Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 402
Filtrar
1.
Environ Geochem Health ; 46(9): 329, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012551

RESUMEN

Tailings dust can negatively affect the surrounding environment and communities because the tailings are vulnerable to wind erosion. In this study, the effects of halides (sodium chloride [NaCl], calcium chloride [CaCl2], and magnesium chloride hexahydrate [MgCl2·6H2O]), and polymer materials (polyacrylamide [PAM], polyvinyl alcohol [PVA], and calcium lignosulfonate [LS]) were investigated for the stabilization of tailings for dust control. Erect milkvetch (Astragalus adsurgens), ryegrass (Lolium perenne L.), and Bermuda grass (Cynodon dactylon) were planted in the tailings and sprayed with chemical dust suppressants. The growth status of the plants and their effects on the mechanical properties of tailings were also studied. The results show that the weight loss of tailings was stabilized by halides and polymers, and decreased with increasing concentration and spraying amount of the solutions. The penetration resistance of tailings stabilized by halides and polymers increased with increasing concentration and spraying amount of the solutions. Among the halides and polymers tested, the use of CaCl2 and PAM resulted in the best control of tailings dust, respectively. CaCl2 solution reduces the adaptability of plants and therefore makes it difficult for grass seeds to germinate normally. PAM solutions are beneficial for the development of herbaceous plants. Among the three herbaceous species, ryegrass exhibited the best degree of development and was more suitable for growth in the tailings. The ryegrass plants planted in the tailings sprayed with PAM grew the best, and the root-soil complex that formed increased the shear strength of the tailings.


Asunto(s)
Polvo , Lolium , Lolium/efectos de los fármacos , Cynodon , Planta del Astrágalo , Cloruro de Calcio , Cloruro de Magnesio/farmacología , Cloruro de Sodio/química , Resinas Acrílicas/química , Residuos Industriales , Polímeros , Poaceae , Lignina/análogos & derivados
2.
Int J Biol Macromol ; 275(Pt 2): 133695, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38972648

RESUMEN

Biomass-based hydrogels have become a research hotspot because of their better biocompatibility. However, the preparation of biomass hydrogels is complicated, and they often need to be modified by introducing other substances. In this study, corncob pretreated with bisulfite (125-185 °C) was used as a raw material to prepare lignocellulose hydrogels. The results showed that directly using the pretreated sample without the washing step lowered the total hydrogel costs while preserving the lignosulfonate (LS) produced during pretreatment. The best tensile (54.1 kPa) and compressive (177.7 kPa) stresses were obtained for the hydrogel prepared from non-detoxified pretreated corncob at 165 °C (NCH-165). The sulfonic acid groups in LS could enhance the interaction between plant cellulose, thus improving its mechanical properties. The capacitor assembled from NCH-165 achieved an energy density of 236.1 Wh/kg at a power density of 499.7 W/kg and a high coulombic efficiency of more than 99 % after 2000 charge/discharge cycles. In conclusion, the present study simplifies the pathway for the preparation of flexible, conductive, and anti-freezing hydrogels by directly utilizing a non-detoxified bisulfite-pretreated corncob.


Asunto(s)
Hidrogeles , Lignina , Sulfitos , Zea mays , Lignina/química , Lignina/análogos & derivados , Sulfitos/química , Zea mays/química , Hidrogeles/química , Hidrogeles/síntesis química , Conductividad Eléctrica , Biomasa
3.
Int J Biol Macromol ; 275(Pt 1): 133567, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38950799

RESUMEN

The purpose of this research was to evaluate the efficacy of sodium lignosulfonate (LS) as a dye adsorbent in the removal of methylene blue (MB) from water by polymer-enhanced ultrafiltration. Various parameters were evaluated, such as membrane molecular weight cut-off, pH, LS dose, MB concentration, applied pressure, and the effect of interfering ions. The results showed that the use of LS generated a significant increase in MB removal, reaching an elimination of up to 98.0 % with 50.0 mg LS and 100 mg L-1 MB. The maximum MB removal capacity was 21 g g-1 using the enrichment method. In addition, LS was reusable for up to four consecutive cycles of dye removal-elution. The removal test in a simulated liquid industrial waste from the textile industry was also effective, with a MB removal of 97.2 %. These findings indicate that LS is highly effective in removing high concentrations of MB dye, suggesting new prospects for its application in water treatment processes.


