoechst 33342 staining and caspase-3 activity assay. RESULTS: Our data showed that combination treatment with dihydroartemisinin and ABT-737 caused a significant decrease in the IC50 value and synergistically reduced the cell survival compared with dihydroartemisinin or ABT-737 alone. ABT-737 enhanced the Mcl-1 mRNA expression. Dihydroartemisinin also down-regulated the expression of Bcl-2 and Mcl-1 and enhanced the P21 and Bax expression. Moreover, dihydroartemisinin enhanced the apoptosis induced by ABT-737 in MOLT-4 and MOLT-17 cell lines. CONCLUSION: In conclusion, dihydroartemisinin demonstrates anti-tumor activities in human ALL cells via inhibition of cell survival and growth. Dihydroartemisinin augments the apoptotic effect of ABT-737 by inhibiting the expression of Mcl-1.


Asunto(s)
Antineoplásicos , Artemisininas , Nitrofenoles , Leucemia-Linfoma Linfoblástico de Células Precursoras , Sulfonamidas , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína X Asociada a bcl-2 , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Compuestos de Bifenilo/farmacología , Antineoplásicos/farmacología , Apoptosis , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sinergismo Farmacológico , Piperazinas
17.
Cancer ; 130(5): 713-726, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37819686

RESUMEN

BACKGROUND: Philadelphia chromosome (Ph)-like B-acute lymphoblastic leukemia (B-ALL) is a clinically significant, high-risk genetic subtype of B-ALL cases. There are few data on the incidence, characterization, and treatment outcomes of Ph-like ALL cases from low- and middle-income countries. There is a pressing need to establish a well-organized/cost-effective approach for identifying Ph-like ALL instances. METHODS: Multiplex reverse transcriptase polymerase chain reaction, nCounter NanoString, and fluorescence in situ hybridization were used to detect and characterize Ph-like ALL cases among recurrent genetic abnormalities (RGA)neg B-ALL cases. At the end of induction therapy, flow cytometry-minimal residual disease (MRD) assay was used to quantify MRD positivity in Ph-like ALL cases. RESULTS: Of 130 newly diagnosed B-ALL cases, 25% (BCR::ABL1), 4% (ETV6::RUNX1), 5% (TCF3::PBX1), 2% (KM2TA::AFF1), and 65% RGAneg B-ALL cases were revealed by multiplex reverse transcriptase polymerase chain reaction. Among RGAneg B-ALL cases, 24% Ph-like ALL cases using nCounter NanoString were identified, with 48% CRLF2high cases with 45% CRLF2::P2RY8 and 18% CRLF2::IGH rearrangements(∼r) revealed by fluorescence in situ hybridization. In 52% of CRLF2low cases, 17% ABL1 and JAK2∼r 8% EPOR::IGH & PDGRFB∼r were identified. Ph-like ALL cases had higher total leukocyte count (p < .05), male preponderance (p < .05), and high MRD-positivity/induction failure compared with RGAneg B-ALL cases. Furthermore, in Ph-like ALL cases, 11 significant genes using quantitative polymerase chain reaction were identified and validated. CRLF2, IGJ, CEACAM6, MUC4, SPATS2L and NRXN3 genes were overexpressed and show statistical significance (p < .05) in Ph-like ALL cases. CONCLUSIONS: This study showed the high incidence of Ph-like ALL cases with kinase activating alterations and treatment outcomes from low- and middle-income region. Furthermore, a surrogate cost-effective multiplex panel of 11 overexpressed genes for the prompt detection of Ph-like ALL cases is proposed. PLAIN LANGUAGE SUMMARY: Identification of recurrent gene abnormalities (RGA)neg B-acute lymphoblastic leukemia (B-ALL) cases using multiplex-reverse transcriptase polymerase chain reaction. Identification and characterization of Philadelphia (Ph)-like ALL cases using nCounter NanoString gene expression profiling and fluorescence in situ hybridization. Furthermore, Ph-like ALL cases were characterized according to CRLF2 expression and kinase-activating genomic alterations. Minimal residual disease of Ph-like ALL cases were quantified using flow cytometry-minimal residual disease assay. A surrogate molecular approach was established to detect Ph-like ALL cases from low- and middle-income countries.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Masculino , Cromosoma Filadelfia , Hibridación Fluorescente in Situ , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Enfermedad Aguda
18.
Biomed Pharmacother ; 170: 115936, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38039755

