Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.009
Filtrar
1.
Rev. biol. trop ; 72(1): e54500, ene.-dic. 2024. graf
Artículo en Español | LILACS, SaludCR | ID: biblio-1559314

RESUMEN

Resumen Introducción: La melina (Gmelina arborea), es una especie de gran interés por su madera y propiedades medicinales. En Costa Rica, existen clones genéticamente superiores que se propagan sin el conocimiento de la edad ontogénica y fisiológica de los materiales. Objetivo: Evaluar la relación del contenido de fenoles y ligninas en hojas, peciolos, tallos y raíces de plantas con diferentes edades. Métodos: Los contenidos de fenoles y ligninas totales se determinaron mediante el método colorimétrico de Folin-Ciocalteu y el método de extracción alcalina, respectivamente. Para la investigación se eligieron plantas in vitro "año cero" y árboles de año y medio, cuatro, siete y 20 años. El muestreo se realizó en marzo y abril del 2021. Resultados: Se demostró que todas las partes de la planta analizadas contienen compuestos fenólicos y ligninas, independientemente de su edad. No hubo una correlación positiva entre la edad con el contenido de fenoles y ligninas para ninguna condición de desarrollo, pues los valores más altos no se obtuvieron en los árboles más longevos. Los extractos de hojas de las plantas in vitro y los árboles de siete años mostraron, respectivamente, los contenidos más altos de fenoles y ligninas para todas las condiciones (P < 0.05). Los valores promedio más bajos de compuestos fenólicos para todas las condiciones se obtuvieron en los árboles de cuatro años. Respecto a las ligninas, el contenido más bajo se presentó en las raíces más longevas, aunque la tendencia no se mantuvo para el resto de las partes de la planta. Conclusiones: La investigación muestra los primeros resultados del contenido de compuestos fenólicos y ligninas presentes en diferentes tejidos de una especie forestal de edades diferentes. Por lo tanto, son los primeros valores de referencia acerca del compromiso bioquímico para la síntesis fenólica según la edad y el estado de desarrollo específico de una planta leñosa.


Abstract Introduction: Melina (Gmelina arborea) is a tree species of great interest for its wood and medicinal properties. In Costa Rica, there are genetically superior clones that are propagated without knowledge of the ontogenic and physiological age of the materials. Objective: To evaluate how age influences the content of phenols and lignins in leaves, petioles, stems, and roots of melina plants. Methods: The total phenolic and lignins contents were determined using Folin-Ciocalteu colorimetric method and alkaline extraction method, respectively. Plants of five different ages were chosen for the investigation (in vitro plants "year 0" and trees of a year and a half, four, seven and 20 years). Sampling was done in March and April 2021. Results: All parts of the plant analyzed contain phenolic compounds and lignins, regardless of their age. There was no positive correlation between age and phenol and lignin content for any development condition, since the highest values were not obtained in the oldest trees. Leaf extracts from in vitro plants and seven-year-old trees showed, respectively, the highest phenol and lignin contents for all conditions (P < 0.05). The lowest average values of phenolic compounds for all conditions were obtained in four-year-old trees. Regarding lignins, the lowest content occurred in the oldest roots, although the trend was not maintained for the rest of the plant parts. Conclusions: This study provides the first results of the content of phenolic compounds and lignins present in different tissues of a forest species of different ages. Therefore, they are the first reference values about the biochemical commitment for phenolic synthesis according to the age and the specific developmental stage of a woody plant.


Asunto(s)
Fenoles/análisis , Árboles , Lignina/análisis , Muestreo , Lamiaceae , Fitoquímicos/análisis
2.
Sci Rep ; 14(1): 12692, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830877

RESUMEN

Here, we explore the application of Raman spectroscopy for the assessment of plant biodiversity. Raman spectra from 11 vascular plant species commonly found in forest ecosystems, specifically angiosperms (both monocots and eudicots) and pteridophytes (ferns), were acquired in vivo and in situ using a Raman leaf-clip. We achieved an overall accuracy of 91% for correct classification of a species within a plant group and identified lignin Raman spectral features as a useful discriminator for classification. The results demonstrate the potential of Raman spectroscopy in contributing to plant biodiversity assessment.


Asunto(s)
Biodiversidad , Espectrometría Raman , Espectrometría Raman/métodos , Plantas/química , Plantas/clasificación , Hojas de la Planta/química , Lignina/análisis
3.
Curr Protoc ; 4(6): e1090, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38923331

RESUMEN

In the event of a sunlight-blocking, temperature-lowering global catastrophe, such as a global nuclear war, super-volcano eruption or large asteroid strike, normal agricultural practices would be severely disrupted with a devastating impact on the global food supply. Despite the improbability of such an occurrence, it is prudent to consider how to sustain the surviving population following a global catastrophe until normal weather and climate patterns resume. Additionally, the ongoing challenges posed by climate change, droughts, flooding, soil salinization, and famine highlight the importance of developing food systems with resilient inputs such as lignocellulosic biomass. With its high proportion of cellulose, the abundant lignocellulosic biomass found across the Earth's land surfaces could be a source of energy and nutrition, but it would first need to be converted into foods. To understand the potential of lignocellulosic biomass to provide energy and nutrition to humans in post-catastrophic and other food crisis scenarios, compositional analyses should be completed to gauge the amount of energy (soluble sugars) and other macronutrients (protein and lipids) that might be available and the level of difficulty in extracting them. Suitable preparation of the lignocellulosic biomass is critical to achieve consistent and comparable results from these analyses. Here we describe a compilation of protocols to prepare lignocellulosic biomass and analyze its composition to understand its potential as a precursor to produce post-catastrophic foods which are those that could be foraged, grown, or produced under the new climate conditions to supplement reduced availability of traditional foods. These foods have sometimes been referred to in the literature as emergency, alternate, or resilient foods. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Convection oven drying (1 to 2 days) Alternate Protocol 1: Air-drying (2 to 3 days) Alternate Protocol 2: Lyophilization (1 to 4 days) Support Protocol 1: Milling plant biomass Support Protocol 2: Measuring moisture content Basic Protocol 2: Cellulose determination Basic Protocol 3: Lignin determination Basic Protocol 4: Crude protein content by total nitrogen Basic Protocol 5: Crude fat determination via soxtec extraction system Basic Protocol 6: Sugars by HPLC Basic Protocol 7: Ash content.


Asunto(s)
Biomasa , Lignina , Lignina/análisis , Lignina/química , Plantas/química , Plantas/metabolismo , Abastecimiento de Alimentos , Cambio Climático
4.
Molecules ; 29(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38893463

RESUMEN

Diverse methodologies exist to determine the chemical composition, proximate analysis, and calorific value of biomass. Researchers select and apply a specific methodology according to the lignocellulosic material they study and the budgetary resources available. In this project, we determined the primary chemical constitution and proximate analysis of Prosopis laevigata (Humb. & Bonpl.) Jonhst wood using a traditional chemical method and a novel procedure based on the deconvolution of the DTG signal produced by TGA. The highest calorific value was verified using a calorimetric pump based on mathematical models. We also conducted elemental analysis and a microanalysis of ash, and applied Fourier transform infrared spectroscopic analysis (FT-IR). The means of the results obtained by the chemical method and TGA-DTG, respectively, were: hemicelluloses 7.36%-(8.72%), cellulose 48.28%-(46.08%), lignin 30.57%-(32.44%), extractables 13.53%-(12.72%), moisture 2.03%-(4.96%), ash 1.77%-(1.90%), volatile matter 75.16%-(74.14%), and fixed carbon 23.05%-(18.93%). The procedure with the calorimetric pump generated a calorific value above 20.16 MJ/kg. The range generated by the various models was 18.23-21.07 MJ/kg. The results of the elemental analysis were: carbon 46.4%, hydrogen 6.79%, oxygen 46.43%, nitrogen 0.3%, and sulfur 0.5%. The microanalysis of ash identified 18 elements. The most abundant ones were potassium ˃ calcium ˃ sodium. Based on the infrared spectrum (FT-IR) of Prosopis laevigata wood, we detected the following functional groups: OH, C-H, C=O, CH2, CH3, C-O-C, C-OH, and C4-OH. Our conclusion is that the TGA-DTG method made it possible to obtain results in less time with no need for the numerous reagents that chemical procedures require. The calorific value of P. laevigata wood is higher than the standards. Finally, according to our results, proximate analysis provides the best model for calculating calorific value.


Asunto(s)
Lignina , Prosopis , Termogravimetría , Madera , Madera/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Prosopis/química , Lignina/química , Lignina/análisis , Biomasa , Celulosa/química , Celulosa/análisis , Polisacáridos
5.
Rapid Commun Mass Spectrom ; 38(14): e9716, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38738638

RESUMEN

RATIONALE: This study overcomes traditional biomass analysis limitations by introducing a pioneering matrix-free laser desorption/ionization (LDI) approach in mass spectrometry imaging (MSI) for efficient lignin evaluation in wood. The innovative acetic acid-peracetic acid (APA) treatment significantly enhances lignin detection, enabling high-throughput, on-site analysis. METHODS: Wood slices, softwood from a conifer tree (Japanese cypress) and hardwood from a broadleaf tree (Japanese beech), were analyzed using MSI with a Fourier transform ion cyclotron resonance mass spectrometer. The developed APA treatment demonstrated effectiveness for MSI analysis of biomass. RESULTS: Our imaging technique successfully distinguishes between earlywood and latewood and enables the distinct visualization of lignin in these and other wood tissues, such as the radial parenchyma. This approach reveals significant contrasts in MSI. It has identified intense ions from ß-O-4-type lignin, specifically in the radial parenchyma of hardwood, highlighting the method's precision and utility in wood tissue analysis. CONCLUSIONS: The benefits of matrix-free LDI include reduced peak overlap, consistent sample quality, preservation of natural sample properties, enhanced analytical accuracy, and reduced operational costs. This innovative approach is poised to become a standard method for rapid and precise biomass evaluation and has important applications in environmental research and sustainable resource management and is crucial for the effective management of diverse biomass, paving the way towards a sustainable, circular society.


Asunto(s)
Biomasa , Lignina , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Madera , Madera/química , Lignina/análisis , Lignina/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Fagus/química
6.
Int J Biol Macromol ; 269(Pt 2): 132147, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719007

RESUMEN

Lignin in biomass plays significant role in substitution of synthetic polymer and reduction of energy expenditure, and the lignin content was usually determined by wet chemical methods. However, the methods' heavy workload, low efficiency, huge consumption of chemicals and use of toxic reagents render them unsuitable for sustainable development and environmental protection. Chinese fir, a prevalent angiosperm tree, holds immense importance for various industries. Since our previous work found that Raman spectroscopy could accurately predict the lignin content in poplar, we propose that the lignin content of Chinese fir can be estimated by similar strategy. The results suggested that the peak at 2895 cm-1 is the optimal choice of internal standard peak and algorithm of XGBoost demonstrates the highest accuracy among all algorithms. Furthermore, transfer learning was successfully introduced to enhance the accuracy and robustness of the model. Ultimately, we report that a machine learning algorithm, combining transfer learning with XGBoost or LightGBM, offers an accurate, high-efficiency and environmental friendly method for predicting the lignin content of Chinese fir using Raman spectra.


Asunto(s)
Algoritmos , Cunninghamia , Lignina , Aprendizaje Automático , Espectrometría Raman , Lignina/química , Lignina/análisis , Espectrometría Raman/métodos , Cunninghamia/química
7.
J Food Sci ; 89(5): 2629-2644, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38578118

RESUMEN

Taro (Colocasia esculenta) flour is a viable carbohydrate alternative and a functional additive for food formulation; however, different taro varieties may possess distinct characteristics that may influence their suitability for food production. This study evaluated the nutritional, physicochemical, and functional properties of flours from five Hawaiian taro varieties: Bun-Long, Mana Ulu, Moi, Kaua'i Lehua, and Tahitian. Tahitian, Bun-long, and Moi had high total starch contents of 40.8, 38.9, and 34.1 g/100 g, respectively. Additionally, Moi had the highest neutral detergent fiber (25.5 g/100 g), lignin (1.39 g/100 g), and cellulose (5.31 g/100 g). In terms of physicochemical properties, Tahitian showed the highest water solubility index (33.3 g/100 g), while Tahitian and Moi exhibited the two highest water absorption indices (5.81 g/g and 5.68 g/g, respectively). Regarding functional properties, Tahitian had the highest water absorption capacity (3.48 g/g), and Tahitian and Moi had the two highest oil absorption capacities (3.15 g/g and 2.68 g/g, respectively). Therefore, the flours from these Hawaiian taro varieties possess promising characteristics that could enhance food quality when used as alternative additives in food processing.


Asunto(s)
Colocasia , Fibras de la Dieta , Harina , Valor Nutritivo , Almidón , Colocasia/química , Harina/análisis , Hawaii , Almidón/análisis , Almidón/química , Fibras de la Dieta/análisis , Solubilidad , Celulosa/química , Celulosa/análisis , Lignina/química , Lignina/análisis , Agua
8.
Int J Biol Macromol ; 267(Pt 2): 131416, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582486

RESUMEN

Heavy metal ions have extremely high toxicity. As the top of food chain, human beings certainly will accumulate them by ingesting food and participating other activities, which eventually result in the damage to our health. Therefore, it is very meaningful and necessary to design a simple, portable, stable and efficient material for heavy metal ions detection. Based on the spirolactam Rhodamine 6G (SRh6G) fluorescent probe, we prepared two types of nanocomposite materials (membrane and aerogel) by vacuum filtration and freeze-drying methods with lignocellulose nanofiber (CNF) as a carrier, polyvinyl alcohol (PVA) and glutaraldehyde (GA) as the cross-linkers. Then the microstructure, chemical composition, wetting property, fluorescence intensity and selectivity of as-prepared SRh6G/PVA/CNF would be characterized and analyzed. Results showed that SRh6G/PVA/CNF nanocomposites would turn red in color under strong acidic environment and produced orange fluorescence under ultraviolet light. Besides, they were also to detect Al3+, Cu2+, Hg2+, Fe3+ and Ag+ through color and fluorescence variations. We had further tested its sensitivity, selectivity, adsorption, fluorescence limits of detection (LOD) to Fe3+ and Cu2+. The test towards real water samples (hospital wastewater, Songhua River and tap water) proved that SRh6G/PVA/CNF nanocomposites could detect the polluted water with low concentrations of Fe3+ and Cu2+. In addition, SRh6G/PVA/CNF nanocomposites have excellent mechanical property, repeatability, superhydrophilicity and underwater superoleophobicity, which may offer a theoretical reference for the assembly strategy and detection application of cellulose-based fluorescent probe.


Asunto(s)
Colorantes Fluorescentes , Lignina , Nanofibras , Rodaminas , Aguas Residuales , Contaminantes Químicos del Agua , Rodaminas/química , Lignina/química , Lignina/análisis , Aguas Residuales/química , Aguas Residuales/análisis , Nanofibras/química , Colorantes Fluorescentes/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Colorimetría/métodos , Metales Pesados/análisis , Metales Pesados/química , Nanocompuestos/química , Iones/análisis , Límite de Detección , Alcohol Polivinílico/química
9.
Int J Biol Macromol ; 262(Pt 2): 130025, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340917

RESUMEN

Application of nanomaterials is gaining tremendous interest in the field of wood science and technology for value addition and enhancing performance of wood and wood-based composites. This review focuses on the use of nanomaterials in improving the properties of wood and wood-based materials and protecting them from weathering, biodegradation, and other deteriorating agents. UV-resistant, self-cleaning (superhydrophobic) surfaces with anti-microbial properties have been developed using the extraordinary features of nanomaterials. Scratch-resistant nano-coatings also improve durability and aesthetic appeal of wood. Moreover, nanomaterials have been used as wood preservatives for increasing the resistance against wood deteriorating agents such as fungi, termites and borers. Wood can be made more resistant to ignition and slower to burn by introducing nano-clays or nanoparticles of metal-oxides. The use of nanocellulose and lignin nanoparticles in wood-based products has attracted huge interest in developing novel materials with improved properties. Nanocellulose and lignin nanoparticles derived/synthesized from woody biomass can enhance the mechanical properties such as strength and stiffness and impart additional functionalities to wood-based products. Cellulose nano-fibres/crystals find application in wide areas of materials science like reinforcement for composites. Incorporation of nanomaterials in resin has been used to enhance specific properties of wood-based composites. This review paper highlights some of the advancements in the use of nanotechnology in wood science, and its potential impact on the industry.


Asunto(s)
Lignina , Nanoestructuras , Lignina/análisis , Madera/química , Nanotecnología , Celulosa/química , Nanoestructuras/química
10.
Chemosphere ; 346: 140507, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303379

RESUMEN

Cadmium (Cd) stress causes serious damage to plants, inducing various physiological and biochemical disruptions that lead to reduced plant biomass and compromised growth. The study investigated the combined effects of silicon (Si) and arbuscular mycorrhizal fungi (AMF) on mitigating Cd stress in plants, revealing promising results in enhancing plant tolerance to Cd toxicity. Under Cd stress, plant biomass was significantly reduced (-33% and -30% shoot and root dry weights) as compared to control. However, Si and AMF application ameliorated this effect, leading to increased shoot and root dry weights (+47% and +39%). Furthermore, Si and AMF demonstrated their potential in reducing the relative Cd content (-43% and -36% in shoot and root) in plants and positively influencing plant colonization (+648%), providing eco-friendly and sustainable strategies to combat Cd toxicity in contaminated soils. Additionally, the combined treatment in the Cd-stressed conditions resulted in notable increases in saccharide compounds and hormone levels in both leaf and root tissues, further enhancing the plant's resilience to Cd-induced stress. Si and AMF also played a vital role in positively regulating key lignin biosynthesis genes and altering lignin-related metabolites, shedding light on their potential to fortify plants against Cd stress. These findings underscore the significance of Si and AMF as promising tools in addressing Cd toxicity and enhancing plant performance in Cd-contaminated environments.


Asunto(s)
Micorrizas , Contaminantes del Suelo , Micorrizas/metabolismo , Cadmio/análisis , Zea mays/metabolismo , Lignina/análisis , Silicio/farmacología , Raíces de Plantas/metabolismo , Contaminantes del Suelo/análisis
11.
Appl Spectrosc ; 78(5): 523-537, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38403903

RESUMEN

Current infrared spectroscopy applications in the field of viticulture are moving toward direct in-field measuring techniques. However, limited research is available on quantitative applications using direct measurement of fresh tissue. The few studies conducted have combined the spectral data from various cultivars, growing regions, grapevine organs, and phenological stages during model development. The spectral data from these heterogeneous samples are combined into a single data set and analyzed jointly during quantitative analysis. Combining the spectral information of these diverse samples into a global data set could be an unsuitable approach and could yield less accurate prediction results. Spectral differences among samples could be overlooked during model development and quantitative analysis. The development of specialized calibrations should be considered and could lead to more accurate quantitative analyses. This study explored a model optimization strategy attempting global and specialized calibrations. Global calibrations, containing data from multiple organs, berry phenological, and shoot lignification stages, were compared to specialized calibrations per organ or stage. The global calibration for organs contained data from shoots, leaves, and berries and produced moderately accurate prediction results for nitrogen, carbon, and hydrogen. The specialized calibrations per organ yielded more accurate calibrations with a coefficient of determination in validation (R2val) at 90.65% and a root mean square error of prediction (RMSEP) at 0.32% dry matter (DM) for the berries' carbon calibrations. The leaves and shoots carbon calibrations had R2val and RMSEP at 84.99%, 0.34% DM, and 90.06%, 0.37% DM, respectively. The specialized calibrations for nitrogen and hydrogen showed similar improvements in prediction accuracy per organ. Specialized calibrations per phenological and lignification stage were also explored. Not all stages showed improvement, however, most stages had comparable or improved results for the specialized calibrations compared to the global calibrations containing all phenological or lignification stages. The results indicated that both global and specialized calibrations should be considered during model development to optimize prediction accuracy.


Asunto(s)
Frutas , Espectroscopía Infrarroja Corta , Vitis , Vitis/química , Vitis/crecimiento & desarrollo , Calibración , Espectroscopía Infrarroja Corta/métodos , Frutas/química , Frutas/crecimiento & desarrollo , Brotes de la Planta/química , Lignina/análisis , Hojas de la Planta/química , Carbono/análisis , Nitrógeno/análisis , Valor Nutritivo
12.
Int J Biol Macromol ; 257(Pt 2): 128767, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38091681

RESUMEN

In this study, the utilization of mangosteen and durian peel wastes as bio-filler and natural pigment in biopolymer of polybutyrate adipate terephthalate (PBAT) were examined. The related research work of hybridization of both mangosteen and durian peels reinforced in biopolymer as cellulose-based bio fillers and natural pigment is rarely studied. The content variation of mangosteen powder and durian powder ranged from 0 to 30 wt% with an increment of 10. The influence of mangosteen and durian powders reinforced in PBAT on color change, morphological, chemical composition, mechanical, thermal, and rheological properties were determined. Mangosteen peel and durian peel provided dark appearance for the green composites without pre-burn of these fruit peels. It can be concluded that mangosteen peel and durian peel can be used as bio pigment and natural reinforcement material in biopolymer matrix which can reduce massive waste of mangosteen and durian peel and add value to these wastes. These black biopolymer composites can be used in applications of eco-friendly food packaging and medicine zipper packaging. The overall mechanical properties, thermal stability, and dark color of mangosteen/PBAT composites were greater than those of durian/PBAT composites. However, durian/PBAT composites presented greater thermal and rheological properties than mangosteen/PBAT composites.


Asunto(s)
Frutas , Lignina , Frutas/química , Polvos , Lignina/análisis , Celulosa/química
13.
Cell Biochem Funct ; 42(1): e3897, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38063410

RESUMEN

Polycystic ovarian syndrome (PCOS) is an endocrinological disorder aroused due to hormonal disturbances. It is characterized by anovulation due to an excess of androgen and estrogen hormones, thus leading to the formation of multiple cysts, imposing life-threatening conditions. This manuscript aimed to introduce a natural estrogen receptor (ESR) inhibitors that can provide protection against PCOS. The computational analysis of Linum usitatissimum seeds  compounds against ESR alpha receptor was performed, and the binding affinities of the ligand compounds and receptor proteins were scrutinized. Nine lignin compounds were docked, and the results were compared with that of reference estrogen receptor inhibitors, clomiphene, and tamoxifen. The binding affinity scores for pinoresinol, lariciresinol, secoisolariciresinol, and matairesinol were -10.67, -10.66, -10.91, and -10.60 kcal mol-1 , respectively. These were comparable to the binding affinity score of reference compounds -11.406 kcal mol-1 for clomiphene and -10.666 kcal mol-1 for tamoxifen. Prime MM-GBSA studies showcased that Linum usitatissimum seeds compounds exhibit significant efficacy and efficiency towards receptor protein. Moreover, MD-simulation studies were performed and the results depict that the lignin compounds form stable complexes at 300 K throughout the simulation time. For further clarity, in-vitro experiments were carried out. The results exhibit the decline in cell proliferation in a concentration-dependent manner by extract 1 (ethyl acetate) EX1 and extract 2 (petroleum ether) EX2. Hence, providing evidence regarding the anti-estrogenic activity of the sample extracts. Collectively, these results showed that flax seed can reduce the levels of estrogen, which can induce ovulation and prevent cyst formation, and ultimately can provide protection against PCOS.


Asunto(s)
Lino , Síndrome del Ovario Poliquístico , Humanos , Femenino , Lino/química , Lino/metabolismo , Receptores de Estrógenos/metabolismo , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Lignina/análisis , Lignina/metabolismo , Semillas/química , Clomifeno/análisis , Clomifeno/metabolismo , Estrógenos , Tamoxifeno , Extractos Vegetales/farmacología
14.
Methods Mol Biol ; 2722: 117-127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37897604

RESUMEN

Plant vascular pathogens use different ways to reach the xylem vessels and cause devastating diseases in plants. Resistant and tolerant plants have evolved various defense mechanisms against vascular pathogens. Inducible physico-chemical structures, such as the formation of tyloses and wall reinforcements with phenolic polymers, are very effective barriers that confine the pathogen and prevent colonization. Here, we use a combination of classical histochemistry along with bright-field and fluorescence microscopy and two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy to visualize and characterize wall reinforcements containing phenolic wall polymers, namely, lignin, ferulates, and suberin, which occur in different xylem vasculature in response to pathogen attack.


Asunto(s)
Lignina , Lípidos , Lignina/análisis , Lípidos/análisis , Plantas , Xilema/química , Pared Celular
15.
Methods Mol Biol ; 2722: 149-169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37897607

RESUMEN

Fourier transform infrared spectroscopy (FTIR) is a simple nondestructive technique that allows the user to obtain quick and accurate information about the structure of the constituents of wood. Spectra deconvolution is a computational technique, complementary to FTIR analysis, which improves the resolution of overlapped or unobserved bands in the raw spectra. High performance liquid chromatography (HPLC) is an analytical technique useful to determine the ratio of the lignin monomers obtained by the alkaline nitrobenzene oxidation method. Furthermore, lignin content has been commonly determined by wet chemical methods; Klason lignin determination is a quick and accessible method. Here, we detail the procedures for chemical analysis of the wood lignin using these techniques. Additionally, the deconvolution process of FTIR spectra for the determination of the S/G ratio, in lignin isolated by this or other methods, is explained in detail.


Asunto(s)
Lignina , Madera , Lignina/análisis , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Cromatografía Líquida de Alta Presión/métodos , Madera/química , Cromatografía de Gases
16.
Sci Rep ; 13(1): 21929, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081973

RESUMEN

This study aimed to evaluate and compare the effects of oil- and air-heat treatments on the durability of Paulownia tomentosa and Pinus koraiensis woods against Fomitopsis palustris and Trametes versicolor. The wood samples were treated in palm oil and air at 180, 200, and 220 °C for 2 h. The weight loss, morphology, crystalline properties, and chemical compounds of untreated and heat-treated wood after fungal attack were investigated. The significant difference in weight loss between oil- and air-heat-treated samples was shown at 220 °C. Heat-treated wood exposed to white-rot fungus showed a lower weight loss than that exposed to brown-rot fungus. The cell components in the untreated- and heat-treated Paulownia tomentosa and Pinus koraiensis at 180 °C were severely damaged due to fungal exposure compared to those at 220 °C. A fungal effect on the relative crystallinity was observed in heat-treated wood at 180 °C, whereas the effect was not observed at 220 °C. Following brown-rot fungus exposure, untreated- and heat-treated wood at 180 °C showed a notable change in the Fourier transform infrared (FTIR) peaks of polysaccharides, whereas no noticeable change in lignin peaks was observed. Heat-treated wood at 220 °C showed no noticeable change in the FTIR spectra owing to brown-rot fungus exposure. Exposure to white-rot fungus did not noticeably change the FTIR spectra of untreated and heat-treated wood.


Asunto(s)
Calor , Magnoliopsida , Pinus , Enfermedades de las Plantas , Madera , Hongos , Lignina/análisis , Aceite de Palma , Pinus/microbiología , Trametes , Pérdida de Peso , Madera/química , Madera/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Magnoliopsida/microbiología , Aire
17.
Ecotoxicol Environ Saf ; 264: 115458, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37690173

RESUMEN

Arbuscular mycorrhizal fungi (AMF) are symbiotic fungi that colonize plant roots, and they are more common in Cd-polluted habitats. However, there is limited understanding of the response of root traits and cadmium (Cd) uptake to AMF in different crop varieties. Two maize varieties, Panyu 3 and Ludan 8, with high and low Cd uptake capacities, respectively, were cultivated as host plants in a pot experiment with Cd-polluted soil (17.1 mg/kg Cd). The effects of AMF on the growth, mineral nutrient concentration, root traits, phytohormone concentrations and Cd uptake of the two maize varieties and their comprehensive response to AMF fungal inoculation were investigated. AMF improved growth, mineral nutrient levels and root morphology and increased lignin and phytohormone concentrations in roots and Cd uptake in the two maize varieties. However, the two maize varieties, Panyu 3 and Ludan 8, had different responses to AMF, and their comprehensive response indices were 753.6% and 389.4%, respectively. The root biomass, branch number, abscisic acid concentrations, lignin concentrations and Cd uptake of maize Panyu 3 increased by 151.1%, 28.6%, 139.7%, 99.5% and 84.7%, respectively. The root biomass, average diameter, auxin concentration, lignin concentration and Cd uptake of maize Ludan 8 increased by 168.7%, 31.8%, 31.4%, 41.7% and 136.7%, respectively. Moreover, Cd uptake in roots presented very significant positive correlations with the average root diameter and abscisic acid concentration. A structural equation model indicated that the root abscisic acid concentration and root surface area had positive effects on Cd uptake by the Panyu 3 maize roots; the root abscisic acid concentration and root tip number had positive effects on Cd uptake by the Ludan 8 maize roots. Thus, AMF differentially regulated Cd uptake in the two maize varieties, and the regulatory effect was closely related to root traits and phytohormone concentrations.


Asunto(s)
Micorrizas , Contaminantes del Suelo , Micorrizas/fisiología , Cadmio/toxicidad , Cadmio/análisis , Zea mays , Raíces de Plantas/química , Reguladores del Crecimiento de las Plantas , Ácido Abscísico/análisis , Lignina/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Minerales/análisis , Suelo/química
18.
Waste Manag ; 169: 382-391, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37531932

RESUMEN

Brewer's spent grain (BSG) is a clean byproduct from the food sector, comprising 85% of the brewing process solid byproducts. BSG is mainly used as low-quality animal feed and often ends up in landfills due to its short shelf life. However, considering its abundant availability and high nutritional content, BSG holds the potential for biorefineries to produce valuable products. The recalcitrant nature of BSG poses a challenge, requiring pretreatment steps. Therefore, this study focused on valorizing BSG obtained from organosolv pretreatment by producing food- and feed-grade single-cell protein (SCP). The BSG was subject to organosolv pretreatment at 180C for 2 h with 50% v/v ethanol as solvent. Filamentous fungi N. intermedia and A. oryzae were cultivated on as-received and different fractions of organosolv-treated BSG to evaluate the effect of factors such as pretreatment, fungal strain, pretreated fraction content, and substrate loading on fungal biomass yield, biomass composition (protein content), and metabolite production. A. oryzae cultivation on all tested substrates yielded 7%-40% more biomass than N. intermedia. Cultivating A. oryzae on organosolv liquor resulted in the highest biomass protein content (44.8% ± 0.7%) with a fungal biomass concentration of 5.1 g/L. A three-fold increase in the substrate loading increased the ethanol-to-substrate yield by 50%, while protein content was decreased by 23%. Finally, a biorefinery concept was proposed to integrate the organosolv pretreatment of BSG with fungal cultivation for maximum yield of SCP while obtaining other products such as lignin and ethanol, providing a sustainable rout for managing BSG.