Asunto(s)
Lignina , Azul de Metileno , Ultrafiltración , Contaminantes Químicos del Agua , Purificación del Agua , Azul de Metileno/química , Lignina/química , Lignina/análogos & derivados , Ultrafiltración/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno , Colorantes/química , Colorantes/aislamiento & purificación , Adsorción , Polímeros/química
4.
Int J Biol Macromol ; 274(Pt 1): 133159, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880459

RESUMEN

Soft ionic conductors exhibit immense potential for applications in soft ionotronics, including ionic skin, human-machine interface, and soft luminescent device. Nevertheless, the majority of ionogel-based soft ionic conductors are plagued by issues such as freezing, evaporation, liquid leakage, and inadequate self-healing capabilities, thereby constraining their usability in complex environments. In this study, we present a novel strategy for fabricating conductive ionogels through the proportionally mixing cationic guar gum (CGG), water, 1-butyl-3-methylimidazolium chloride (BmimCl)/glycerol eutectic-based ionic liquid, and poly(3,4-ethylenedioxythiophene)/lignosulfonate (PEDOT/LS). The resultant benefits from strong hydrogen bonding and electrostatic interactions among its constituents, endowing it with an ultrafast self-healing capability (merely 30 s) while sustaining high electrical conductivity (~16.5 mS cm-1). Moreover, it demonstrates exceptional water retention (62 % over 10 days), wide temperature tolerance (-20 to 60 °C), and injectability. A wearable sensor fabricated from this ionogel displayed remarkable sensitivity (gauge factor = 17.75) and a rapid response to variations in strain, pressure, and temperature, coupled with both long-term stability and wide working temperature range. These attributes underscore its potential for applications in healthcare devices and flexible electronics.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Conductividad Eléctrica , Galactanos , Geles , Lignina , Mananos , Gomas de Plantas , Polímeros , Gomas de Plantas/química , Galactanos/química , Mananos/química , Polímeros/química , Lignina/química , Lignina/análogos & derivados , Geles/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Dispositivos Electrónicos Vestibles , Cationes/química , Congelación , Humanos
5.
Int J Biol Macromol ; 273(Pt 1): 132836, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38834127

RESUMEN

The polyurethane (PU) foams can be functionally tailored by modifying the formulation with different additives. One such additive is melamine (MA) formaldehyde resin for improving their flame-retardant properties. In this work, the glycerol-modified (GMF), sodium alginate (SGMF)- and lignosulfonate-modified melamine formaldehyde (LGMF) were prepared and used as flame retardants reacting with isocyanate to prepare the corresponding rigid polyurethane foams (GMF-PU, SGMF-PU and LGMF-PU). The thermomechanical properties and flame-retardant properties of the foams were characterized. The results showed that the specific compression strength of GMF-PU, SGMF-PU and LGMF-PU increased substantially compared to the foams from physical addition of MA, sodium alginate and lignosulfonate, all of which were greater than that of the foam without any flame retardant (PPU). Meanwhile, the cell wall of the foam pores became thicker and the closed pore ratio increased. The sodium alginate and lignosulfonate played a key role in enhancing foam thermal stability. The limiting oxygen index values and cone calorimetry results indicated the flame-retardant efficiency of GMF-PU, SGMF-PU and LGMF-PU was significantly enhanced relative to PPU. Meanwhile, the heat and smoke release results indicated sodium alginate and lignosulfonate could reduce the amount of smoke generation to different degrees during the combustion of the foam.


Asunto(s)
Alginatos , Retardadores de Llama , Lignina , Poliuretanos , Triazinas , Triazinas/química , Poliuretanos/química , Retardadores de Llama/análisis , Lignina/química , Lignina/análogos & derivados , Alginatos/química , Resinas Sintéticas/química , Glicerol/química , Temperatura , Formaldehído/química , Formaldehído/análisis
6.
Int J Biol Macromol ; 273(Pt 2): 132961, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38848846

