Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 459
Filtrar
1.
Food Microbiol ; 119: 104452, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38225053

RESUMEN

The current study was conducted to statistically compare the SYBR® Green quantitative polymerase chain reaction (qPCR) assay and the conventional plate counting (PC) method to construct growth curves of a cocktail of Weissella viridescens in pure culture under different isothermal storage conditions (4, 8, 14, and 30 °C) and in mixed culture with Leuconostoc mesenteroides at 8 °C. The efficiency and specificity of the qPCR standard curves were confirmed, and both methods were adequate to quantify the growth kinetics of W. viridescens at all isothermal temperatures, demonstrating a good correlation and agreement. The efficiencies of the standard curves varied between 98% and 102%. The SYBR® Green qPCR assay was also able to differentiate the growth curves of W. viridescens and L. mesenteroides in the mixed culture at 8 °C. Additionally, the SYBR® Green qPCR method was considered a faster and more sensitive alternative to construct growth curves under different isothermal conditions and differentiate morphologically similar lactic acid bacteria. Overall, the results suggest that the SYBR® Green qPCR method is a reliable and efficient tool to study microbial growth kinetics in pure and mixed cultures.


Asunto(s)
Lactobacillales , Leuconostoc mesenteroides , Weissella , Lactobacillus , Weissella/genética , Leuconostoc/genética
2.
Bioresour Technol ; 385: 129399, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37380039

RESUMEN

2-O-α-D-glucopyranosyl-sn-glycerol (2-αGG) is a high value product with wide applications. Here, an efficient, safe and sustainable bioprocesses for 2-αGG production was designed. A novel sucrose phosphorylase (SPase) was firstly identified from Leuconostoc mesenteroides ATCC 8293. Subsequently, SPase mutations were processed with computer-aided engineering, of which the activity of SPaseK138C was 160% higher than that of the wild-type. Structural analysis revealed that K138C was a key functional residue moderating substrate binding pocket and thus influences catalytic activity. Furthermore, Corynebacterium glutamicum was employed to construct microbial cell factories along with ribosome binding site (RBS) fine-tuning and a two-stage substrate feeding control strategy. The maximum production of 2-αGG by these combined strategies reached 351.8 g·L-1 with 98% conversion rate from 1.4 M sucrose and 3.5 M glycerol in a 5-L bioreactor. This was one of the best performance reported in single-cell biosynthesis of 2-αGG, which paved effective ways for industrial-scale preparation of 2-αGG.


Asunto(s)
Leuconostoc mesenteroides , Leuconostoc mesenteroides/metabolismo , Glicerol , Sacarosa/metabolismo , Biotransformación , Leuconostoc/genética , Leuconostoc/metabolismo
3.
J Biosci Bioeng ; 135(6): 451-457, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37003936

RESUMEN

The Kimoto-style fermentation starter is a traditional preparation method of sake brewing. In this process, specific microbial transition patterns have been observed within nitrate-reducing bacteria and lactic acid bacteria during the production process of the fermentation starter. We have characterized phylogenetic compositions and diversity of the bacterial community in a sake brewery performing the Kimoto-style fermentation. Comparing the time-series changes with other sake breweries previously reported, we found a novel type of Kimoto-style fermentation in which the microbial transition differed significantly from other breweries during the fermentation step. Specifically, the lactic acid bacteria, Leuconostoc spp. was a predominant species in the late stage in the preparation process of fermentation starter, on the other hand, Lactobacillus spp., which plays a pivotal role in other breweries, was not detected in this analysis. The discovery of this new variation of microbiome transition in Kimoto-style fermentation has further deepened our understanding of the diversity of sake brewing.


