Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biophys J ; 123(19): 3397-3407, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39118324

RESUMEN

Many functions of ribonucleic acid (RNA) rely on its ability to assume specific sequence-structure motifs. Packaging signals found in certain RNA viruses are one such prominent example of functional RNA motifs. These signals are short hairpin loops that interact with coat proteins and drive viral self-assembly. As they are found in different positions along the much longer genomic RNA, the formation of their correct structure occurs as a part of a larger context. Any changes to this context can consequently lead to changes in the structure of the motifs themselves. In fact, previous studies have shown that structure and function of RNA motifs can be highly context sensitive to the flanking sequence surrounding them. However, in what ways different flanking sequences influence the structure of an RNA motif they surround has yet to be studied in detail. We focus on a hairpin-rich region of the RNA genome of bacteriophage MS2-a well-studied RNA virus with a wide potential for use in biotechnology-and systematically examine context-dependent structural stability of 14 previously identified hairpin motifs, which include putative and confirmed packaging signals. Combining secondary and tertiary RNA structure prediction of the hairpin motifs placed in different contexts, ranging from the native genomic sequence to random RNA sequences and unstructured poly-U sequences, we determine different measures of motif structural stability. In this way, we show that while some motif structures can be stable in any context, others require specific context provided by the genome. Our results demonstrate the importance of context in RNA structure formation and how changes in the flanking sequence of an RNA motif sometimes lead to drastic changes in its structure. Structural stability of a motif in different contexts could provide additional insights into its functionality as well as assist in determining whether it remains functional when intentionally placed in other contexts.


Asunto(s)
Genoma Viral , Levivirus , Conformación de Ácido Nucleico , Motivos de Nucleótidos , ARN Viral , Levivirus/genética , Levivirus/química , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Secuencia de Bases , Datos de Secuencia Molecular
2.
Biochemistry ; 63(15): 1913-1924, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39037053

RESUMEN

Virus-like particles (VLPs) from bacteriophage MS2 provide a platform to study protein self-assembly and create engineered systems for drug delivery. Here, we aim to understand the impact of intersubunit interface mutations on the local and global structure and function of MS2-based VLPs. In previous work, our lab identified locally supercharged double mutants [T71K/G73R] that concentrate positive charge at capsid pores, enhancing uptake into mammalian cells. To study the effects of particle size on cellular internalization, we combined these double mutants with a single point mutation [S37P] that was previously reported to switch particle geometry from T = 3 to T = 1 icosahedral symmetry. These new variants retained their enhanced cellular uptake activity and could deliver small-molecule drugs with efficacy levels similar to our first-generation capsids. Surprisingly, these engineered triple mutants exhibit increased thermostability and unexpected geometry, producing T = 3 particles instead of the anticipated T = 1 assemblies. Transmission electron microscopy revealed various capsid assembly states, including wild-type (T = 3), T = 1, and rod-like particles, that could be accessed using different combinations of these point mutations. Molecular dynamics experiments recapitulated the structural rationale in silico for the single point mutation [S37P] forming a T = 1 virus-like particle and showed that this assembly state was not favored when combined with mutations that favor rod-like architectures. Through this work, we investigated how interdimer interface dynamics influence VLP size and morphology and how these properties affect particle function in applications such as drug delivery.


Asunto(s)
Cápside , Levivirus , Levivirus/genética , Levivirus/química , Levivirus/metabolismo , Cápside/metabolismo , Cápside/química , Cápside/ultraestructura , Mutación , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Virión/metabolismo , Virión/genética , Virión/química , Mutación Puntual , Estabilidad Proteica , Humanos , Modelos Moleculares
3.
ACS Biomater Sci Eng ; 10(8): 4812-4822, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38976823