RESUMEN

Zn-air batteries are a highly promising clean energy sustainable conversion technology, and the design of dual-function electrocatalysts with excellent activity and stability is crucial for their development. In this work, FeCo alloy loaded biomass-based N and S co-doped carbon aerogels (FeCo@NS-LCA) were fabricated from chitosan and lignosulfonate-metal chelates via liquid nitrogen pre-frozen synergistic high-temperature carbonization with application in electrocatalytic reactions. The abundant oxygen-containing functional groups on lignosulfonates have a chelating effect on metal ions, which can avoid the aggregation of metal nanoparticles during carbonation and catalysis, facilitating the construction of a nanoconfinement catalytic system with biomass carbon as the domain-limiting body and FeCo nanoparticles as the active sites. FeCo@NS-LCA exhibited catalytic activity (E1/2 = 0.87 V, JL = 5.7 mA cm-2) comparable to the commercial Pt/C in the oxygen reduction reaction (ORR), excellent resistance to methanol toxicity and stability. Meanwhile, the overpotential of oxygen evolution reaction (OER) was 324 mV, close to that of commercial RuO2 catalysts (351 mV). This study utilizes the coordination action of lignosulfonate to provide a novel and environmentally friendly method for the preparation of confined nano-catalysts and provides a new perspective for the high-value utilization of biomass resources.


Asunto(s)
Aleaciones , Carbono , Suministros de Energía Eléctrica , Lignina , Nitrógeno , Oxígeno , Zinc , Lignina/química , Lignina/análogos & derivados , Aleaciones/química , Carbono/química , Oxígeno/química , Catálisis , Zinc/química , Porosidad , Nitrógeno/química , Geles/química , Oxidación-Reducción , Azufre/química , Cobalto/química , Biomasa
7.
Int J Biol Macromol ; 273(Pt 2): 132945, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38851614

RESUMEN

The extensive utilization of non-biodegradable plastic agricultural mulch in the past few decades has resulted in severe environmental pollution and a decline in soil fertility. The present study involves the fabrication of environmentally friendly paper-based mulch with dual functionality, incorporating agrochemicals and heavy metal ligands, through a sustainable papermaking/coating technique. The functional paper-based mulch consists of a cellulose fiber web incorporated with Emamectin Benzoate (EB)@ Aminated sodium lignosulfonate (ASL). The spherical microcapsules loaded with the pesticide EB exhibited an optimal core-shell structure for enhanced protection and controlled release of the photosensitizer EB (Sustained release >75 % in 50 h). Meanwhile, the ASL, enriched with metal chelating groups (-COOH, -OH, and -NH2, etc.), served as a stabilizing agent for heavy metal ions, enhancing soil remediation efficiency. The performance of paper-based mulch was enhanced by the application of a hydrophobic layer composed of natural chitosan/carnauba wax, resulting in exceptional characteristics such as superior tensile strength, hydrophobicity, heat insulation, moisture retention, as well as compostability and biodegradability (biodegradation >80 % after 70 days). This study developed a revolutionary lignocellulosic eco-friendly mulch that enables controlled agrochemical release and soil heavy metal remediation, leading to a superior substitute to conventional and non-biodegradable plastic mulch used in agriculture.


Asunto(s)
Lignina , Metales Pesados , Plaguicidas , Metales Pesados/química , Lignina/química , Lignina/análogos & derivados , Plaguicidas/química , Preparaciones de Acción Retardada , Plásticos/química , Contaminantes del Suelo/química , Agricultura/métodos , Quitosano/química , Fármacos Fotosensibilizantes/química , Biodegradación Ambiental , Suelo/química
8.
Int J Biol Macromol ; 273(Pt 2): 133110, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876230

RESUMEN

In food packaging, sodium lignosulfonate nanoparticles (SLS NPs) showed significant antibacterial properties, antioxidant and UV barrier activities. Herein, the SLS NPs were synthesized via a sustainable green method and were added into egg albumin/sodium alginate mixture (EA/SA) to fabricate a safe, edible EA/SA/SNPs food packaging. A composite film EA/SA/SNP was examined microstructurally and physicochemically. The mechanical characteristics, UV protection, water resistance, and the composite film's thermal stability were all enhanced by the inclusion of SLS NPs, and water vapor permeability reduced by 44 %. This composite film exhibited robust antioxidative properties with DPPH and ABTS free radical scavenging rates reaching 76.84 % and 92.56 %, and effective antimicrobial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) with antibacterial rates reaching 98.25 % and 97.13 % for the positively charged nanoparticles interacting with the cell membrane. Freshness tests showed that the EA/SA/SNPs packaging film could delay the quality deterioration of fresh tomatoes. This composite film can slow down spoilage bacteria proliferation and prolongs food's preservation period by eight days at ambient temperature.