Asunto(s)
Lactobacillales , Proteínas de Saccharomyces cerevisiae , Humanos , Bebidas Alcohólicas/análisis , Bacterias , Fermentación , Microbiología de Alimentos , Lactobacillus/genética , Leuconostoc/genética , Filogenia , Saccharomyces cerevisiae
4.
Meat Sci ; 199: 109121, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36724675

RESUMEN

Insights into changes in microorganisms and metabolites in irradiated marbled beef may help elucidate the beneficial effects of irradiation on prolonging the shelf life of meat. In this study, 16S rRNA gene sequencing, ultra-high-performance liquid chromatography-tandem mass spectrometry, and Pearson's correlation analyses were conducted to detect key microorganisms, core metabolites, and potential correlation between the microbiome and metabolome in marbling beef. Microbiome analysis showed that irradiation effectively eradicated the spoilage bacterium Leuconostoc and reduced the proportions of Carnobacterium and Lactobacillus in marbled beef. Additionally, results of metabolomic analysis involving irradiated marbled beef revealed that metabolites with significant differences were mainly organic acids and their derivatives, lipids, and lipid-like molecules, including six core metabolites. Furthermore, a significant correlation between key bacteria and metabolites was observed. Carnobacterium, Lactobacillus, and Leuconostoc affected the accumulation of core metabolites in irradiated marbled beef by influencing amino acid and lipid metabolism. Characterization of the microbiota and metabolites, as well as clarification of their correlation, can contribute to a better understanding of the mechanisms whereby irradiation helps maintain meat quality.


Asunto(s)
Microbiología de Alimentos , Embalaje de Alimentos , Animales , Bovinos , Embalaje de Alimentos/métodos , ARN Ribosómico 16S/genética , Carne/análisis , Bacterias , Carnobacterium , Leuconostoc/genética , Lactobacillus/genética
5.
Food Res Int ; 162(Pt A): 112023, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36461307

RESUMEN

Lactic Acid Bacteria (LAB) could provide a valid alternative to S. cerevisiae as a starter culture for bakery products, avoiding yeast-related health problems while contributing to the technological and functional properties of bread. In this work, we evaluate the role of certain LABs (Leuconostoc citreum SB6, Weissella cibaria UC4051, Weissella confusa UC4051, and the commercial starter cultures Weissella cibaria, and Leuconostoc mesenteroides) in producing functional compounds (pro-technological, health-promoting, and postbiotic-like molecules). For this purpose, we analysed the genotypic and phenotypic features of strains, and we investigated dough fermentation from microbiological and metabolomics approaches. Results evidenced a clear discrimination between the metabolic activity of baker's yeast and LAB. The most discriminant metabolites derived from proteolysis and lipolysis, such as peptides, amino acids, and fatty acyls. Furthermore, we elucidated the different metabolism of these strains by building gene-metabolite interaction networks that pairwise compared the LAB strains of the same genus. While most of the networks showed a characteristic nucleotide metabolism, only the commercial W. cibaria exhibited an interaction network composed of amino acids and their related genes. In conclusion, our findings reveal that LAB strains under investigation, and particularly the commercial W. cibaria, can enhance the functional properties of bread.


Asunto(s)
Lactobacillales , Weissella , Weissella/genética , Saccharomyces cerevisiae , Pan , Leuconostoc/genética , Lactobacillales/genética , Aminoácidos
6.
BMC Genomics ; 23(1): 818, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494615

RESUMEN

BACKGROUND: Leuconostoc gelidum and Leuconostoc gasicomitatum have dual roles in foods. They may spoil cold-stored packaged foods but can also be beneficial in kimchi fermentation. The impact in food science as well as the limited number of publicly available genomes prompted us to create pangenomes and perform genomic taxonomy analyses starting from de novo sequencing of the genomes of 37 L. gelidum/L. gasicomitatum strains from our culture collection. Our aim was also to evaluate the recently proposed change in taxonomy as well as to study the genomes of strains with different lifestyles in foods. METHODS: We selected as diverse a set of strains as possible in terms of sources, previous genotyping results and geographical distribution, and included also 10 publicly available genomes in our analyses. We studied genomic taxonomy using pairwise average nucleotide identity (ANI) and calculation of digital DNA-DNA hybridisation (dDDH) scores. Phylogeny analyses were done using the core gene set of 1141 single-copy genes and a set of housekeeping genes commonly used for lactic acid bacteria. In addition, the pangenome and core genome sizes as well as some properties, such as acquired antimicrobial resistance (AMR), important due to the growth in foods, were analysed. RESULTS: Genome relatedness indices and phylogenetic analyses supported the recently suggested classification that restores the taxonomic position of L. gelidum subsp. gasicomitatum back to the species level as L. gasicomitatum. Genome properties, such as size and coding potential, revealed limited intraspecies variation and showed no attribution to the source of isolation. The distribution of the unique genes between species and subspecies was not associated with the previously documented lifestyle in foods. None of the strains carried any acquired AMR genes or genes associated with any known form of virulence. CONCLUSION: Genome-wide examination of strains confirms that the proposition to restore the taxonomic position of L. gasicomitatum is justified. It further confirms that the distribution and lifestyle of L. gelidum and L. gasicomitatum in foods have not been driven by the evolution of functional and phylogenetic diversification detectable at the genome level.