Asunto(s)
Bebidas Alcohólicas , Grano Comestible , Animales , Fermentación , Grano Comestible/química , Grano Comestible/metabolismo , Lignina/análisis , Etanol/análisis , Etanol/metabolismo
19.
PLoS One ; 18(7): e0289352, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37498919

RESUMEN

As plant litter decomposes, its mass exponentially decreases until it reaches a non-zero asymptote. However, decomposition rates vary considerably among litter types as a function of their overall quality (i.e., carbon:nitrogen (C:N) ratio and litter chemistry). We investigated the effects of hairy vetch (HV: Vicia villosa Roth):cereal rye (RYE: Secale cereale L.) biomass proportions with or without broadcasted poultry manure on overall litter quality before and during decomposition. As HV biomass proportions increased from 0 to 100%, the relative susceptibility of HV:RYE mixtures to microbial decomposition increased due to: (i) decrease in the initial C:N ratio (87:1 to 10:1 in 2012 and 67:1 to 9:1 in 2013), (ii) increase in the non-structural labile carbohydrates (33 to 61% across years), and (iii) decrease in the structural holo-cellulose (59 to 33% across years) and lignin (8 to 6% across years) fractions. Broadcasted poultry manure decreased the overall initial quality of HV-dominated litters and increased the overall initial quality of RYE-dominated litters. Across all HV:RYE biomass proportions with or without poultry manure, chemical changes during litter decay were related to proportional mass loss. Therefore, the relative decrease in carbohydrates and the concomitant increase in holo-cellulose and lignin fractions were more pronounced for fast decomposing litter types, i.e., litters dominated by HV rather than RYE. While our results suggest possible convergence of litter C:N ratios, initial differences in litter chemistry neither converged nor diverged. Therefore, we conclude that the initial chemistry of litter before decomposition exerts a strong control on its chemical composition throughout the decay continuum.


Asunto(s)
Lignina , Vicia , Lignina/análisis , Estiércol/análisis , Biomasa , Nitrógeno/análisis , Carbono/análisis , Celulosa/análisis , Grano Comestible/química , Suelo , Hojas de la Planta/química
20.
Sci Total Environ ; 896: 165276, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37406706

RESUMEN

Miscanthus lutarioriparius grown in Dongting Lake has an annual biomass yield potential of 1 million tons. However, with the shutdown of its previous utilization for paper-making, abandoning this huge amount of biomass has caused serious economic, ecological, and social problems. Constructing an industrial cluster to continuously convert biomass into various bioproducts is a win-win measure to address this dilemma. With the increasing confirmation of the importance of biomass quality affecting the conservation process, fully understanding the biomass characteristics of Dongting Lake-grown M. lutarioriparius is crucial for building a scientific industrial cluster. The present work is designed to explore the variation in biomass quality across the entire Dongting Lake area. Results show that the biomass contented with Cd, Mn, Zn, and Cr has significant geographical differences, with a general trend of Southern Dongting Lake-grown biomass having a higher concentration than that from Eastern and Western Dongting Lake areas. Moreover, significant differences are found in terms of biomass ash content, lignin content, and the degree of polymerization of cellulose (DP). The biomass with low ash content is generally from the entire Eastern Dongting Lake area and the northern part of the Western Dongting Lake area. Virtually all Western Dongting Lake-grown biomass has a low lignin content (approximately 18 %). Regarding the spatial variation of DP, Eastern Dongting Lake-grown biomass has a higher DP (average at 585.33) than that in Southern (575.15) and then Western Dongting Lake (529.16). Based on these quality indicators, the biomass production potentials for bioethanol, biochar, and xylo-oligosaccharide were calculated and visualized. Results show that biomass from almost the entire Western and Eastern Dongting Lake area is suitable for bioethanol and xylo-oligosaccharide production, while biomass from the Southern Dongting Lake area for biochar production. These results provide scientific guidance for the future utilization of Dongting Lake-grown M. lutarioriparius biomass.


Asunto(s)
Monitoreo del Ambiente , Lignina , Biomasa , Lignina/análisis , Lagos/análisis , Poaceae , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...