Asunto(s)
Alginatos , Antibacterianos , Antioxidantes , Embalaje de Alimentos , Lignina , Nanopartículas , Alginatos/química , Alginatos/farmacología , Embalaje de Alimentos/métodos , Nanopartículas/química , Antioxidantes/farmacología , Antioxidantes/química , Antibacterianos/farmacología , Antibacterianos/química , Lignina/química , Lignina/análogos & derivados , Lignina/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Permeabilidad , Vapor
9.
Carbohydr Polym ; 337: 122112, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710545

RESUMEN

The growing concerns on environmental pollution and sustainability have raised the interest on the development of functional biobased materials for different applications, including food packaging, as an alternative to the fossil resources-based counterparts, currently available in the market. In this work, functional wood inspired biopolymeric nanocomposite films were prepared by solvent casting of suspensions containing commercial beechwood xylans, cellulose nanofibers (CNF) and lignosulfonates (magnesium or sodium), in a proportion of 2:5:3 wt%, respectively. All films presented good homogeneity, translucency, and thermal stability up to 153 °C. The incorporation of CNF into the xylan/lignosulfonates matrix provided good mechanical properties to the films (Young's modulus between 1.08 and 3.79 GPa and tensile strength between 12.75 and 14.02 MPa). The presence of lignosulfonates imparted the films with antioxidant capacity (DPPH radical scavenging activity from 71.6 to 82.4 %) and UV barrier properties (transmittance ≤19.1 % (200-400 nm)). Moreover, the films obtained are able to successfully delay the browning of packaged fruit stored over 7 days at 4 °C. Overall, the obtained results show the potential of using low-cost and eco-friendly resources for the development of sustainable active food packaging materials.


Asunto(s)
Celulosa , Embalaje de Alimentos , Lignina , Lignina/análogos & derivados , Nanocompuestos , Nanofibras , Resistencia a la Tracción , Madera , Xilanos , Embalaje de Alimentos/métodos , Lignina/química , Nanocompuestos/química , Celulosa/química , Celulosa/análogos & derivados , Madera/química , Nanofibras/química , Xilanos/química , Antioxidantes/química , Frutas/química
10.
Int J Biol Macromol ; 270(Pt 1): 132148, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723800

RESUMEN

Herein, a straightforward protocol was developed for the one-pot synthesis of N-doped lignosulfonate-derived carbons (NLDCs) with a tunable porous structure using natural amino acids-templated self-assembly strategy. Specifically, histidine was employed as a template reagent, leading to the preparation of 10-NLDC-21 with remarkable characteristics, including the large specific surface area (SBET = 1844.5 m2/g), pore volume (Vmes = 1.22 cm3/g) and efficient adsorption for atrazine (ATZ) removal. The adsorption behavior of ATZ by NLDCs followed the Langmuir and pseudo-second-order models, suggesting a monolayer chemisorption nature of ATZ adsorption with the maximum adsorption capacity reached up to 265.77 mg/g. Furthermore, NLDCs exhibited excellent environmental adaptability and recycling performance. The robust affinity could be attributed to multi-interactions including pore filling, electrostatic attraction, hydrogen bonding and π-π stacking between the adsorbents and ATZ molecules. This approach offers a practical method for exploring innovative bio-carbon materials for sewage treatment.