Asunto(s)
ADN , Leuconostoc , Filogenia , Leuconostoc/genética , Microbiología de Alimentos
7.
BMC Genom Data ; 23(1): 61, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918643

RESUMEN

BACKGROUND: Leuconostoc lactis forms a crucial member of the genus Leuconostoc and has been widely used in the fermentation industry to convert raw material into acidified and flavored products in dairy and plant-based food systems. Since the ecological niches that strains of Ln. lactis being isolated from were truly diverse such as the human gut, dairy, and plant environments, comparative genome analysis studies are needed to better understand the strain differences from a metabolic adaptation point of view across diverse sources of origin. We compared eight Ln. lactis strains of 1.2.28, aa_0143, BIOML-A1, CBA3625, LN19, LN24, WIKIM21, and WiKim40 using bioinformatics to elucidate genomic level characteristics of each strain for better utilization of this species in a broad range of applications in food industry. RESULTS: Phylogenomic analysis of twenty-nine Ln. lactis strains resulted in nine clades. Whole-genome sequence analysis was performed on eight Ln. lactis strains representing human gastrointestinal tract and fermented foods microbiomes. The findings of the present study are based on comparative genome analysis against the reference Ln. lactis CBA3625 genome. Overall, a ~ 41% of all CDS were conserved between all strains. When the coding sequences were assigned to a function, mobile genetic elements, mainly insertion sequences were carried by all eight strains. All strains except LN24 and WiKim40 harbor at least one intact putative prophage region, and two of the strains contained CRISPR-Cas system. All strains encoded Lactococcin 972 bacteriocin biosynthesis gene clusters except for CBA3625. CONCLUSIONS: The findings in the present study put forth new perspectives on genomics of Ln. lactis via complete genome sequence based comparative analysis and further determination of genomic characteristics. The outcomes of this work could potentially pave the way for developing elements for future strain engineering applications.


Asunto(s)
Alimentos Fermentados , Microbiota , Genómica , Humanos , Leuconostoc/genética , Microbiota/genética
8.
Food Microbiol ; 106: 104039, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35690454

RESUMEN

Genus Leuconostoc consists of a diverse range of lactic acid bacteria (LAB) from dairy, food and environmental ecology. Even though the species of Leuconostoc are commercially significant, their taxonomy is largely based on old, low-resolution classical methods. Several taxonomic reclassifications in the past were inadequate for microbiologist and food industry professionals to demarcate any new strain of genus Leuconostoc. The current taxonomy of the genus is largely based on classical approaches, which are in utmost need of reinvestigation by whole genome-based approaches. In the present study, the taxono-phylogenomic analysis depicted sixteen species, including three novel genomospecies and several reshufflings across the species, namely, L. mesenteroides, L. pseudomesenteroides, L. gelidum and L. lactis. Genus-wide T3PKS, CAZymes, and vector plasmids supports its biotechnological potential. However, detection of the antibiotic resistance genes in such an important LAB genus raises concern over their utility in industry. Present, large-scale in-depth genome-based study can shed light on the genome dynamics of the member species, help to obtain a more robust taxonomy and elucidate its biotechnology importance.