RESUMEN

RNA bacteriophage MS2-derived virus-like particles (VLPs) have been widely used in biomedical research as model systems to study virus assembly, structure-function relationships, vaccine development, and drug delivery. Considering the diverse utility of these VLPs, a systemic engineering approach has been utilized to generate smaller particles with optimal serum stability and tissue penetrance. Additionally, it is crucial to demonstrate the overall stability of these mini MS2 VLPs, ensuring cargo protection until they reach their target cell/organ. However, no detailed analysis of the thermal stability and heat-induced disassembly of MS2 VLPs has yet been attempted. In this work, we investigated the thermal stability of both wild-type (WT) MS2 VLP and its "mini" variant containing S37P mutation (mini MS2 VLP). The mini MS2 VLP exhibits a higher capsid melting temperature (Tm) when compared to its WT MS2 VLP counterpart, possibly attributed to its smaller interdimer angle. Our study presents that the thermal unfolding of MS2 VLPs follows a sequential process involving particle destabilization, nucleic acid exposure/melting, and disassembly of VLP. This observation underscores the disruption of cooperative intersubunit interactions and protein-nucleic acid interactions, shedding light on the mechanism of heat-induced VLP disassembly.


Asunto(s)
Levivirus , Levivirus/genética , Levivirus/química , Levivirus/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Temperatura , Mutación , Calor , Virión/metabolismo , Virión/química , Virión/genética , Cápside/metabolismo , Cápside/química
4.
ACS Nano ; 18(21): 13755-13767, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38752610

RESUMEN

The ability to manipulate the self-assembly of proteins is essential to understanding the mechanisms of life and beneficial to fabricating advanced nanomaterials. Here, we report the transformation of the MS2 phage capsid from nanocages to nanotubes and then to nanotube hydrogels through simple point mutations guided by interfacial interaction redesign. We demonstrate that site 70, which lies in the flexible FG loop of the capsid protein (CP), is a "magic" site that can largely dictate the final morphology of assemblies. By varying the amino acid at site 70, with the aid of a cysteine-to-alanine mutation at site 46, we achieved the assembly of double-helical or single-helical nanotubes in addition to nanocages. Furthermore, an additional cysteine substitution on the surface of nanotubes mediated their cross-linking to form hydrogels with reducing agent responsiveness. The hierarchical self-assembly system allowed for the investigation of morphology-related immunogenicity of MS2 CPs, which revealed dramatic differences among nanocages, nanotubes, and nanotube hydrogels in terms of immune response types, antibody levels and T cell functions. This study provides insights into the assembly manipulation of protein nanomaterials and the customized design of nanovaccines and drug delivery systems.


Asunto(s)
Proteínas de la Cápside , Cápside , Hidrogeles , Nanotubos , Hidrogeles/química , Nanotubos/química , Proteínas de la Cápside/química , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Cápside/química , Cápside/inmunología , Levivirus/química , Levivirus/inmunología , Levivirus/genética , Animales , Nanoestructuras/química , Ratones , Modelos Moleculares
5.
Nanomedicine (Lond) ; 19(12): 1103-1115, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629576

RESUMEN

The versatile potential of bacteriophage MS2-derived virus-like particles (VLPs) in medical biotechnology has been extensively studied during the last 30 years. Since the first reports showing that MS2 VLPs can be produced at high yield and relatively easily engineered, numerous applications have been proposed. Particular effort has been spent in developing MS2 VLPs as protective capsules and delivery platforms for diverse molecules, such as chemical compounds, proteins and nucleic acids. Among these, two are particularly noteworthy: as scaffolds displaying heterologous epitopes for vaccine development and as capsids for encapsulation of foreign RNA. In this review, we summarize the progress in developing MS2 VLPs for these two areas.


Hollow, nanosized protein particles have many potential uses. If they can be appropriately engineered, they may for example be able to carry therapeutic cargoes to diseased cells or be used as a vaccine where appropriate antigens are mounted on their external surface. Many viruses offer a ready-made protein particle, the capsid, which can be made hollow by exclusion of the viral genetic material. MS2 is a virus that targets bacteria ­ a bacteriophage ­ which is well characterized and has been developed over many years for a number of applications. It has particular promise for development as a vaccine and for RNA delivery, both of which are reviewed here.