Asunto(s)
Atrazina , Carbono , Lignina , Contaminantes Químicos del Agua , Atrazina/química , Lignina/química , Lignina/análogos & derivados , Porosidad , Adsorción , Carbono/química , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Cinética
11.
Int J Biol Macromol ; 268(Pt 1): 131639, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641278

RESUMEN

The phenomenon of overlapping double layers due to micropores inhibits capacitive deionization performance, which is improved by increasing the pore size. In this study, a novel ternary composite electrode (sodium lignosulfonate/reduced graphene oxide/cobalt sulfide, LGC) was designed using a two-step hydrothermal method. CoS with high pseudocapacitance modifies sodium lignosulfonate and graphene connected by hydrogen bonding, benefiting from the constitutive steric structure. The electrochemical performance was significantly enhanced, and the desalination capacity substantially improved. The LGC electrode specific capacitance was as high as 354.47 F g-1 at a 1 A g-1 current density. The desalination capacity of the capacitive deionization device comprising LGC and activated carbon in 1 M NaCl electrolyte reached 28.04 mg g-1 at an operating condition of 1.2 V, 7 mL min-1. Additionally, the LGC electrodes degraded naturally post the experiment by simply removing the CoS, suggesting that the LGC composites are promising material for capacitive deionization electrodes.


Asunto(s)
Cobalto , Electrodos , Grafito , Lignina , Grafito/química , Lignina/química , Lignina/análogos & derivados , Cobalto/química , Porosidad , Purificación del Agua/métodos , Capacidad Eléctrica , Cloruro de Sodio/química
12.
Int J Biol Macromol ; 268(Pt 1): 131672, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643912

RESUMEN

The packaging industry has primarily been dominated by single-use, petrochemical-sourced plastic materials despite their short-term use. Their leakage into the ecosystem after their use poses substantial environmental concerns. As a result, compostable and renewable packaging material alternatives are garnering significant attention. Cellulose acetate is a derivative of cellulose that exhibits excellent tensile properties, transparency, melt processability, and intermediate compostability. However, its application in the food packaging industry is limited due to its hygroscopic behavior and lack of dimensional stability. This study investigated using lignin (pristine and esterified) as a functional additive of cellulose acetate. The effect of varying concentrations of pristine kraft and oleic acid functionalized lignin in the cellulose acetate matrix and its effect on the resulting film's mechanical, morphological, viscoelastic, and water barrier properties were explored. Comprehensive characterization of the thermomechanical processed lignin-cellulose acetate sheets revealed reduced moisture absorption, improved UV and moisture barrier, and enhanced tensile properties with melt processability. Overall, the studied films could have appealing properties for food and other packaging applications, thus, serving as eco-friendly and sustainable alternatives to conventional petroleum-derived packing materials.


Asunto(s)
Celulosa , Interacciones Hidrofóbicas e Hidrofílicas , Lignina , Ácido Oléico , Resistencia a la Tracción , Lignina/química , Lignina/análogos & derivados , Celulosa/química , Celulosa/análogos & derivados , Ácido Oléico/química , Embalaje de Alimentos/métodos , Agua/química
13.
Bioresour Technol ; 400: 130667, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583674

RESUMEN

Due to the complexity of biomass structures, the conversion of raw biomass into value-added chemicals is challenging and often requires efficient pretreatment of the biomass. In this paper, a simple and green pre-oxidation method, which was conducted under the conditions of 2 wt% H2O2, 80 min, and 150 °C, was reported to significantly increase the production of levoglucosan (LG) from biomass pyrolysis. The result showed that the LG yield significantly increased from 2.3 wt% (without pre-oxidation) to 23.1 wt% when pine wood was employed as a sample for pyrolysis at 400 °C, resulting from the removal of hemicellulose fraction and the in-situ acid catalysis of lignin carboxyl groups formed during the pre-oxidation. When the conditions for pre-oxidation became harsher than the above, the LG yield reduced because the decomposition of cellulose fraction in biomass. The study supplies an effective method for utilization of biomass as chemicals.


Asunto(s)
Biomasa , Glucosa , Glucosa/análogos & derivados , Peróxido de Hidrógeno , Oxidación-Reducción , Pirólisis , Peróxido de Hidrógeno/química , Glucosa/química , Madera/química , Pinus/química , Lignina/química , Lignina/análogos & derivados
14.
ChemSusChem ; 17(14): e202301134, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38456224

RESUMEN

Enzymatic polymerization of lignosulfonate (LS) has a high potential for various applications ranging from coatings to adhesives. Here, the effect of different ions in low concentrations on enzymatic polymerization of LS was investigated, including salt solutions consisting of mono- and dicarboxylic acids, sulfate, phosphate and chloride with sodium as counter ion. LS polymerization was followed by viscometry and size exclusion (SEC) chromatography. Interestingly, there was only a small effect of ions on the activity of the laccase on standard substrate ABTS, while the effect on polymerization of LS was substantially different. The presence of acetate led to a 39 % higher degree of polymerization (DP) for LS. Small angle X-ray scattering (SAXS) revealed that the structure of the enzyme was largely unaffected by the ions, while the determination of the zeta potential showed that those ions conveying higher negative surface charges onto LS particles showed lower DPs, than those not affecting the surface charge. Further, electron paramagnetic resonance (EPR) spectroscopy showed 5-times higher intensity in phenoxyl radicals for the monovalent ions compared to the divalent ones. It was concluded that the DPs of LS could be tuned in the presence of certain ions, by facilitating the interaction between the laccase substrate-binding site and the LS molecules.


Asunto(s)
Lacasa , Lignina , Polimerizacion , Lacasa/metabolismo , Lacasa/química , Lignina/química , Lignina/análogos & derivados , Sales (Química)/química , Biocatálisis
15.
J Environ Manage ; 356: 120625, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503232

RESUMEN

The accumulation of coir pith waste, a byproduct of coconut husk processing, poses environmental and logistical challenges. An innovative and sustainable solution involves using coir pith as a substrate for solid-state fermentation (SSF). In SSF, coir pith can be converted into valuable products, such as enzymes, organic acids, and bioactive compounds. The present study aimed to evaluate laccase production by Hexagonia hirta MSF2 through SSF using the coir pith waste as substrate. Physico-chemical parameters like moisture, pH, temperature, C source, N source, and CuSO4 concentrations were pre-optimized, and optimized through RSM. Laccase activity of 1585.24 U g-1 of dry substrate was recorded by H. hirta MSF2 on coir pith containing 1 % C source, 0.5 % N source, 0.25 mM of CuSO4 concentration, moisture content of 75 % at pH 4.6 and temperature 28 °C. Subsequently, the enzyme extraction parameters including, extraction buffer, mode of extraction, and temperature were optimized. The molecular weight of laccase was 66 kDa as observed by SDS-PAGE and native-PAGE. The optimum activity of partially purified laccase was achieved at 40 °C, and pH 4.0. Increasing salt concentration and use of different inhibitors affected the laccase activity. Organic solvents like dimethyl sulphoxide (DMSO) and methanol, and metal ions like BaCl2, CaCl2, CuSO4, and MnCl2 stimulated the laccase activity. Hence, coir pith used in SSF offers a dual benefit of waste management and enzyme synthesis through an eco-friendly and cost-effective approach.


Asunto(s)
Lacasa , Lignina , Lignina/análogos & derivados , Polyporaceae , Fermentación , Lignina/química
16.
Sci Rep ; 14(1): 2944, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316801

RESUMEN

Optimum irrigation scheduling is important for ensuring high yield and water productivity in substrate-cultivated vegetables and is determined based on information such as substrate water content, meteorological parameters, and crop growth. The aim of this study was to determine a precise irrigation schedule for coconut coir culture in a solar greenhouse by comparing the irrigation, evapotranspiration (ET), substrate water content (VWC), as well as the crop growth indices and yield of cucumber, and irrigation water productivity (IWP) under three irrigation schedules: the soil moisture sensor-based method (T-VWC), the accumulated radiation combined with soil moisture sensor-based method (Rn-VWC), and the crop evapotranspiration estimated method using the hourly PM-ETo equation with an improved calculation of Kc (T-ETc). The results showed that the daily irrigation and evapotranspiration amount were the highest under T-VWC treatment, while the lowest under T-ETc treatment. In different meteorological environments, the change in irrigation amount was more consistent with the ET,and the VWC was relatively stable in T-ETc treatment compared with that under T-VWC or Rn-VWC treatments. The plant height, leaves number, leaf area, and stem diameter of T-VWC and Rn-VWC treatments were higher than those of the T-ETc treatments, but there was no significant difference in cucumber yield. Compared with the T-VWC treatment, total irrigation amount under Rn-VWC and T-ETc treatments significantly decreased by 25.75% and 34.04%, respectively ([Formula: see text]). The highest IWP values of 25.07 kg m[Formula: see text] was achieved from T-ETc treatment with significantly increasing by 44.33% compared to the T-VWC treatment (17.37 kg m[Formula: see text]). In summary, the T-ETc treatment allowed more reasonable irrigation management and was appropriate for growing cucumber in coconut coir culture.


Asunto(s)
Cucumis sativus , Lignina/análogos & derivados , Riego Agrícola/métodos , Cocos , Suelo/química , Agua/análisis
17.
Environ Res ; 250: 118442, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38368919

RESUMEN

Heavy metal pollution, particularly the excessive release of copper (Cu), is an urgent environmental concern. In this study, sodium lignosulfonate/carboxymethyl sa-son seed gum (SL-Cg-g-PAA) designed for remediation of Cu-contaminated water and soil was successfully synthesized through a free radical polymerization method using lignin as a raw material. This hydrogel exhibits remarkable Cu adsorption capability when applied to water, with a maximum adsorption capacity reaching 172.41 mg/g. Important adsorption mechanisms include surface complexation and electrostatic attraction between Cu(Ⅱ) and oxygen-containing functional groups (-OH, -COOH), as well as cation exchange involving -COONa and -SO3Na. Furthermore, SL/Cg-g-PAA effectively mitigated the bioavailability of heavy metals within soil matrices, as evidenced by a notable 14.1% reduction in DTPA extracted state Cu (DTPA-Cu) content in the S4 treatment (0.7% SL/Cg-g-PAA) compared to the control group. Concurrently, the Cu content in both the leaves and roots of pakchoi exhibited substantial decreases of 55.19% and 36.49%, respectively. These effects can be attributed to the precipitation and complexation reactions facilitated by the hydrogel. In summary, this composite hydrogel is highly promising for effective remediation of heavy metal pollution in water and soil, with a particular capability for the immobilization of Cu(Ⅱ) and reduction of its adverse effects on ecosystems.


Asunto(s)
Cobre , Restauración y Remediación Ambiental , Hidrogeles , Lignina , Contaminantes del Suelo , Contaminantes Químicos del Agua , Hidrogeles/química , Cobre/química , Lignina/química , Lignina/análogos & derivados , Contaminantes del Suelo/química , Adsorción , Contaminantes Químicos del Agua/química , Restauración y Remediación Ambiental/métodos
18.
Pest Manag Sci ; 80(6): 2827-2838, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38329149

RESUMEN

BACKGROUND: Widespread application of controlled-release pesticide delivery systems is a feasible and effective method to improve the utilization efficiency of pesticides. However, owing to the high cost and complicated preparation technologies of controlled-release pesticide delivery systems, their applications in agricultural production have been seriously hindered. RESULTS: This study aimed to construct inexpensive photothermally controlled-release pesticide delivery systems using chitosan (CS) and sodium lignosulfonate (LS) as the wall materials, and a coordination assembly strategy of LS with transition metal ions to encapsulate a model pesticide, avermectin (AVM). The resulting complex or nanoparticle photothermal layers in these systems effectively achieved photothermal conversions, and replaced the use of common photothermal agents. In the prepared pesticide-delivery systems, two systems had remarkable photothermal conversion performance and photothermal stabilities with a photothermal conversion efficiency (η) of 24.03% and 28.82%, respectively, under 808 nm, 2 W near-infrared irradiation. The slow-release and ultraviolet-shielding performance of these two systems were markedly enhanced compared with other formulations. The insecticidal activities of these two systems against Plutella xylostella under irradiation with light-emitting diode (LED)-simulated sunlight were also enhanced by 5.20- and 5.06-fold, respectively, compared with that without irradiation of LED-simulated sunlight. CONCLUSION: Because of their convenient preparations, inexpensive and renewable raw materials, and excellent photothermally controlled-release performance, these on-demand pesticide delivery systems might have significant potential in improving the utilization efficiency of pesticides in modern agriculture. © 2024 Society of Chemical Industry.


Asunto(s)
Preparaciones de Acción Retardada , Insecticidas , Lignina , Mariposas Nocturnas , Lignina/química , Lignina/análogos & derivados , Animales , Mariposas Nocturnas/efectos de los fármacos , Insecticidas/química , Ivermectina/análogos & derivados , Ivermectina/química , Cápsulas , Quitosano/química , Plaguicidas/química , Sistemas de Liberación de Medicamentos
19.
Int J Biol Macromol ; 263(Pt 2): 130367, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401588

RESUMEN

The control of laccase-catalyzed efficiency often relies on the utilization of modifying enzyme molecules and shielding agents. However, their elevated costs or carcinogenicity led to the inability for large-scale application. To address this concern, we found that a low-cost protein from soybean meal can reduce lignin's ineffective adsorption onto enzymes for improving the efficiency of thymol grafting to lignosulfonate. The results demonstrated that by adding 0.5 mg/mL of additional soybean meal protein, the thymol reaction ratio of the modified lignosulfonate (L-0.5 S) significantly boosted from 18.1 % to 35.0 %, with the minimal inhibitory concentrations of the L-0.5 S against Aspergillus niger dramatically improved from 12.5 mg/mL to 3.1 mg/mL. Multiple characterization methods were employed to better understand the benefit of the modification under the addition of the soybean meal protein. The CO and R1-O group content increased from 20.5 % to 37.8 % and from 65.1 % to 75.5 %, respectively. The proposed potential reaction mechanism was further substantiated by the physicochemical properties. The incorporation of soybean meal effectively mitigated the non-specific adsorption of lignosulfonate, resulting in a reduction of the surface area of lignin from 235.0 to 139.2 m2/g. The utilization of soybean meal as a cost-effective and efficient shielding agent significantly enhanced the efficiency of subsequent enzyme catalysis. Consequently, the application of soybean meal in commercial enzyme catalysis holds considerable appeal and amplifies the relevance of this study in preservative industries.


Asunto(s)
Lignina , Lignina/análogos & derivados , Proteínas de Soja , Lignina/química , Lacasa/metabolismo , Timol , Adsorción , Harina , Glycine max , Catálisis
20.
Med Chem ; 20(4): 414-421, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38192144

RESUMEN

BACKGROUND: Heparins are sulfated glycosaminoglycans that are used as anticoagulants to treat thrombosis. Heparins exhibit other potential therapeutic effects, such as anti-inflammatory, anti-viral, and anti-malarial effects. However, the strong anticoagulant activity of heparins poses a risk of life-threatening bleeding, limiting their therapeutic use for other diseases beyond thrombosis. To exploit the other effects of heparins and eliminate the bleeding risk, we explored an alternative polymer called lignosulfonic acid sodium (LSAS), which acts as a sulfonated heparin mimetic. LSAS targets factor XIa to exert an anticoagulant effect, and thus, unlike heparins, it is unlikely to cause bleeding. METHODS: This study investigated the multiple effects of LSAS to identify potential leads for complex pathologies treatment. A series of chromogenic substrate hydrolysis assays were used to evaluate the inhibition of three inflammation-related proteases by LSAS. Its chemical antioxidant activity against the system of ABTS/hydrogen peroxide/metmyoglobin was also determined. Lastly, the effect of LSAS on TNFα-induced activation of the NF-κB pathway in HEK-293 cells was also tested to determine its cellular anti-inflammatory activity. RESULTS: The results showed that LSAS effectively inhibited human neutrophil elastase, cathepsin G, and plasmin, with IC50 values ranging from 0.73 to 212.5 µg/mL. Additionally, LSAS demonstrated a significant chemical antioxidant effect, with an IC50 value of 44.1 µg/mL. Furthermore, at a concentration of approximately 530 µg/mL, LSAS inhibited the TNFα-induced activation of the NF-κB pathway in HEK-293 cells, indicating a substantial anti-inflammatory effect. An essential advantage of LSAS is its high water solubility and virtual non-toxicity, making it a safe and readily available polymer. CONCLUSION: Based on these findings, LSAS is put forward as a polymeric heparin mimetic with multiple functions, serving as a potential platform for developing novel therapeutics to treat complex pathologies.


Asunto(s)
Antiinflamatorios , Antioxidantes , Heparina , Lignina , Humanos , Heparina/farmacología , Heparina/química , Antioxidantes/farmacología , Antioxidantes/química , Lignina/química , Lignina/farmacología , Lignina/análogos & derivados , Antiinflamatorios/farmacología , Antiinflamatorios/química , Células HEK293 , FN-kappa B/metabolismo , Elastasa de Leucocito/metabolismo , Elastasa de Leucocito/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...