RESUMEN

Isogarcinol (ISO), a cytotoxic polycyclic polyprenylated acylphloroglucinol isolated from the edible fruits of Garcinia multiflora. However, synergistic combination of ISO and dexamethasone (DEX) to overcome leukemia glucocorticoid resistance has never been investigated. Therefore, in this study, the effects of ISO in combination with DEX was conducted on leukemia in vivo and glucocorticoid resistance in vitro. As a result, the combination of the two compounds could efficiently inhibit leukemia progression in mice and reverse DEX resistance in acute lymphoblastic leukemia (ALL) Jurkat cells. Significantly, our findings indicated that c-Myc may be a potential target of ISO, as it is involved in cell cycle arrest and apoptosis by the combination of ISO and DEX in Jurkat cells. Furthermore, western blot analysis revealed that ISO and DEX inhibits the PI3K/Akt/mTOR signaling pathway and promotes the nuclear translocation of glucocorticoid receptor (GR), which activates target genes NR3C1 and TSC22D3, leading to apoptosis in Jurkat cells. Hence, our results suggest that ISO, as a safe and effective food-derived agent, can enhance the anti-leukemia effects of DEX.


Asunto(s)
Garcinia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Ratones , Glucocorticoides/farmacología , Receptores de Glucocorticoides/metabolismo , Dexametasona/farmacología , Frutas , Fosfatidilinositol 3-Quinasas , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Apoptosis
19.
Biochim Biophys Acta Gen Subj ; 1868(1): 130499, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914146

RESUMEN

BACKGROUND: L-asparaginase (ASNase) has played a key role in the management of acute lymphoblastic leukaemia (ALL). As an amidohydrolase, it catalyzes the hydrolysis of L-asparagine, a crucial step in the treatment of ALL. Various ASNase variants have evolved from diverse sources since it was first used in paediatric patients in the 1960s. This review describes the available ASNase and approaches being used to develop ASNase as a biobetter candidate. SCOPE OF REVIEW: The review discusses the Glycosylation and PEGylation techniques, which are frequently used to develop biobetter versions of the majority of the therapeutic proteins. Further, it explores current ASNase biobetters in therapeutic use and discusses the protein engineering and chemical modification approaches that were employed to reduce immunogenicity, extend protein half-life, and enhance protease stability of ASNase. Emerging strategies like immobilization and encapsulation are also highlighted as potential pathways for improving ASNase properties. MAJOR CONCLUSIONS: The purpose of the development of ASNase biobetter is to achieve a novel therapeutic candidate that could improve catalytic efficiency, in vivo stability with minimum glutaminase (GLNase) activity and toxicity. Modification of ASNase by immobilization and encapsulation or by fusion technologies like Albumin fusion, Fc fusion, ELP fusion, XTEN fusion, etc. can be exploited to develop a novel biobetter candidate suitable for therapeutic approaches. GENERAL SIGNIFICANCE: This review emphasizes the importance of biobetter development for therapeutic proteins like ASNase. Improved ASNase molecules have the potential to significantly advance the treatment of ALL and have broader implications in the pharmaceutical industry.


Asunto(s)
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Niño , Asparaginasa/genética , Asparaginasa/uso terapéutico , Asparaginasa/química , Antineoplásicos/química , Asparagina , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Glutamina/metabolismo
20.
ACS Appl Bio Mater ; 6(12): 5789-5797, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38047730

RESUMEN

l-asparaginase (ASNase), an enzyme that catalyzes the hydrolysis of l-asparagine into l-aspartic acid, is frequently used as a medication for acute lymphoblastic leukemia (ALL). However, when derived from bacterial sources, this enzyme can elicit side effects, including allergic or hypersensitivity reactions, owing to immune responses. Here, we describe the synthesis of polyoxazoline-conjugated ASNase (POx-ASNase) and investigate its enzyme activity, anticancer efficacy, immunogenicity, and retention in the bloodstream. The water-soluble POx was coupled with surface lysine residues of ASNase using a bifunctional cross-linker. The average number of polymers bound to each enzyme was determined as 10. Although the enzymatic activity of POx-ASNase decreased to 56% of that of native ASNase, its temperature and pH dependencies remained unaltered. Remarkably, the lyophilized powder form of POx-ASNase retained its catalytic ability for 24 months. POx-ASNase demonstrated nearly identical anticancer efficacy compared to naked ASNase against leukemia and lymphoma cells (MOLT-4, CLBL-1, and K562) while displaying no cytotoxicity toward normal cells. Animal experiments conducted using rats revealed that the POx decoration suppressed the generation of anti-ASNase IgM and IgG antibodies with no detection of anti-POx antibodies. The half-life within the bloodstream extended to 34 h, representing a 17-fold increase compared to unmodified ASNase. These findings suggest that POx-ASNase serves as an anticancer therapeutic agent, characterized by the absence of antibody production and notably extended circulation persistence.


Asunto(s)
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Ratas , Asparaginasa/uso terapéutico , Asparaginasa/química , Formación de Anticuerpos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Antineoplásicos/uso terapéutico , Asparagina/metabolismo , Asparagina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...