Asunto(s)
Lactobacillales , Leuconostoc , Biotecnología , Genómica , Leuconostoc/genética , Filogenia
9.
PLoS One ; 17(3): e0264234, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35290990

RESUMEN

Few studies have characterized the microbial community and metabolite profile of solid food waste fermented products from centralized treatment facilities, which could potentially be processed into safe animal feeds. In this study, 16S rRNA gene sequencing and liquid/gas chromatography-mass spectrometry were conducted to investigate the bacterial community structure and metabolite profile of food waste samples inoculated with or without 0.18% of a commercial bacterial agent consisting of multiple unknown strains and 2% of a laboratory-made bacterial agent consisting of Enterococcus faecalis, Bacillus subtilis and Candida utilis. Our findings indicated that microbial inoculation increased the crude protein content of food waste while reducing the pH value, increasing lactic acid production, and enhancing aerobic stability. Microbial inoculation affected the community richness, community diversity, and the microbiota structure (the genera with abundances above 1.5% in the fermentation products included Lactobacillus (82.28%) and Leuconostoc (1.88%) in the uninoculated group, Lactobacillus (91.85%) and Acetobacter (2.01%) in the group inoculated with commercial bacterial agents, and Lactobacillus (37.11%) and Enterococcus (53.81%) in the group inoculated with homemade laboratory agents). Microbial inoculation reduced the abundance of potentially pathogenic bacteria. In the metabolome, a total of 929 substances were detected, 853 by LC-MS and 76 by GC-MS. Our results indicated that inoculation increased the abundance of many beneficial metabolites and aroma-conferring substances but also increased the abundance of undesirable odors and some harmful compounds such as phenol. Correlation analyses suggested that Leuconostoc, Lactococcus, and Weissella would be promising candidates to improve the quality of fermentation products. Taken together, these results indicated that inoculation could improve food waste quality to some extent; however, additional studies are required to optimize the selection of inoculation agents.


Asunto(s)
Microbiota , Eliminación de Residuos , Animales , Fermentación , Alimentos , Microbiología de Alimentos , Leuconostoc/genética , Metaboloma , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Residuos
10.
Food Chem ; 366: 130623, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34320438

RESUMEN

Stevioside (ST) is currently considered as a highly-demanded natural and zero-caloric replacer of sucrose with several health-promoting properties. Nonetheless, its bitter aftertaste limits its use in the food industry. Herein, glucosyl steviosides were synthesized using primarily a food-grade lactic acid bacteria, Leuconostoc kimchii dextransucrase and conversion yield (%) was 40.3%. A glucose moiety was transferred stereo-selectively to ST by α-1,6-linkage and this is the first report about obtaining rebaudioside A (Reb-A) like glucosyl stevioside-2 (STG-2). Glucosyl steviosides revealed greatly improved stability up to 120 °C and remained stable over 32.1% and 58.12% in the pH (1.4) compared with 30.55% of ST. Moreover, the glucosylated steviosides improved the stability, reaching 95% after 30 days and Reb-A like compound (STG-2) especially exhibited higher stability in commercial beverages. Furthermore, the glucosyl steviosides showed over 1.92- and 2.24-fold decreases than that of enzymatically modified ST in the glucose generation rate test.


Asunto(s)
Diterpenos de Tipo Kaurano , Stevia , Glucosiltransferasas/genética , Leuconostoc/genética , Edulcorantes
11.
J Microbiol Biotechnol ; 32(3): 333-340, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-34949750

RESUMEN

Leuconostoc has been used as a principal starter in natural kimchi fermentation, but limited research has been conducted on its phages. In this study, prophage distribution and characterization in kimchi-derived Leuconostoc strains were investigated, and phage induction was performed. Except for one strain, 16 Leuconostoc strains had at least one prophage region with questionable and incomplete regions, which comprised 0.5-6.0% of the bacterial genome. Based on major capsid protein analysis, ten intact prophages and an induced incomplete prophage of Leu. lactis CBA3626 belonged to the Siphoviridae family and were similar to Lc-Nu-like, sha1-like, phiMH1-like, and TPA_asm groups. Bacterial immunology genes, such as superinfection exclusion proteins and methylase, were found on several prophages. One prophage of Leu. lactis CBA3626 was induced using mitomycin C and was confirmed as belonging to the Siphoviridae family. Homology of the induced prophage with 21 reported prophages was not high (< 4%), and 47% identity was confirmed only with TPA_asm from Siphoviridae sp. isolate ct3pk4. Therefore, it is suggested that Leuconostoc from kimchi had diverse prophages with less than 6% genome proportion and some immunological genes. Interestingly, the induced prophage was very different from the reported prophages of other Leuconostoc species.


