Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 536
Filtrar
1.
Nat Commun ; 15(1): 6014, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019889

RESUMEN

Phenotypic heterogeneity in bacteria can result from stochastic processes or deterministic programs. The deterministic programs often involve the versatile second messenger c-di-GMP, and give rise to daughter cells with different c-di-GMP levels by deploying c-di-GMP metabolizing enzymes asymmetrically during cell division. By contrast, less is known about how phenotypic heterogeneity is kept to a minimum. Here, we identify a deterministic c-di-GMP-dependent program that is hardwired into the cell cycle of Myxococcus xanthus to minimize phenotypic heterogeneity and guarantee the formation of phenotypically similar daughter cells during division. Cells lacking the diguanylate cyclase DmxA have an aberrant motility behaviour. DmxA is recruited to the cell division site and its activity is switched on during cytokinesis, resulting in a transient increase in the c-di-GMP concentration. During cytokinesis, this c-di-GMP burst ensures the symmetric incorporation and allocation of structural motility proteins and motility regulators at the new cell poles of the two daughters, thereby generating phenotypically similar daughters with correct motility behaviours. Thus, our findings suggest a general c-di-GMP-dependent mechanism for minimizing phenotypic heterogeneity, and demonstrate that bacteria can ensure the formation of dissimilar or similar daughter cells by deploying c-di-GMP metabolizing enzymes to distinct subcellular locations.


Asunto(s)
Proteínas Bacterianas , GMP Cíclico , Citocinesis , Myxococcus xanthus , Fenotipo , Liasas de Fósforo-Oxígeno , Citocinesis/fisiología , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Liasas de Fósforo-Oxígeno/metabolismo , Liasas de Fósforo-Oxígeno/genética , Myxococcus xanthus/metabolismo , Myxococcus xanthus/citología , Myxococcus xanthus/fisiología , Myxococcus xanthus/genética , División Celular , Regulación Bacteriana de la Expresión Génica , Proteínas de Escherichia coli
2.
Gene ; 927: 148643, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38844269

RESUMEN

Cyclic diguanosine monophosphate (c-di-GMP) is a second messenger in bacteria that regulates multiple biological functions, including biofilm formation, virulence, and intercellular communication. However, c-di-GMP signaling is virtually unknown in economically important filamentous cyanobacteria, Arthrospira. In this study, we predicted 31 genes encoding GGDEF-domain proteins from A. platensis NIES39 as potential diguanylate cyclases (DGCs). Phylogenetic distribution analysis showed five genes (RS09460, RS04865, RS26155, M01840, and E02220) with highly conserved distribution across 25 Arthrospira strains. Adc1 encoded by RS09460 was further characterized as a typical DGC. By establishing the genetic transformation system of Arthrospira, we demonstrated that the overexpression of Adc1 promoted the production of extracellular polymeric substances (EPS), which in turn caused the aggregation of filaments. We also confirmed that RS04865 and RS26155 may encode active DGCs, while enzymatic activity assays showed that proteins encoded by M01840 and E02220 have phosphodiesterase (PDE) activity. Meta-analysis revealed that the expression profiles of RS09460 and RS04865 were unaffected under 31 conditions, suggesting that they may function as conserved genes in maintaining the basal level of c-di-GMP in Arthrospira. In summary, this report will provide the basis for further studies of c-di-GMP signal in Arthrospira.


Asunto(s)
Proteínas Bacterianas , GMP Cíclico , Liasas de Fósforo-Oxígeno , Filogenia , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Spirulina/genética , Spirulina/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Regulación Bacteriana de la Expresión Génica , Cianobacterias/genética , Cianobacterias/metabolismo , Biopelículas/crecimiento & desarrollo , Proteínas de Escherichia coli
3.
J Inorg Biochem ; 258: 112638, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38878680

RESUMEN

Bacteria use the second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) to control biofilm formation and other key phenotypes in response to environmental signals. Changes in oxygen levels can alter c-di-GMP signaling through a family of proteins termed globin coupled sensors (GCS) that contain diguanylate cyclase domains. Previous studies have found that GCS diguanylate cyclase activity is controlled by ligand binding to the heme within the globin domain, with oxygen binding resulting in the greatest increase in catalytic activity. Herein, we present evidence that heme-edge residues control O2-dependent signaling in PccGCS, a GCS protein from Pectobacterium carotovorum, by modulating heme distortion. Using enzyme kinetics, resonance Raman spectroscopy, small angle X-ray scattering, and multi-wavelength analytical ultracentrifugation, we have developed an integrated model of the full-length PccGCS tetramer and have identified conformational changes associated with ligand binding, heme conformation, and cyclase activity. Taken together, these studies provide new insights into the mechanism by which O2 binding modulates activity of diguanylate cyclase-containing GCS proteins.


Asunto(s)
Proteínas Bacterianas , Hemo , Pectobacterium carotovorum , Liasas de Fósforo-Oxígeno , Liasas de Fósforo-Oxígeno/metabolismo , Liasas de Fósforo-Oxígeno/química , Hemo/química , Hemo/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Pectobacterium carotovorum/enzimología , Conformación Proteica , Oxígeno/química , Oxígeno/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/química , Proteínas de Escherichia coli
4.
Microbiol Spectr ; 12(5): e0241823, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38591917

RESUMEN

The tenacious biofilms formed by Streptococcus mutans are resistant to conventional antibiotics and current treatments. There is a growing need for novel therapeutics that selectively inhibit S. mutans biofilms while preserving the normal oral microenvironment. Previous studies have shown that increased levels of cyclic di-AMP, an important secondary messenger synthesized by diadenylate cyclase (DAC), favored biofilm formation in S. mutans. Thus, targeting S. mutans DAC is a novel strategy to inhibit S. mutans biofilms. We screened a small NCI library of natural products using a fluorescence detection assay. (+)-Brazilin, a tetracyclic homoisoflavanoid found in the heartwood of Caesalpinia sappan, was identified as one of the 11 "hits," with the greatest reduction (>99%) in fluorescence at 100 µM. The smDAC inhibitory profiles of the 11 "hits" established by a quantitative high-performance liquid chromatography assay revealed that (+)-brazilin had the most enzymatic inhibitory activity (87% at 100 µM) and was further studied to determine its half maximal inhibitory concentration (IC50 = 25.1 ± 0.98 µM). (+)-Brazilin non-competitively inhibits smDAC's enzymatic activity (Ki = 140.0 ± 27.13 µM), as determined by a steady-state Michaelis-Menten kinetics assay. In addition, (+)-brazilin's binding profile with smDAC (Kd = 11.87 µM) was illustrated by a tyrosine intrinsic fluorescence quenching assay. Furthermore, at low micromolar concentrations, (+)-brazilin selectively inhibited the biofilm of S. mutans (IC50 = 21.0 ± 0.60 µM) and other oral bacteria. S. mutans biofilms were inhibited by a factor of 105 in colony-forming units when treated with 50 µM (+)-brazilin. In addition, a significant dose-dependent reduction in extracellular DNA and glucan levels was evident by fluorescence microscopy imaging of S. mutans biofilms exposed to different concentrations of (+)-brazilin. Furthermore, colonization of S. mutans on a representative model of enamel using suspended hydroxyapatite discs showed a >90% reduction with 50 µM (+)-brazilin. In summary, we have identified a drug-like natural product inhibitor of S. mutans biofilm that not only binds to smDAC but can also inhibit the function of smDAC. (+)-Brazilin could be a good candidate for further development as a potent therapeutic for the prevention and treatment of dental caries.IMPORTANCEThis study represents a significant advancement in our understanding of potential therapeutic options for combating cariogenic biofilms produced by Streptococcus mutans. The research delves into the use of (+)-brazilin, a natural product, as a potent inhibitor of Streptococcus mutans' diadenylate cyclase (smDAC), an enzyme crucial in the formation of biofilms. The study establishes (+)-brazilin as a non-competitive inhibitor of smDAC while providing initial insights into its binding mechanism. What makes this finding even more promising is that (+)-brazilin does not limit its inhibitory effects to S. mutans alone. Instead, it demonstrates efficacy in hindering biofilms in other oral bacteria as well. The broader spectrum of anti-biofilm activity suggests that (+)-brazilin could potentially serve as a versatile tool in a natural product-based treatment for combating a range of conditions caused by resilient biofilms.