Asunto(s)
Levivirus , Levivirus/química , Levivirus/inmunología , Humanos , Animales , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/química , ARN/química , Cápside/química , Cápside/inmunología
6.
J Chem Theory Comput ; 19(21): 7924-7933, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37856311

RESUMEN

For the first time, a complete all-atom molecular dynamics (MD) model of a virus, bacteriophage MS2, in its entirety, including a protein outer shell, native genomic RNA with necessary divalent ions, and surrounding explicit aqueous solution with ions at physiological concentration, was built. The model is based on an experimentally measured cryo-EM structure, which was substantially augmented by reconstructing missing or low-resolution parts of the measured density (where the atomistic structure cannot be fit unambiguously). The model was tested by a quarter of a microsecond MD run, and various biophysical characteristics are obtained and analyzed. The developed methodology of building the model can be used for reconstructing other large biomolecular structures when experimental data are fragmented and/or of varying resolution, while the model itself can be used for studying the biology of MS2, including the dynamics of its interaction with the host bacteria.


Asunto(s)
Levivirus , Simulación de Dinámica Molecular , Levivirus/química , Levivirus/genética , Virión/química , Iones , Microscopía por Crioelectrón/métodos
7.
Virology ; 585: 139-144, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37343460

RESUMEN

The surface hydrophobicity of native or engineered non-enveloped viruses and virus-like particles (VLPs) is a key parameter regulating their fate in living and artificial aqueous systems. Its modulation is mainly depending on the structure and environment of particles. Nevertheless, unexplained variations have been reported between structurally similar viruses and with pH. This indicates that some modulating factors of their hydrophobicity remain to be identified. Herein we investigate the potential involvement of RNA cargo in the MS2 phage used as non-enveloped RNA virus model, by examining the SDS-induced electrophoretic mobility shift (SEMS) determined for native MS2 virions and corresponding RNA-free VLPs at various pH. Interestingly, the SEMS of VLPs was larger and more variable from pH 5 to 9 compared to native virions. These observations are discussed in term of RNA-dependent changes in surface hydrophobicity, suggesting that RNA cargo may be a major modulator/regulator of this viral parameter.


Asunto(s)
Levivirus , ARN Viral , Levivirus/genética , Levivirus/química , ARN Viral/genética , Interacciones Hidrofóbicas e Hidrofílicas
8.
J Phys Chem B ; 126(41): 8166-8176, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36198175

RESUMEN

MS2 bacteriophage is often used as a model for evaluating pathogenic viruses' behavior in aqueous solution. However, the questions of the virus surface's hydrophilic/hydrophobic balance, the charge distribution, and the binding mechanism are open. Using the dynamic light scattering method and laser Doppler electrophoresis, the hydrodynamic diameter and the ζ-potential of the virus particles were measured at their concentration of 5 × 1011 particles per mL and ionic strength 0.03 M. The values were found to be 30 nm and -29 or -34 mV (by Smoluchowski or Ohshima approximations), respectively. The MS2 bacteriophage surface was also investigated using a series of acid-base indicator dyes of various charge type, size, and structure. Their spectral and acid-base properties (pKa) are very sensitive to the microenvironment in aqueous solution, including containing nanoparticles. The electrostatic potential of the surface Ψ was estimated using the common formula: Ψ = 59 × (pKai - pKa) in mV at 25 °C. The Ψ values were -50 and +10 mV, respectively, which indicate the "mosaic" way of the charge distribution on the surface. These data are in good agreement with the obtained ζ-potential values and provide even more information about the virus surface. It was found that the surface of the MS2 virus is hydrophilic in solution in contrast to the commonly accepted hypothesis of the hydrophobicity of virus particles. No hydrophobic interactions between various molecular probes and the capsid were observed.