Asunto(s)
Alimentos Fermentados , Profagos , Genómica , Leuconostoc/genética , Profagos/genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-34550068

RESUMEN

In 2014, Rahkila et al. transferred Leuconostoc gasicomitatum to Leuconostoc gelidum as L. gelidum subsp. gasicomitatum comb. nov. based on a 75 % DNA-DNA hybridization value. In the present study, the taxonomic status of L. gelidum subsp. gasicomitatum is re-evaluated by a polyphasic approach, including 16S rRNA, pheS, rpoA, recA, and atpA gene sequence analyses, phylogenomic treeing, analyses of ANI (average nucleotide identity) and dDDH (digital DNA-DNA hybridization), fatty acid methyl ester analysis and a phenotypic characterization. On the basis of the ANI and dDDH values, we propose to reject the proposal of Rahkila et al. to reclassify L. gasicomitatum as L. gelidum subsp. gasicomitatum.


Asunto(s)
Ácidos Grasos , Leuconostoc , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Leuconostoc/genética , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
13.
Int J Food Microbiol ; 354: 109327, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34247022

RESUMEN

The species Leuconostoc citreum is often isolated from grain and vegetable fermentations such as sourdough, sauerkraut and kimchi. Lc. citreum has seen an increase in its use as a starter culture for various fermentations and food applications. The strain Lc. citreum TR116 has been applied previously in this laboratory aimed at sugar depletion through metabolism resulting in the reduction of fructose to mannitol, a polyol considered as a sweet carbohydrate. Besides reducing sugar, TR116 showed flavour modulating characteristics and contributes to the extension of microbial shelf life. In order to obtain a better understanding of this strain and to fully use its set of abilities, the genome of Lc. citreum TR116 was sequenced using the Illumina MiSeq, assembly with SPAdes and annotated by the Prokaryotic Genome Annotation Pipeline. Metabolic reconstruction was employed to elucidate carbohydrate, organic acid and amino acid metabolism in the strain. Of particular interest was the gene expression analysis ascertained the influence of fructose on the genes mdh and manX involved in the uptake of fructose and its conversion to mannitol. This investigation, the first in Lc. citreum, illustrates the metabolic processes involved in fermentation used by this strain and demonstrates that in the presence of fructose, expression of the genes mdh and manX is increased. The resulting transparency of the skill set of TR116 contributes highly to future functionalisation of food systems and food ingredients.


Asunto(s)
Fructosa , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Leuconostoc , Manitol , Fermentación , Fructosa/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genoma Bacteriano/genética , Leuconostoc/genética , Manitol/metabolismo
14.
Int J Mol Sci ; 22(6)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33810084

RESUMEN

Alternansucrase (ALT, EC 2.4.1.140) is a glucansucrase that can generate α-(1,3/1,6)-linked glucan from sucrose. Previously, the crystal structure of the first alternansucrase from Leuconostoc citreum NRRL B-1355 was successfully elucidated; it showed that alternansucrase might have two acceptor subsites (W675 and W543) responsible for the formation of alternating linked glucan. This work aimed to investigate the primary acceptor subsite (W675) by saturated mutagenesis using Leuconostoc citreum ABK-1 alternansucrase (LcALT). The substitution of other residues led to loss of overall activity, and formation of an alternan polymer with a nanoglucan was maintained when W675 was replaced with other aromatic residues. Conversely, substitution by nonaromatic residues led to the synthesis of oligosaccharides. Mutations at W675 could potentially cause LcALT to lose control of the acceptor molecule binding via maltose-acceptor reaction-as demonstrated by results from molecular dynamics simulations of the W675A variant. The formation of α-(1,2), α-(1,3), α-(1,4), and α-(1,6) linkages were detected from products of the W675A mutant. In contrast, the wild-type enzyme strictly synthesized α-(1,6) linkage on the maltose acceptor. This study examined the importance of W675 for transglycosylation, processivity, and regioselectivity of glucansucrases. Engineering glucansucrase active sites is one of the essential approaches to green tools for carbohydrate modification.