Asunto(s)
Antibacterianos , Biopelículas , Isoflavonas , Streptococcus mutans , Biopelículas/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/enzimología , Isoflavonas/farmacología , Isoflavonas/metabolismo , Isoflavonas/química , Antibacterianos/farmacología , Antibacterianos/química , Productos Biológicos/farmacología , Productos Biológicos/química , Pruebas de Sensibilidad Microbiana , Liasas de Fósforo-Oxígeno/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Humanos
5.
Acta Crystallogr D Struct Biol ; 80(Pt 5): 350-361, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682668

RESUMEN

CdaA is the most widespread diadenylate cyclase in many bacterial species, including several multidrug-resistant human pathogens. The enzymatic product of CdaA, cyclic di-AMP, is a secondary messenger that is essential for the viability of many bacteria. Its absence in humans makes CdaA a very promising and attractive target for the development of new antibiotics. Here, the structural results are presented of a crystallographic fragment screen against CdaA from Listeria monocytogenes, a saprophytic Gram-positive bacterium and an opportunistic food-borne pathogen that can cause listeriosis in humans and animals. Two of the eight fragment molecules reported here were localized in the highly conserved ATP-binding site. These fragments could serve as potential starting points for the development of antibiotics against several CdaA-dependent bacterial species.


Asunto(s)
Listeria monocytogenes , Listeria monocytogenes/enzimología , Cristalografía por Rayos X/métodos , Sitios de Unión , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Modelos Moleculares , Fosfatos de Dinucleósidos/metabolismo , Fosfatos de Dinucleósidos/química , Antibacterianos/farmacología , Humanos , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/metabolismo , Conformación Proteica
6.
Nat Microbiol ; 9(6): 1579-1592, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38589469

RESUMEN

Prokaryotic antiviral defence systems are frequently toxic for host cells and stringent regulation is required to ensure survival and fitness. These systems must be readily available in case of infection but tightly controlled to prevent activation of an unnecessary cellular response. Here we investigate how the bacterial cyclic oligonucleotide-based antiphage signalling system (CBASS) uses its intrinsic protein modification system to regulate the nucleotide cyclase. By integrating a type II CBASS system from Bacillus cereus into the model organism Bacillus subtilis, we show that the protein-conjugating Cap2 (CBASS associated protein 2) enzyme links the cyclase exclusively to the conserved phage shock protein A (PspA) in the absence of phage. The cyclase-PspA conjugation is reversed by the deconjugating isopeptidase Cap3 (CBASS associated protein 3). We propose a model in which the cyclase is held in an inactive state by conjugation to PspA in the absence of phage, with conjugation released upon infection, priming the cyclase for activation.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Bacillus subtilis/virología , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Bacillus cereus/virología , Bacillus cereus/enzimología , Bacillus cereus/genética , Bacillus cereus/inmunología , Transducción de Señal , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/enzimología , Liasas de Fósforo-Oxígeno/metabolismo , Liasas de Fósforo-Oxígeno/genética , Regulación Bacteriana de la Expresión Génica
7.
J Biol Chem ; 300(5): 107217, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522512

RESUMEN

Sensor-effector proteins integrate information from different stimuli and transform this into cellular responses. Some sensory domains, like red-light responsive bacteriophytochromes, show remarkable modularity regulating a variety of effectors. One effector domain is the GGDEF diguanylate cyclase catalyzing the formation of the bacterial second messenger cyclic-dimeric-guanosine monophosphate. While critical signal integration elements have been described for different phytochromes, a generalized understanding of signal processing and communication over large distances, roughly 100 Å in phytochrome diguanylate cyclases, is missing. Here we show that dynamics-driven allostery is key to understanding signal integration on a molecular level. We generated protein variants stabilized in their far-red-absorbing Pfr state and demonstrated by analysis of conformational dynamics using hydrogen-deuterium exchange coupled to mass spectrometry that single amino acid replacements are accompanied by altered dynamics of functional elements throughout the protein. We show that the conformational dynamics correlate with the enzymatic activity of these variants, explaining also the increased activity of a non-photochromic variant. In addition, we demonstrate the functional importance of mixed Pfr/intermediate state dimers using a fast-reverting variant that still enables wild-type-like fold-changes of enzymatic stimulation by red light. This supports the functional role of single protomer activation in phytochromes, a property that might correlate with the non-canonical mixed Pfr/intermediate-state spectra observed for many phytochrome systems. We anticipate our results to stimulate research in the direction of dynamics-driven allosteric regulation of different bacteriophytochrome-based sensor-effectors. This will eventually impact design strategies for the creation of novel sensor-effector systems for enriching the optogenetic toolbox.