Asunto(s)
Sondas Moleculares , Nanopartículas , Electricidad Estática , Interacciones Hidrofóbicas e Hidrofílicas , Levivirus/química , Colorantes , Propiedades de Superficie
9.
J Mol Biol ; 434(20): 167797, 2022 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-35998704

RESUMEN

Many single-stranded, positive-sense RNA viruses regulate assembly of their infectious virions by forming multiple, cognate coat protein (CP)-genome contacts at sites termed Packaging Signals (PSs). We have determined the secondary structures of the bacteriophage MS2 ssRNA genome (gRNA) frozen in defined states using constraints from X-ray synchrotron footprinting (XRF). Comparison of the footprints from phage and transcript confirms the presence of multiple PSs in contact with CP dimers in the former. This is also true for a virus-like particle (VLP) assembled around the gRNA in vitro in the absence of the single-copy Maturation Protein (MP) found in phage. Since PS folds are present at many sites across gRNA transcripts, it appears that this genome has evolved to facilitate this mechanism of assembly regulation. There are striking differences between the gRNA-CP contacts seen in phage and the VLP, suggesting that the latter are inappropriate surrogates for aspects of phage structure/function. Roughly 50% of potential PS sites in the gRNA are not in contact with the protein shell of phage. However, many of these sit adjacent to, albeit not in contact with, PS-binding sites on CP dimers. We hypothesize that these act as PSs transiently during assembly but subsequently dissociate. Combining the XRF data with PS locations from an asymmetric cryo-EM reconstruction suggests that the genome positions of such dissociations are non-random and may facilitate infection. The loss of many PS-CP interactions towards the 3' end of the gRNA would allow this part of the genome to transit more easily through the narrow basal body of the pilus extruding machinery. This is the known first step in phage infection. In addition, each PS-CP dissociation event leaves the protein partner trapped in a non-lowest free-energy conformation. This destabilizes the protein shell which must disassemble during infection, further facilitating this stage of the life-cycle.


Asunto(s)
Proteínas de la Cápside , Levivirus , Ensamble de Virus , Proteínas de la Cápside/química , Genoma Viral/genética , Levivirus/química , Levivirus/patogenicidad , Levivirus/fisiología , ARN Viral/genética , Ensamble de Virus/genética
10.
ACS Synth Biol ; 10(8): 1798-1807, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34077194

RESUMEN

DNA nanotechnology is leading the field of in vitro molecular-scale device engineering, accumulating to a dazzling array of applications. However, while DNA nanostructures' function is robust under in vitro settings, their implementation in real-world conditions requires overcoming their rapid degradation and subsequent loss of function. Viruses are sophisticated supramolecular assemblies, able to protect their nucleic acid content in inhospitable biological environments. Inspired by this natural ability, we engineered in vitro and in vivo technologies, enabling the encapsulation and protection of functional DNA nanostructures inside MS2 bacteriophage virus-like particles (VLPs). We demonstrate the ssDNA-VLPs nanocomposites' (NCs) abilities to encapsulate single-stranded-DNA (ssDNA) in a variety of sizes (200-1500 nucleotides (nt)), sequences, and structures while retaining their functionality. Moreover, by exposing these NCs to hostile biological conditions, such as human blood serum, we exhibit that the VLPs serve as an excellent protective shell. These engineered NCs pose critical properties that are yet unattainable by current fabrication methods.


Asunto(s)
ADN de Cadena Simple , ADN Viral , Escherichia coli , Nanopartículas , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/ultraestructura , ADN Viral/química , ADN Viral/genética , ADN Viral/ultraestructura , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/ultraestructura , Escherichia coli/virología , Levivirus/química , Levivirus/genética , Levivirus/ultraestructura , Nanopartículas/química , Nanopartículas/ultraestructura
11.
J Biol Chem ; 295(47): 15923-15932, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32913117

RESUMEN

Despite the threat to human health posed by some single-stranded RNA viruses, little is understood about their assembly. The goal of this work is to introduce a new tool for watching an RNA genome direct its own packaging and encapsidation by proteins. Contrast variation small-angle X-ray scattering (CV-SAXS) is a powerful tool with the potential to monitor the changing structure of a viral RNA through this assembly process. The proteins, though present, do not contribute to the measured signal. As a first step in assessing the feasibility of viral genome studies, the structure of encapsidated MS2 RNA was exclusively detected with CV-SAXS and compared with a structure derived from asymmetric cryo-EM reconstructions. Additional comparisons with free RNA highlight the significant structural rearrangements induced by capsid proteins and invite the application of time-resolved CV-SAXS to reveal interactions that result in efficient viral assembly.


Asunto(s)
Genoma Viral , Levivirus/química , ARN Viral/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
12.
ACS Nano ; 14(2): 1879-1887, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32027487

RESUMEN

Enteric viruses, such as enterovirus, norovirus, and rotavirus, are among the leading causes of disease outbreaks due to contaminated drinking and recreational water. Viruses are difficult to remove from water through filtration based on physical size exclusion-for example by gravity-driven filters-due to their nanoscale size. To understand virus removal in drinking water treatment systems, the colloidal nanostructure of a model virus, the MS2 bacteriophage, has been investigated in relation to the effect of pH and natural organic matter in water. Dynamic light scattering, small-angle X-ray scattering, and cryogenic transmission electron microscopy demonstrated that the water pH has a major influence on the colloidal structure of the virus: The bacteriophage MS2's structure in water in the range pH = 7.0 to 9.0 was found to be spherical with core-shell-type structure with a total diameter of 27 nm and a core radius of around 8 nm. Reversible transformations from 27 nm particles at pH = 7.0 to micrometer-sized aggregates at pH = 3.0 were observed. In addition, the presence of natural organic matter that simulates the organic components present in surface water was found to enhance repulsion between virus particles, reduce the size of aggregates, and promote disaggregation upon pH increase. These findings allow a better understanding of virus interactions in water and have implications for water treatment using filtration processes and coagulation. The results will further guide the comprehensive design of advanced virus filter materials.


Asunto(s)
Levivirus/metabolismo , Compuestos Orgánicos/metabolismo , Virión/metabolismo , Coloides/química , Coloides/metabolismo , Hidrodinámica , Concentración de Iones de Hidrógeno , Levivirus/química , Microscopía Electrónica de Transmisión , Compuestos Orgánicos/química , Tamaño de la Partícula , Propiedades de Superficie , Virión/química , Agua/química , Agua/metabolismo
13.
Food Microbiol ; 87: 103354, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31948611

RESUMEN

Viruses are transmissible via their interaction with contact surfaces of food containers or tools. This study evaluated the recoveries of MS2 coliphage, a virus surrogate, from polypropylene (PP), polyvinyl chloride (PVC), polyethylene (PE), and glass (borosilicate and soda lime), as influenced by the surface chemistry and topography. MS2 (5-6 logs) in PBS with 1% TSB was inoculated onto each of 9 different surfaces, 24-h cold-incubated, and recovery was quantified by infectivity. The order of MS2 recovery efficiency from smooth surfaces was PP > PE ≥ soda lime glass, which classified into 3 ANOVA groups, p = 0.05. The MS2 recovery ratios of smooth vs. rough surfaces were 1.4-1.5. Atomic force microscopy revealed 21-nm diam pinholes (<28-nm of MS2 size) in the borosilicate glass. The lowest and highest MS2 recoveries among the 9 surfaces were demonstrated by the hole-bearing borosilicate glass (34 ±â€¯8%) and smooth PP (69 ±â€¯14%) respectively. Generally greater MS2 recovery was obtained from smooth PP and PE surfaces compared to glass, but topographic alterations (pinholes or increased roughness) decreased recovery possibly by trapping the viruses.


Asunto(s)
Vidrio/química , Levivirus/fisiología , Polímeros/química , Levivirus/química , Levivirus/crecimiento & desarrollo , Levivirus/aislamiento & purificación , Microscopía de Fuerza Atómica , Propiedades de Superficie , Acoplamiento Viral
14.
Methods Mol Biol ; 2070: 157-171, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31625095

RESUMEN

Affinity selection using phage-display technologies is a powerful tool for identifying the peptide epitopes of monoclonal antibodies. Coupling affinity selection with deep sequencing technologies allows for the broad assessment of selectant populations. Here, we describe a method for using a phage-display platform to assess antibody specificity in human serum. We describe the method with reference to the bacteriophage MS2 virus-like particle (VLP) platform, but it can be adapted to other phage-display technologies as well.