Asunto(s)
Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Leuconostoc/enzimología , Ingeniería de Proteínas , Activación Enzimática , Glicosilación , Glicosiltransferasas/genética , Hidrólisis , Cinética , Leuconostoc/genética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
15.
Sci Rep ; 11(1): 7662, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33828213

RESUMEN

Nicotinamide mononucleotide (NMN), an intermediate in nicotinamide adenine dinucleotide biosynthesis, is recently attracting much attention for its pharmacological and anti-aging efficacies. However, current commercial products containing NMN are very high-priced because efficient and facile methods for industrial NMN production are limited. In this study, aiming for its nutraceutical application, we attempted to screen lactic acid bacteria for intracellular and/or extracellular NMN production. Using a bioassay system with an auxotrophic yeast that requires nicotinamide riboside (NR; dephosphorylated NMN), three candidates were obtained from a library of 174 strains of facultative anaerobic lactic acid bacteria. All three candidates belonged to the genus Fructobacillus and produced NR in the culture media (0.8-1.5 mg/l). Lactic acid bacteria of the genus Fructobacillus are known to use D-fructose as an electron acceptor in anaerobic lactic acid fermentation; addition of D-fructose to the medium caused intracellular accumulation of NMN and NR, but no extracellular production of these compounds was observed. Draft genome sequencing for one of the candidates suggested that nicotinamide phosphoribosyltransferase, which exists commonly in mammals but is less reported in microorganisms, is a key enzyme for NMN and NR production in the fructophilic bacteria.


Asunto(s)
Leuconostoc/metabolismo , Mononucleótido de Nicotinamida/biosíntesis , Escherichia coli , Fructosa/metabolismo , Lactobacillales/metabolismo , Leuconostoc/genética , Niacinamida/análogos & derivados , Niacinamida/biosíntesis , Nicotinamida Fosforribosiltransferasa/metabolismo , Compuestos de Piridinio
16.
BMC Biotechnol ; 21(1): 14, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33541325

RESUMEN

BACKGROUND: Levan is a well-known homopolymer of fructose composed predominantly of ß-(2, 6) fructofuranosyl linkages in the backbone with occasional ß-(2, 1) linkages in the branch chains with varied applications. However, high production cost due to low yield of microbial levan has become a bottleneck for its practical applications. Furthermore, factors affecting the molecular mass of the synthesized levan by Leuconostoc spp. during prolonged cultivation is not fully elucidated. METHODS: The cultivation condition for Leuconostoc citreum BD1707 to synthesize levan was optimized by single-factor experiments and subsequently with response surface methodology (RSM). The average molecular weight (Mw) of levan synthesized by the strain L.citreum BD1707 under the optimized cultivation conditions was monitored by high-performance size exclusion chromatography (HPSEC). Finally, the enzyme with levan-degrading activity was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). RESULTS: The levan yield of BD1707 reached 34.86 g/L with a corresponding productivity of 7.47 g/L/d under the optimal cultivation conditions deduced by RSM, i.e., cultivation at 26 °C and 200 rpm for 112 h in tomato juice supplemented with 172 g/L sucrose with an initial pH value of 6.12. The Mw of levan reached a peak value of 2.320 × 107 Da at 6 h of cultivation under the optimized cultivation conditions and then gradually decreased to 8.809 × 106 Da after 120 h of cultivation. CONCLUSION: The levan yield of the strain L.citreum BD1707 could be sufficiently enhanced via cultivation condition optimization. The decrease in molecular mass of the synthesized levan was attributed predominantly to the hydrolytic activity of levansucrase secreted by L.citreum BD1707 during cultivation, with an estimated Mw of 130 KD by SDS-PAGE, while the effect of acid hydrolysis could be nearly neglected.