Asunto(s)
Luz , Liasas de Fósforo-Oxígeno , Fitocromo , Regulación Alostérica , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Liasas de Fósforo-Oxígeno/metabolismo , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/genética , Fitocromo/metabolismo , Fitocromo/química , Fitocromo/genética , Multimerización de Proteína , Luz Roja , Alteromonadaceae/enzimología , Modelos Moleculares
8.
J Biol Chem ; 300(2): 105659, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237678

RESUMEN

Bacterial lifestyles depend on conditions encountered during colonization. The transition between planktonic and biofilm growth is dependent on the intracellular second messenger c-di-GMP. High c-di-GMP levels driven by diguanylate cyclases (DGCs) activity favor biofilm formation, while low levels were maintained by phosphodiesterases (PDE) encourage planktonic lifestyle. The activity of these enzymes can be modulated by stimuli-sensing domains such as Per-ARNT-Sim (PAS). In Pseudomonas aeruginosa, more than 40 PDE/DGC are involved in c-di-GMP homeostasis, including 16 dual proteins possessing both canonical DGC and PDE motifs, that is, GGDEF and EAL, respectively. It was reported that deletion of the EAL/GGDEF dual enzyme PA0285, one of five c-di-GMP-related enzymes conserved across all Pseudomonas species, impacts biofilms. PA0285 is anchored in the membrane and carries two PAS domains. Here, we confirm that its role is conserved in various P. aeruginosa strains and in Pseudomonas putida. Deletion of PA0285 impacts the early stage of colonization, and RNA-seq analysis suggests that expression of cupA fimbrial genes is involved. We demonstrate that the C-terminal portion of PA0285 encompassing the GGDEF and EAL domains binds GTP and c-di-GMP, respectively, but only exhibits PDE activity in vitro. However, both GGDEF and EAL domains are important for PA0285 PDE activity in vivo. Complementation of the PA0285 mutant strain with a copy of the gene encoding the C-terminal GGDEF/EAL portion in trans was not as effective as complementation with the full-length gene. This suggests the N-terminal transmembrane and PAS domains influence the PDE activity in vivo, through modulating the protein conformation.


Asunto(s)
Proteínas Bacterianas , Pseudomonas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Pseudomonas/enzimología
9.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37894891

RESUMEN

Cyclic di-GMP (c-di-GMP) is a second messenger of intracellular communication in bacterial species, which widely modulates diverse cellular processes. However, little is known about the c-di-GMP network in filamentous multicellular cyanobacteria. In this study, we preliminarily investigated the c-di-GMP turnover proteins in Arthrospira based on published protein data. Bioinformatics results indicate the presence of at least 149 potential turnover proteins in five Arthrospira subspecies. Some proteins are highly conserved in all tested Arthrospira, whereas others are specifically found only in certain subspecies. To further validate the protein catalytic activity, we constructed a riboswitch-based c-di-GMP expression assay system in Escherichia coli and confirmed that a GGDEF domain protein, Adc11, exhibits potential diguanylate cyclase activity. Moreover, we also evaluated a protein with a conserved HD-GYP domain, Ahd1, the expression of which significantly improved the swimming ability of E. coli. Enzyme-linked immunosorbent assay also showed that overexpression of Ahd1 reduced the intracellular concentration of c-di-GMP, which is presumed to exhibit phosphodiesterase activity. Notably, meta-analyses of transcriptomes suggest that Adc11 and Ahd1 are invariable. Overall, this work confirms the possible existence of a functional c-di-GMP network in Arthrospira, which will provide support for the revelation of the biological function of the c-di-GMP system in Arthrospira.


Asunto(s)
Proteínas de Escherichia coli , Spirulina , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Spirulina/metabolismo , Filogenia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica
10.
BMC Ecol Evol ; 23(1): 60, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803310

RESUMEN

BACKGROUND: Cyclic di-guanylate (c-di-GMP), synthesized by diguanylate cyclase, is a major second messenger in prokaryotes, where it triggers biofilm formation. The dictyostelid social amoebas acquired diguanylate cyclase (dgcA) by horizontal gene transfer. Dictyostelium discoideum (Ddis) in taxon group 4 uses c-di-GMP as a secreted signal to induce differentiation of stalk cells, the ancestral somatic cell type that supports the propagating spores. We here investigated how this role for c-di-GMP evolved in Dictyostelia by exploring dgcA function in the group 2 species Polysphondylium pallidum (Ppal) and in Polysphondylium violaceum (Pvio), which resides in a small sister clade to group 4. RESULTS: Similar to Ddis, dgcA is upregulated after aggregation in Ppal and Pvio and predominantly expressed in the anterior region and stalks of emerging fruiting bodies. DgcA null mutants in Ppal and Pvio made fruiting bodies with very long and thin stalks and only few spores and showed delayed aggregation and larger aggregates, respectively. Ddis dgcA- cells cannot form stalks at all, but showed no aggregation defects. The long, thin stalks of Ppal and Pvio dgcA- mutants were also observed in acaA- mutants in these species. AcaA encodes adenylate cyclase A, which mediates the effects of c-di-GMP on stalk induction in Ddis. Other factors that promote stalk formation in Ddis are DIF-1, produced by the polyketide synthase StlB, low ammonia, facilitated by the ammonia transporter AmtC, and high oxygen, detected by the oxygen sensor PhyA (prolyl 4-hydroxylase). We deleted the single stlB, amtC and phyA genes in Pvio wild-type and dgcA- cells. Neither of these interventions affected stalk formation in Pvio wild-type and not or very mildly exacerbated the long thin stalk phenotype of Pvio dgcA- cells. CONCLUSIONS: The study reveals a novel role for c-di-GMP in aggregation, while the reduced spore number in Pvio and Ppal dgcA- is likely an indirect effect, due to depletion of the cell pool by the extended stalk formation. The results indicate that in addition to c-di-GMP, Dictyostelia ancestrally used an as yet unknown factor for induction of stalk formation. The activation of AcaA by c-di-GMP is likely conserved throughout Dictyostelia.


Asunto(s)
Dictyosteliida , Dictyostelium , Dictyostelium/genética , Dictyostelium/metabolismo , Amoníaco/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Dictyosteliida/metabolismo , Oxígeno/metabolismo
11.
J Bacteriol ; 205(4): e0002323, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37022175

RESUMEN

Cyclic dimeric AMP (c-di-AMP) is a widespread second messenger that controls such key functions as osmotic homeostasis, peptidoglycan biosynthesis, and response to various stresses. C-di-AMP is synthesized by diadenylate cyclases that contain the DAC (DisA_N) domain, which was originally characterized as the N-terminal domain in the DNA integrity scanning protein DisA. In other experimentally studied diadenylate cyclases, DAC domain is typically located at the protein C termini and its enzymatic activity is controlled by one or more N-terminal domains. As in other bacterial signal transduction proteins, these N-terminal modules appear to sense environmental or intracellular signals through ligand binding and/or protein-protein interactions. Studies of bacterial and archaeal diadenylate cyclases also revealed numerous sequences with uncharacterized N-terminal regions. This work provides a comprehensive review of the N-terminal domains of bacterial and archaeal diadenylate cyclases, including the description of five previously undefined domains and three PK_C-related domains of the DacZ_N superfamily. These data are used to classify diadenylate cyclases into 22 families, based on their conserved domain architectures and the phylogeny of their DAC domains. Although the nature of the regulatory signals remains obscure, the association of certain dac genes with anti-phage defense CBASS systems and other phage-resistance genes suggests that c-di-AMP might also be involved in the signaling of phage infection.


Asunto(s)
Archaea , Liasas de Fósforo-Oxígeno , Humanos , Archaea/genética , Archaea/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Proteínas Bacterianas/metabolismo , Bacterias/genética , Bacterias/metabolismo , Sistemas de Mensajero Secundario , AMP Cíclico/metabolismo , Fosfatos de Dinucleósidos/metabolismo
12.
mBio ; 14(2): e0061923, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37036337

RESUMEN

c-di-GMP primarily controls motile to sessile transitions in bacteria. Diguanylate cyclases (DGCs) catalyze the synthesis of c-di-GMP from two GTP molecules. Typically, bacteria encode multiple DGCs that are activated by specific environmental signals. Their catalytic activity is modulated by c-di-GMP binding to autoinhibitory sites (I-sites). YfiN is a conserved inner membrane DGC that lacks these sites. Instead, YfiN activity is directly repressed by periplasmic YfiR, which is inactivated by redox stress. In Escherichia coli, an additional envelope stress causes YfiN to relocate to the mid-cell to inhibit cell division by interacting with the division machinery. Here, we report a third activity for YfiN in E. coli, where cell growth is inhibited without YfiN relocating to the division site. This action of YfiN is only observed when the bacteria are cultured on gluconeogenic carbon sources, and is dependent on absence of the autoinhibitory sites. Restoration of I-site function relieves the growth-arrest phenotype, and disabling this function in a heterologous DGC causes acquisition of this phenotype. Arrested cells are tolerant to a wide range of antibiotics. We show that the likely cause of growth arrest is depletion of cellular GTP from run-away synthesis of c-di-GMP, explaining the dependence of growth arrest on gluconeogenic carbon sources that exhaust more GTP during production of glucose. This is the first report of c-di-GMP-mediated growth arrest by altering metabolic flow. IMPORTANCE The c-di-GMP signaling network in bacteria not only controls a variety of cellular processes such as motility, biofilms, cell development, and virulence, but does so by a dizzying array of mechanisms. The DGC YfiN singularly represents the versatility of this network in that it not only inhibits motility and promotes biofilms, but also arrests growth in Escherichia coli by relocating to the mid-cell and blocking cell division. The work described here reveals that YfiN arrests growth by yet another mechanism in E. coli, changing metabolic flow. This function of YfiN, or of DGCs without autoinhibitory I-sites, may contribute to antibiotic tolerant persisters in relevant niches such as the gut where gluconeogenic sugars are found.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Sistemas de Mensajero Secundario , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Biopelículas , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
13.
Mol Microbiol ; 119(5): 599-611, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36929159