Asunto(s)
Especificidad de Anticuerpos , Epítopos/química , Levivirus , Biblioteca de Péptidos , Suero/química , Anticuerpos de Cadena Única , Humanos , Levivirus/química , Levivirus/genética , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética
15.
Anal Chem ; 92(1): 1285-1291, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31860274

RESUMEN

Virus-like particle (VLP) conjugates are being developed for biomedical applications; however, there is a lack of quantitative analytical methods to measure the extent of conjugation and modification of VLP based therapeutics. Charge detection mass spectrometry (CDMS) can measure mass distributions for large and heterogeneous complexes and is emerging as a valuable tool in the analysis of biologics. In this study, CDMS is used to characterize the stoichiometry and population distribution of antibodies covalently conjugated to the surface of a bacteriophage MS2 VLP. Initial CDMS analysis of the unconjugated MS2 particles suggested that they had packaged a broad distribution of exogenous genomic material. We developed procedures to remove the undesired genomic material from the VLP preparation and observed that, for the samples where the genomic fragments were removed, the antibody coupling reaction efficiency increased by almost a factor of 2. This meant there were (1) fewer VLPs with no antibodies bound, which is an important consideration for the efficacy of a targeted therapeutic and (2) fewer antibodies were wasted during the coupling reaction. CDMS could be employed in a similar manner as a tool to characterize coupling reaction product distributions and precursors and help inform the development of the next generation of conjugate-based therapies.


Asunto(s)
Anticuerpos Antivirales/química , Proteínas de la Cápside/química , Levivirus/química , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/inmunología , Levivirus/inmunología , Espectrometría de Masas
16.
Proc Natl Acad Sci U S A ; 116(45): 22485-22490, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31570619

RESUMEN

Self-assembly is widely used by biological systems to build functional nanostructures, such as the protein capsids of RNA viruses. But because assembly is a collective phenomenon involving many weakly interacting subunits and a broad range of timescales, measurements of the assembly pathways have been elusive. We use interferometric scattering microscopy to measure the assembly kinetics of individual MS2 bacteriophage capsids around MS2 RNA. By recording how many coat proteins bind to each of many individual RNA strands, we find that assembly proceeds by nucleation followed by monotonic growth. Our measurements reveal the assembly pathways in quantitative detail and also show their failure modes. We use these results to critically examine models of the assembly process.


Asunto(s)
Cápside/metabolismo , Levivirus/fisiología , Virus ARN/fisiología , ARN Viral/genética , Virión/fisiología , Ensamble de Virus , Cápside/química , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Genoma Viral , Cinética , Levivirus/química , Levivirus/genética , Levivirus/crecimiento & desarrollo , Virus ARN/química , Virus ARN/genética , Virus ARN/crecimiento & desarrollo , ARN Viral/química , ARN Viral/metabolismo , Virión/química , Virión/genética
17.
J Colloid Interface Sci ; 540: 155-166, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30639663

RESUMEN

HYPOTHESES: By selecting constituent polyelectrolytes and controlling conditions of their deposition, the resulting polyelectrolyte multilayers can be designed as surface coatings with controlled adhesive properties with respect to viruses. Charge and hydrophilicity of the polyelectrolyte multilayers govern virus adhesion. EXPERIMENTS: Four surfaces of different charges and hydrophobicities were designed using a layer-by-layer assembly of poly(styrene-4-sulfonate) and poly(dimethyl diallyl ammonium chloride). Contact angle measurements gave an estimate of MS2 hydrophilicity in terms of free energy of interfacial interaction in water. Experimental results on MS2 adhesion obtained using quartz crystal microbalance with dissipation monitoring were compared with predictions by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. FINDINGS: MS2 deposition onto polyelectrolyte multilayers occurred in two phases: an early phase defined by virus-surface interactions and a later phase with virus-virus interactions controlling deposition kinetics. Principal component analysis showed that the deposition rates in the two phases were independent one of another and that each was correlated to the depth of the secondary minimum of the corresponding XDLVO energy profile. Hydrophobic and electrostatic interactions governed the deposition process: short range hydrophilic repulsion prevented deposition into the primary minimum while electrostatic interactions defined the dependence of the deposition kinetics on the ionic strength. Different surfaces showed distinct kinetics of and capacities for MS2 deposition pointing to the potential of polyelectrolyte multilayers as easy-to-apply coatings for regulating virus adsorption, inactivating viruses via the virucidal action of cationic polyelectrolytes and reducing human exposure to viruses.


Asunto(s)
Levivirus/química , Polielectrolitos/química , Adsorción , Cloruro de Amonio/química , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Levivirus/aislamiento & purificación , Poliestirenos/química , Tecnicas de Microbalanza del Cristal de Cuarzo , Electricidad Estática , Propiedades de Superficie
18.
Methods Mol Biol ; 1776: 303-317, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29869251

RESUMEN

Encapsulation into virus-like particles is an efficient way of loading cargo of interest for delivery applications. Here, we describe the encapsulation of proteins with tags comprising anionic amino acids or DNA and gold nanoparticles with negative surface charges inside MS2 bacteriophage capsids to obtain homogeneous nanoparticles with a diameter of 27 nm.


Asunto(s)
Proteínas de la Cápside/genética , Levivirus/genética , Nanopartículas del Metal/química , Biología Molecular/métodos , Cápside/virología , Oro/química , Virus de la Hepatitis B , Humanos , Levivirus/química
19.
Methods Mol Biol ; 1776: 629-642, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29869270

RESUMEN

One of the hallmarks of virus-like particles (VLPs) is the fact that they possess distinguishable interior and exterior surfaces. Taking advantage of our knowledge of the amino acid location from X-ray crystal structures, we have developed a series of synthetic modifications of the MS2 bacteriophage viral capsid, including small molecule and polymer attachment, as well as conjugation with peptides, DNA and other proteins. These constructs have found applications in nanomaterial fabrication and as delivery vehicles with therapeutic potential. Importantly, the dual-modification strategies described herein could be extended to other VLP systems.


Asunto(s)
Proteínas de la Cápside/química , Levivirus/genética , Péptidos/genética , Virión/genética , Levivirus/química , Péptidos/química , Virión/química
20.
Nat Commun ; 9(1): 1385, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29643335

RESUMEN

Self-assembling proteins are critical to biological systems and industrial technologies, but predicting how mutations affect self-assembly remains a significant challenge. Here, we report a technique, termed SyMAPS (Systematic Mutation and Assembled Particle Selection), that can be used to characterize the assembly competency of all single amino acid variants of a self-assembling viral structural protein. SyMAPS studies on the MS2 bacteriophage coat protein revealed a high-resolution fitness landscape that challenges some conventional assumptions of protein engineering. An additional round of selection identified a previously unknown variant (CP[T71H]) that is stable at neutral pH but less tolerant to acidic conditions than the wild-type coat protein. The capsids formed by this variant could be more amenable to disassembly in late endosomes or early lysosomes-a feature that is advantageous for delivery applications. In addition to providing a mutability blueprint for virus-like particles, SyMAPS can be readily applied to other self-assembling proteins.


Asunto(s)
Aminoácidos/química , Proteínas de la Cápside/química , Cápside/química , Levivirus/química , Mutación , Virión/química , Aminoácidos/metabolismo , Cápside/metabolismo , Cápside/ultraestructura , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Endosomas/metabolismo , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Levivirus/metabolismo , Levivirus/ultraestructura , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Ingeniería de Proteínas/métodos , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteolisis , Electricidad Estática , Virión/metabolismo , Virión/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...