Asunto(s)
Fructanos/química , Fructanos/metabolismo , Leuconostoc/genética , Leuconostoc/metabolismo , Fructanos/genética , Fructosa/metabolismo , Glucosa , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Concentración de Iones de Hidrógeno , Solanum lycopersicum , Peso Molecular , Sacarosa/metabolismo , Temperatura
17.
Int J Food Microbiol ; 341: 109059, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33508581

RESUMEN

The microbial community of ungerminated and germinated barley grains from three different cultivars grown at four different locations in Norway was investigated by culture dependent and culture independent methods. Lactic acid bacteria (LAB) was focused in this study and was isolated from germinated barley. The number of LAB ranged between 2.8 and 4.6 log cfu/g in ungerminated grains and between 4.9 and 6.3 log cfu/g in germinated grains. In total 66 out of 190 isolates were Gram+, catalase-negative and presumptive LAB. The LAB isolates were by 16S rRNA sequencing identified to be Carnobacterium maltaromaticum (6), Lactococcus lactis (2), Enterococcus sp. (1) and Leuconostoc sp. (57). Germination significantly influenced the bacterial composition. Regarding the different cultivars and growth places no significant difference in bacterial composition was seen. The most abundant bacterial genus was Pantoea (18.5% of the total sequences), followed by Rhizobium (10.1%) and Sphingomonas (9.9%). Fungal composition was significantly influenced by the germination process and the cultivation place, but no significant difference in fungal composition was detected between the 3 cultivars. The most abundant fungal genera were Cryptococcus (43.8% of all the sequences), Cladosporium (8.2%), Pyrenophora (7.4%) and Vagicola (6.3%). This study revealed knowledge of barley grain associated microbes of Norwegian barley that can be useful to control the malt quality. Germination affected both bacterial and fungal microbiota composition. No difference in bacterial microbiota composition was seen regarding cultivars and cultivation place, however, the fungal microbiota composition was significantly influenced by the cultivation place. Differences in fungal community of ungerminated and germinated barley samples of different geographical locations were more pronounced than differences in bacterial communities.


Asunto(s)
Carnobacterium/aislamiento & purificación , Enterococcus/aislamiento & purificación , Hongos/aislamiento & purificación , Hordeum/microbiología , Lactococcus lactis/aislamiento & purificación , Leuconostoc/aislamiento & purificación , Carnobacterium/clasificación , Carnobacterium/genética , Enterococcus/clasificación , Enterococcus/genética , Hongos/clasificación , Hongos/genética , Germinación/fisiología , Lactococcus lactis/clasificación , Lactococcus lactis/genética , Leuconostoc/clasificación , Leuconostoc/genética , Microbiota , Noruega , ARN Ribosómico 16S/genética
18.
Microb Cell Fact ; 20(1): 23, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33482833

RESUMEN

BACKGROUND: Lactic acid bacteria can synthesize dextran and oligosaccharides with different functionality, depending on the strain and fermentation conditions. As natural structure-forming agent, dextran has proven useful as food additive, improving the properties of several raw materials with poor technological quality, such as cereal by-products, fiber-and protein-rich matrices, enabling their use in food applications. In this study, we assessed dextran biosynthesis in situ during fermentation of brewers´ spent grain (BSG), the main by-product of beer brewing industry, with Leuconostoc pseudomesenteroides DSM20193 and Weissella confusa A16. The starters performance and the primary metabolites formed during 24 h of fermentation with and without 4% sucrose (w/w) were followed. RESULTS: The starters showed similar growth and acidification kinetics, but different sugar utilization, especially in presence of sucrose. Viscosity increase in fermented BSG containing sucrose occurred first after 10 h, and it kept increasing until 24 h concomitantly with dextran formation. Dextran content after 24 h was approximately 1% on the total weight of the BSG. Oligosaccharides with different degree of polymerization were formed together with dextran from 10 to 24 h. Three dextransucrase genes were identified in L. pseudomesenteroides DSM20193, one of which was significantly upregulated and remained active throughout the fermentation time. One dextransucrase gene was identified in W. confusa A16 also showing a typical induction profile, with highest upregulation at 10 h. CONCLUSIONS: Selected lactic acid bacteria starters produced significant amount of dextran in brewers' spent grain while forming oligosaccharides with different degree of polymerization. Putative dextransucrase genes identified in the starters showed a typical induction profile. Formation of dextran and oligosaccharides in BSG during lactic acid bacteria fermentation can be tailored to achieve specific technological properties of this raw material, contributing to its reintegration into the food chain.