RESUMEN

Phototrophic bacteria face diurnal variations of environmental conditions such as light and osmolarity that affect their carbon metabolism and ability to generate organic compounds. The model cyanobacterium, Synechocystis sp. PCC 6803 forms a biofilm when it encounters extreme conditions like high salt stress, but the molecular mechanisms involved in perception of environmental changes that lead to biofilm formation are unknown. Here, we studied two two-component regulatory systems (TCSs) that contain diguanylate cyclases (DGCs), which produce the second messenger c-di-GMP, as potential components of the biofilm-inducing signaling pathway in Synechocystis. Analysis of single mutants provided evidence for involvement of the response regulators, Rre2 and Rre8 in biofilm formation. A bacterial two-hybrid assay showed that Rre2 and Rre8 each formed a TCS with a specific histidine kinase, Hik12 and Hik14, respectively. The in vitro assay showed that Rre2 had DGC activity regardless of its de/phosphorylation status, whereas Rre8 required phosphorylation for DGC activity. Hik14-Rre8 likely functioned as an inducible sensing system in response to environmental change. Biofilm assays with Synechocystis mutants suggested that pairs of hik12-rre2 and hik14-rre8 responded to high salinity-induced biofilm formation. Inactivation of hik12-rre2 and hik14-rre8 did not affect the performance of the light reactions of photosynthesis. These data suggest that Hik12-Rre2 and Hik14-Rre8 participate in biofilm formation in Synechocystis by regulating c-di-GMP production via the DGC activity of Rre2 and Rre8.


Asunto(s)
Proteínas de Escherichia coli , Synechocystis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Biopelículas , Synechocystis/genética , Synechocystis/metabolismo , GMP Cíclico/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
14.
Biochemistry ; 62(4): 912-922, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36746768

RESUMEN

Transitions between motile and biofilm lifestyles are highly regulated and fundamental to microbial pathogenesis. H-NOX (heme-nitric oxide/oxygen-binding domain) is a key regulator of bacterial communal behaviors, such as biofilm formation. A predicted bifunctional cyclic di-GMP metabolizing enzyme, composed of diguanylate cyclase and phosphodiesterase (PDE) domains (avi_3097), is annotated downstream of an hnoX gene in Agrobacterium vitis S4. Here, we demonstrate that avH-NOX is a nitric oxide (NO)-binding hemoprotein that binds to and regulates the activity of avi_3097 (avHaCE; H-NOX-associated cyclic di-GMP processing enzyme). Kinetic analysis of avHaCE indicates a ∼four-fold increase in PDE activity in the presence of NO-bound avH-NOX. Biofilm analysis with crystal violet staining reveals that low concentrations of NO reduce biofilm growth in the wild-type A. vitis S4 strain, but the mutant ΔhnoX strain has no NO phenotype, suggesting that H-NOX is responsible for the NO biofilm phenotype in A. vitis. Together, these data indicate that avH-NOX enhances cyclic di-GMP degradation to reduce biofilm formation in response to NO in A. vitis.


Asunto(s)
Proteínas Bacterianas , Proteínas de Escherichia coli , Proteínas Bacterianas/química , Óxido Nítrico/metabolismo , Cinética , Proteínas de Escherichia coli/metabolismo , Biopelículas , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica
15.
Proc Natl Acad Sci U S A ; 119(41): e2209838119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191190

RESUMEN

Cyclic diguanosine monophosphate (c-di-GMP) is widely used by bacteria to control biological functions in response to diverse signals or cues. A previous study showed that potential c-di-GMP metabolic enzymes play a role in the regulation of biofilm formation and motility in Acinetobacter baumannii. However, it was unclear whether and how A. baumannii cells use c-di-GMP signaling to modulate biological functions. Here, we report that c-di-GMP is an important intracellular signal in the modulation of biofilm formation, motility, and virulence in A. baumannii. The intracellular level of c-di-GMP is principally controlled by the diguanylate cyclases (DGCs) A1S_1695, A1S_2506, and A1S_3296 and the phosphodiesterase (PDE) A1S_1254. Intriguingly, we revealed that A1S_2419 (an elongation factor P [EF-P]), is a novel c-di-GMP effector in A. baumannii. Response to a c-di-GMP signal boosted A1S_2419 activity to rescue ribosomes from stalling during synthesis of proteins containing consecutive prolines and thus regulate A. baumannii physiology and pathogenesis. Our study presents a unique and widely conserved effector that controls bacterial physiology and virulence by sensing the second messenger c-di-GMP.


Asunto(s)
Acinetobacter baumannii , Proteínas de Escherichia coli , Acinetobacter baumannii/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Guanosina Monofosfato , Factores de Elongación de Péptidos , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Virulencia
16.
PLoS Pathog ; 18(8): e1010737, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35914003

RESUMEN

Cyclic-di-GMP (c-di-GMP) is an essential bacterial second messenger that regulates biofilm formation and pathogenicity. To study the global regulatory effect of individual components of the c-di-GMP metabolic system, we deleted all 12 diguanylate cyclase (dgc) and phosphodiesterase (pde)-encoding genes in E. amylovora Ea1189 (Ea1189Δ12). Ea1189Δ12 was impaired in surface attachment due to a transcriptional dysregulation of the type IV pilus and the flagellar filament. A transcriptomic analysis of surface-exposed WT Ea1189 and Ea1189Δ12 cells indicated that genes involved in metabolism, appendage generation and global transcriptional/post-transcriptional regulation were differentially regulated in Ea1189Δ12. Biofilm formation was regulated by all 5 Dgcs, whereas type III secretion and disease development were differentially regulated by specific Dgcs. A comparative transcriptomic analysis of Ea1189Δ8 (lacks all five enzymatically active dgc and 3 pde genes) against Ea1189Δ8 expressing specific dgcs, revealed the presence of a dual modality of spatial and global regulatory frameworks in the c-di-GMP signaling network.


Asunto(s)
Erwinia amylovora , Proteínas de Escherichia coli , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , GMP Cíclico/análogos & derivados , GMP Cíclico/genética , GMP Cíclico/metabolismo , Erwinia amylovora/genética , Erwinia amylovora/metabolismo , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo
17.
Photochem Photobiol Sci ; 21(10): 1761-1779, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35788917

RESUMEN

Understanding the relationship between protein sequence, structure and function is one of the fundamental challenges in biochemistry. A direct correlation, however, is often not trivial since protein dynamics also play an important functional role-especially in signal transduction processes. In a subfamily of bacterial light sensors, phytochrome-activated diguanylate cyclases (PadCs), a characteristic coiled-coil linker element connects photoreceptor and output module, playing an essential role in signal integration. Combining phylogenetic analyses with biochemical characterisations, we were able to show that length and composition of this linker determine sensor-effector function and as such are under considerable evolutionary pressure. The linker length, together with the upstream PHY-specific domain, influences the dynamic range of effector activation and can even cause light-induced enzyme inhibition. We demonstrate phylogenetic clustering according to linker length, and the development of new linker lengths as well as new protein function within linker families. The biochemical characterisation of PadC homologs revealed that the functional coupling of PHY dimer interface and linker element defines signal integration and regulation of output functionality. A small subfamily of PadCs, characterised by a linker length breaking the coiled-coil pattern, shows a markedly different behaviour from other homologs. The effect of the central helical spine on PadC function highlights its essential role in signal integration as well as direct regulation of diguanylate cyclase activity. Appreciation of sensor-effector linkers as integrator elements and their coevolution with sensory modules is a further step towards the use of functionally diverse homologs as building blocks for rationally designed optogenetic tools.


Asunto(s)
Fitocromo , Proteínas Bacterianas/química , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/metabolismo , Filogenia , Fitocromo/química
18.
Org Lett ; 24(13): 2526-2530, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35343710

RESUMEN

The biosynthetic gene cluster of atlantinone B (10) was discovered in Penicillium chrysogenum MT-40. A multifunctional cytochrome P450 (AtlD) encoded by the cluster is responsible for the formation of the unique lactone-bridged ring and the 16ß-hydroxyl of atlantinone B, and a new terpene cyclase (AtlC) can unprecedentedly accept the demethylated substrate epoxyfarnesyl-DMOA (4a) to generate three bicyclic meroterpenoids (5a-5c). This study paves the way for combinatorial synthesis of structurally diverse meroterpenoids for drug discovery.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Liasas de Fósforo-Oxígeno/metabolismo , Terpenos , Sistema Enzimático del Citocromo P-450/metabolismo , Familia de Multigenes , Metabolismo Secundario
19.
Appl Environ Microbiol ; 88(7): e0252921, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35323023

RESUMEN

As a key bacterial second messenger, cyclic di-GMP (c-di-GMP) regulates various physiological processes, such as motility, biofilm formation, and virulence. Cellular c-di-GMP levels are regulated by the opposing activities of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs). Beyond that, the enzymatic activities of c-di-GMP metabolizing proteins are controlled by a variety of extracellular signals and intracellular physiological conditions. Here, we report that pdcA (BTH_II2363), pdcB (BTH_II2364), and pdcC (BTH_II2365) are cotranscribed in the same operon and are involved in a regulatory cascade controlling the cellular level of c-di-GMP in Burkholderia thailandensis. The GGDEF domain-containing protein PdcA was found to be a DGC that modulates biofilm formation, motility, and virulence in B. thailandensis. Moreover, the DGC activity of PdcA was inhibited by phosphorylated PdcC, a single-domain response regulator composed of only the phosphoryl-accepting REC domain. The phosphatase PdcB affects the function of PdcA by dephosphorylating PdcC. The observation that homologous operons of pdcABC are widespread among betaproteobacteria and gammaproteobacteria suggests a general mechanism by which the intracellular concentration of c-di-GMP is modulated to coordinate bacterial behavior and virulence. IMPORTANCE The transition from planktonic cells to biofilm cells is a successful strategy adopted by bacteria to survive in diverse environments, while the second messenger c-di-GMP plays an important role in this process. Cellular c-di-GMP levels are mainly controlled by modulating the activity of c-di-GMP-metabolizing proteins via the sensory domains adjacent to their enzymatic domains. However, in most cases how c-di-GMP-metabolizing enzymes are modulated by their sensory domains remains unclear. Here, we reveal a new c-di-GMP signaling cascade that regulates motility, biofilm formation, and virulence in B. thailandensis. While pdcA, pdcB, and pdcC constitute an operon, the phosphorylated PdcC binds the PAS sensory domain of PdcA to inhibit its DGC activity, with PdcB dephosphorylating PdcC to derepress the activity of PdcA. We also show this c-di-GMP regulatory model is widespread in the phylum Proteobacteria. Our study expands the current knowledge of how bacteria regulate intracellular c-di-GMP levels.


Asunto(s)
Proteínas de Escherichia coli , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Burkholderia , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Virulencia
20.
Microbes Infect ; 24(5): 104955, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35272020

RESUMEN

Biofilms contribute to the resistance of Edwardsiella tarda to antibiotics and host immunity. AroC in the shikimate pathway produces chorismate to synthesize crucial intermediates such as indole. In this study, the differences between biofilms produced by aroC mutants (△aroC), wild-type (WT) strains, and △aroC complementary strains (C△aroC) were detected both in vitro with 96-well plates, tubes, or coverslips and in vivo using a mouse model of subcutaneous implants. When examining potential mechanisms, we found that the diameters of the movement rings in soft agar plates and the flagellar sizes and numbers determined by silver staining were all lower for △aroC than for WT and C△aroC. Moreover, qRT-PCR showed that the transcription levels of flagellar synthesis genes, fliA and fliC, were reduced in △aroC. AroC, FliC, or FliA may accompany the motility of △aroC strains. In addition, compared with the WT and C△aroC, the amounts of indole in △aroC were significantly decreased. Notably, the formation of biofilms by these strains could be promoted by exogenous indole. Therefore, the aroC gene could affect the biofilm formation of E. tarda concerning its impact on flagella and indole.


Asunto(s)
Edwardsiella tarda , Liasas de Fósforo-Oxígeno , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Edwardsiella tarda/genética , Edwardsiella tarda/metabolismo , Indoles , Liasas de Fósforo-Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...