Asunto(s)
Dextranos/biosíntesis , Grano Comestible/metabolismo , Fermentación , Leuconostoc/metabolismo , Weissella/metabolismo , Cerveza , Regulación Enzimológica de la Expresión Génica , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Concentración de Iones de Hidrógeno , Lactobacillales/genética , Lactobacillales/metabolismo , Leuconostoc/genética , Leuconostoc/crecimiento & desarrollo , Manitol/metabolismo , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Sacarosa/metabolismo , Viscosidad , Weissella/genética , Weissella/crecimiento & desarrollo
19.
Probiotics Antimicrob Proteins ; 13(1): 229-237, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32567021

RESUMEN

The yeast Saccharomyces boulardii is well known for its probiotic effects such as treating or preventing gastrointestinal diseases. Due to its ability to survive in stomach and intestine, S. boulardii could be applied as a vehicle for producing and delivering bioactive substances of interest to human gut. In this study, we cloned the gene lecC encoding the antilisterial peptide leucocin C from lactic acid bacterium Leuconostoc carnosum in S. boulardii. The constructed S. boulardii strain secreted a peptide, which had molecular weight corresponding to leucocin C in SDS-PAGE. The peptide band inhibited Listeria monocytogenes in gel overlay assay. Likewise, concentrated S. boulardii culture supernatant inhibited the growth of L. monocytogenes. The growth profile and acid tolerance of the leucocin C secreting S. boulardii were similar as those of the strain carrying the empty vector. We further demonstrated that the cells of the leucocin C producing S. boulardii efficiently killed L. monocytogenes, also without antibiotic selection pressure. These results showed that antilisterial activity could be added to the arsenal of probiotic activities of S. boulardii, demonstrating its potential as a carrier for therapeutics delivery.


Asunto(s)
Bacteriocinas , Expresión Génica , Leuconostoc/genética , Listeria monocytogenes/crecimiento & desarrollo , Saccharomyces boulardii , Bacteriocinas/biosíntesis , Bacteriocinas/genética , Bacteriocinas/farmacología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Saccharomyces boulardii/genética , Saccharomyces boulardii/metabolismo
20.
Int J Food Microbiol ; 339: 109025, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33360297

RESUMEN

This research aimed to isolate lactic acid bacteria (LAB) from apple surface and to reveal their potential to inhibit the growth of Penicillium expansum. Besides, their ability to detoxify fruit juices contaminated with mycotoxin patulin, produced by this fungi, was also studied. The isolation was performed on a typical MRS medium under ambient conditions. The molecular identification of the strains was done by sequencing the 16S rRNA genes. Antifungal activities of the isolated strains have been evaluated using dual agar plate assay protocol. A total of 11 LAB isolates was obtained from apples. These isolates showed phenotypic traits consistent with the genera of LAB. They have been identified as Leuconostoc mesenteroides subsp. mesenteroides and Weissella paramesenteroides. Among them, the strain LB7 showed exciting inhibitory activities in vitro against P. expansum. LB7 also successfully detoxified homemade and commercial fruit juices contaminated with patulin. Further research will bring the application prospects of these LABs in food biocontrol and biopreservation strategies.


Asunto(s)
Antibiosis/fisiología , Jugos de Frutas y Vegetales/microbiología , Frutas/microbiología , Leuconostoc/fisiología , Malus/microbiología , Penicillium/fisiología , Jugos de Frutas y Vegetales/análisis , Leuconostoc/genética , Leuconostoc/aislamiento & purificación , Patulina/análisis , ARN Ribosómico 16S , Weissella/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA