Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39063073

RESUMEN

Secondary lymphedema is caused by damage to the lymphatic system from surgery, cancer treatment, infection, trauma, or obesity. This damage induces stresses such as oxidative stress and hypoxia in lymphatic tissue, impairing the lymphatic system. In response to damage, vascular endothelial growth factor C (VEGF-C) levels increase to induce lymphangiogenesis. Unfortunately, VEGF-C often fails to repair the lymphatic damage in lymphedema. The underlying mechanism contributing to lymphedema is not well understood. In this study, we found that surgery-induced tail lymphedema in a mouse model increased oxidative damage and cell death over 16 days. This corresponded with increased VEGF-C levels in mouse tail lymphedema tissue associated with macrophage infiltration. Similarly, in the plasma of patients with secondary lymphedema, we found a positive correlation between VEGF-C levels and redox imbalance. To determine the effect of oxidative stress in the presence or absence of VEGF-C, we found that hydrogen peroxide (H2O2) induced cell death in human dermal lymphatic endothelial cells (HDLECs), which was potentiated by VEGF-C. The cell death induced by VEGF-C and H2O2 in HDLECs was accompanied by increased reactive oxygen species (ROS) levels and a loss of mitochondrial membrane potential. Antioxidant pre-treatment rescued HDLECs from VEGF-C-induced cell death and decreased ROS under oxidative stress. As expected, VEGF-C increased the number of viable and proliferating HDLECs. However, upon H2O2 treatment, VEGF-C failed to increase either viable or proliferating cells. Since oxidative stress leads to DNA damage, we also determined whether VEGF-C treatment induces DNA damage in HDLECs undergoing oxidative stress. Indeed, DNA damage, detected in the form of gamma H2AX (γH2AX), was increased by VEGF-C under oxidative stress. The potentiation of oxidative stress damage induced by VEFG-C in HDLECs was associated with p53 activation. Finally, the inhibition of vascular endothelial growth factor receptor-3 (VEGFR-3) activation blocked VEGF-C-induced cell death following H2O2 treatment. These results indicate that VEGF-C further sensitizes lymphatic endothelial cells to oxidative stress by increasing ROS and DNA damage, potentially compromising lymphangiogenesis.


Asunto(s)
Apoptosis , Daño del ADN , Células Endoteliales , Peróxido de Hidrógeno , Linfedema , Mitocondrias , Estrés Oxidativo , Factor C de Crecimiento Endotelial Vascular , Factor C de Crecimiento Endotelial Vascular/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Humanos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Linfedema/metabolismo , Linfedema/patología , Linfedema/etiología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratones , Apoptosis/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Especies Reactivas de Oxígeno/metabolismo , Linfangiogénesis/efectos de los fármacos , Femenino
2.
Int J Biol Macromol ; 273(Pt 2): 133061, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866272

RESUMEN

Secondary lymphedema is a chronic and incurable disease lacking satisfactory therapeutic drugs. It primarily results from lymphatic vessel dysfunction resulting from factors such as tumor-related surgery, injury, or infection. Promoting lymphangiogenesis and lymphatic vessel remodeling is crucial for restoring tissue fluid drainage and treating secondary lymphedema. In this study, we discovered that the oral administration of a type-II arabinogalactan (CAPW-1, molecular weight: 64 kDa) significantly promoted lymphangiogenesis and alleviated edema in mice with secondary lymphedema. Notably, the tail diameter of the CAPW-1200 group considerably decreased in comparison to that of the lymphedema group, with an average diameter difference reaching 0.98 mm on day 14. CAPW-1 treatment also reduced the average thickness of the subcutaneous area in the CAPW-1200 group to 0.37 mm (compared with 0.73 mm in the lymphedema group). It also facilitated the return of injected indocyanine green (ICG) from the tail tip to the sciatic lymph nodes, indicating that CAPW-1 promoted lymphatic vessel remodeling at the injury site. In addition, CAPW-1 enhanced the proliferation and migration of lymphatic endothelial cells. This phenomenon was associated with the activation of the toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway, thereby promoting the expression of vascular endothelial growth factor-C (VEGF-C), which can be abolished using a TLR4 antagonist. Despite these findings, CAPW-1 did not alleviate the symptoms of lymphedema or restore lymphatic drainage in VEGFR3flox/flox/Prox1-CreERT2 mice. In summary, CAPW-1 alleviates secondary lymphedema by promoting lymphangiogenesis and lymphatic vessel remodeling through the activation of the TLR4/NF-κB/VEGF-C signaling pathway, indicating its potential as a therapeutic lymphangiogenesis agent for patients with secondary lymphedema.


Asunto(s)
Galactanos , Linfangiogénesis , Vasos Linfáticos , Linfedema , Receptor Toll-Like 4 , Animales , Linfangiogénesis/efectos de los fármacos , Ratones , Linfedema/tratamiento farmacológico , Linfedema/metabolismo , Linfedema/etiología , Vasos Linfáticos/efectos de los fármacos , Vasos Linfáticos/metabolismo , Galactanos/farmacología , Galactanos/química , Receptor Toll-Like 4/metabolismo , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , FN-kappa B/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino
3.
Lymphat Res Biol ; 22(3): 195-202, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38699876

RESUMEN

Background: Lymphedema is chronic limb swelling resulting from lymphatic dysfunction. It affects an estimated five million Americans. There is no cure for this disease. Assessing lymphatic growth is essential in developing novel therapeutics. Intravital microscopy (IVM) is a powerful imaging tool for investigating various biological processes in live animals. Tissue nanotransfection technology (TNT) facilitates a direct, transcutaneous nonviral vector gene delivery using a chip with nanochannel poration in a rapid (<100 ms) focused electric field. TNT was used in this study to deliver the genetic cargo in the murine tail lymphedema to assess the lymphangiogenesis. The purpose of this study is to experimentally evaluate the applicability of IVM to visualize and quantify lymphatics in the live mice model. Methods and Results: The murine tail model of lymphedema was utilized. TNT was applied to the murine tail (day 0) directly at the surgical site with genetic cargo loaded into the TNT reservoir: TNTpCMV6 group receives pCMV6 (expression vector backbone alone) (n = 6); TNTProx1 group receives pCMV6-Prox1 (n = 6). Lymphatic vessels (fluorescein isothiocyanate [FITC]-dextran stained) and lymphatic branch points (indicating lymphangiogenesis) were analyzed with the confocal/multiphoton microscope. The experimental group TNTProx1 exhibited reduced postsurgical tail lymphedema and increased lymphatic distribution compared to TNTpCMV6 group. More lymphatic branching points (>3-fold) were observed at the TNT site in TNTProx1 group. Conclusions: This study demonstrates a novel, powerful imaging tool for investigating lymphatic vessels in live murine tail model of lymphedema. IVM can be utilized for functional assessment of lymphatics and visualization of lymphangiogenesis following gene-based therapy.


Asunto(s)
Modelos Animales de Enfermedad , Microscopía Intravital , Linfangiogénesis , Vasos Linfáticos , Linfedema , Cola (estructura animal) , Animales , Linfedema/patología , Linfedema/diagnóstico por imagen , Linfedema/metabolismo , Linfedema/genética , Ratones , Microscopía Intravital/métodos , Vasos Linfáticos/diagnóstico por imagen , Vasos Linfáticos/patología , Vasos Linfáticos/metabolismo , Femenino , Técnicas de Transferencia de Gen
4.
J Clin Invest ; 134(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747287

RESUMEN

Lymphedema is a debilitating disease with no effective cure and affects an estimated 250 million individuals worldwide. Prior studies have identified mutations in piezo-type mechanosensitive ion channel component 1 (PIEZO1), angiopoietin 2 (ANGPT2), and tyrosine kinase with Ig-like and EGF-like domains 1 (TIE1) in patients with primary lymphedema. Here, we identified crosstalk between these molecules and showed that activation of the mechanosensory channel PIEZO1 in lymphatic endothelial cells (LECs) caused rapid exocytosis of the TIE ligand ANGPT2, ectodomain shedding of TIE1 by disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), and increased TIE/PI3K/AKT signaling, followed by nuclear export of the transcription factor FOXO1. These data establish a functional network between lymphedema-associated genes and provide what we believe to be the first molecular mechanism bridging channel function with vascular signaling and intracellular events culminating in transcriptional regulation of genes expressed in LECs. Our study provides insights into the regulation of lymphatic function and molecular pathways involved in human disease.


Asunto(s)
Angiopoyetina 2 , Proteína Forkhead Box O1 , Canales Iónicos , Linfangiogénesis , Linfedema , Receptor TIE-1 , Transducción de Señal , Animales , Humanos , Ratones , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Angiopoyetina 2/metabolismo , Angiopoyetina 2/genética , Células Endoteliales/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Canales Iónicos/metabolismo , Canales Iónicos/genética , Linfangiogénesis/genética , Linfedema/metabolismo , Linfedema/genética , Linfedema/patología , Mecanotransducción Celular , Receptor TIE-1/metabolismo , Receptor TIE-1/genética
5.
J Clin Invest ; 134(14)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38820174

RESUMEN

Primary lymphedema (PL), characterized by tissue swelling, fat accumulation, and fibrosis, results from defects in lymphatic vessels or valves caused by mutations in genes involved in development, maturation, and function of the lymphatic vascular system. Pathogenic variants in various genes have been identified in about 30% of PL cases. By screening of a cohort of 755 individuals with PL, we identified two TIE1 (tyrosine kinase with immunoglobulin- and epidermal growth factor-like domains 1) missense variants and one truncating variant, all predicted to be pathogenic by bioinformatic algorithms. The TIE1 receptor, in complex with TIE2, binds angiopoietins to regulate the formation and remodeling of blood and lymphatic vessels. The premature stop codon mutant encoded an inactive truncated extracellular TIE1 fragment with decreased mRNA stability, and the amino acid substitutions led to decreased TIE1 signaling activity. By reproducing the two missense variants in mouse Tie1 via CRISPR/Cas9, we showed that both cause edema and are lethal in homozygous mice. Thus, our results indicate that TIE1 loss-of-function variants can cause lymphatic dysfunction in patients. Together with our earlier demonstration that ANGPT2 loss-of-function mutations can also cause PL, our results emphasize the important role of the ANGPT2/TIE1 pathway in lymphatic function.


Asunto(s)
Mutación con Pérdida de Función , Linfedema , Receptor TIE-1 , Linfedema/genética , Linfedema/patología , Linfedema/metabolismo , Humanos , Animales , Ratones , Receptor TIE-1/genética , Receptor TIE-1/metabolismo , Femenino , Masculino , Mutación Missense , Edad de Inicio , Persona de Mediana Edad , Adulto , Receptor TIE-2
6.
J Biochem ; 175(5): 551-560, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38168819

RESUMEN

Lymphedema has become a global health issue following the growing number of cancer surgeries. Curative or supportive therapeutics have long been awaited for this refractory condition. Transcription factor GATA2 is crucial in lymphatic development and maintenance, as GATA2 haploinsufficient disease often manifests as lymphedema. We recently demonstrated that Gata2 heterozygous deficient mice displayed delayed lymphatic recanalization upon lymph node resection. However, whether GATA2 contributes to lymphatic regeneration by functioning in the damaged lymph vessels' microenvironment remains explored. In this study, our integrated analysis demonstrated that dermal collagen fibers were more densely accumulated in the Gata2 heterozygous deficient mice. The collagen metabolism-related transcriptome was perturbed, and collagen matrix contractile activity was aberrantly increased in Gata2 heterozygous embryonic fibroblasts. Notably, soluble collagen placement ameliorated delayed lymphatic recanalization, presumably by modulating the stiffness of the extracellular matrix around the resection site of Gata2 heterozygous deficient mice. Our results provide valuable insights into mechanisms underlying GATA2-haploinsufficiency-mediated lymphedema and shed light on potential therapeutic avenues for this intractable disease.


Asunto(s)
Colágeno , Factor de Transcripción GATA2 , Heterocigoto , Linfedema , Animales , Ratones , Factor de Transcripción GATA2/metabolismo , Factor de Transcripción GATA2/genética , Linfedema/metabolismo , Linfedema/genética , Linfedema/patología , Colágeno/metabolismo , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Ratones Noqueados , Haploinsuficiencia , Deficiencia GATA2/metabolismo , Deficiencia GATA2/genética , Ratones Endogámicos C57BL
7.
BMC Immunol ; 24(1): 42, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940849

RESUMEN

BACKGROUND: Lymphedema is an intractable disease that can be caused by injury to lymphatic vessels, such as by surgical treatments for cancer. It can lead to impaired joint mobility in the extremities and reduced quality of life. Chronic inflammation due to infiltration of various immune cells in an area of lymphedema is thought to lead to local fibrosis, but the molecular pathogenesis of lymphedema remains unclear. Development of effective therapies requires elucidation of the immunological mechanisms involved in the progression of lymphedema. The complement system is part of the innate immune system which has a central role in the elimination of invading microbes and acts as a scavenger of altered host cells, such as apoptotic and necrotic cells and cellular debris. Complement-targeted therapies have recently been clinically applied to various diseases caused by complement overactivation. In this context, we aimed to determine whether complement activation is involved in the development of lymphedema. RESULTS: Our mouse tail lymphedema models showed increased expression of C3, and that the classical or lectin pathway was locally activated. Complement activation was suggested to be involved in the progression of lymphedema. In comparison of the C3 knockout (KO) mouse lymphedema model and wild-type mice, there was no difference in the degree of edema at three weeks postoperatively, but the C3 KO mice had a significant increase of TUNEL+ necrotic cells and CD4+ T cells. Infiltration of macrophages and granulocytes was not significantly elevated in C3 KO or C5 KO mice compared with in wild-type mice. Impaired opsonization and decreased migration of macrophages and granulocytes due to C3 deficiency should therefore induce the accumulation of dead cells and may lead to increased infiltration of CD4+ T cells. CONCLUSIONS: Vigilance for exacerbation of lymphedema is necessary when surgical treatments have the potential to injure lymphatic vessels in patients undergoing complement-targeted therapies or with complement deficiency. Future studies should aim to elucidate the molecular mechanism of CD4+ T cell infiltration by accumulated dead cells.


Asunto(s)
Vasos Linfáticos , Linfedema , Humanos , Animales , Ratones , Calidad de Vida , Linfedema/etiología , Linfedema/metabolismo , Linfedema/patología , Linfocitos T CD4-Positivos , Inflamación , Ratones Noqueados , Ratones Endogámicos C57BL
8.
Proc Natl Acad Sci U S A ; 120(41): e2308941120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37782785

RESUMEN

Impaired lymphatic drainage and lymphedema are major morbidities whose mechanisms have remained obscure. To study lymphatic drainage and its impairment, we engineered a microfluidic culture model of lymphatic vessels draining interstitial fluid. This lymphatic drainage-on-chip revealed that inflammatory cytokines that are known to disrupt blood vessel junctions instead tightened lymphatic cell-cell junctions and impeded lymphatic drainage. This opposing response was further demonstrated when inhibition of rho-associated protein kinase (ROCK) was found to normalize fluid drainage under cytokine challenge by simultaneously loosening lymphatic junctions and tightening blood vessel junctions. Studies also revealed a previously undescribed shift in ROCK isoforms in lymphatic endothelial cells, wherein a ROCK2/junctional adhesion molecule-A (JAM-A) complex emerges that is responsible for the cytokine-induced lymphatic junction zippering. To validate these in vitro findings, we further demonstrated in a genetic mouse model that lymphatic-specific knockout of ROCK2 reversed lymphedema in vivo. These studies provide a unique platform to generate interstitial fluid pressure and measure the drainage of interstitial fluid into lymphatics and reveal a previously unappreciated ROCK2-mediated mechanism in regulating lymphatic drainage.


Asunto(s)
Molécula A de Adhesión de Unión , Vasos Linfáticos , Linfedema , Quinasas Asociadas a rho , Animales , Ratones , Biomimética , Citocinas/metabolismo , Células Endoteliales/metabolismo , Uniones Intercelulares , Molécula A de Adhesión de Unión/metabolismo , Vasos Linfáticos/metabolismo , Linfedema/genética , Linfedema/metabolismo , Quinasas Asociadas a rho/metabolismo
9.
Mol Biol Rep ; 50(10): 7981-7993, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37540456

RESUMEN

BACKGROUND: Accumulating evidence suggests that prostaglandin E2, an arachidonic acid (AA) metabolite, enhances lymphangiogenesis in response to inflammation. However, thromboxane A2 (TXA2), another AA metabolite, is not well known. Thus, this study aimed to determine the role of thromboxane prostanoid (TP) signaling in lymphangiogenesis in secondary lymphedema. METHODS AND RESULTS: Lymphedema was induced by the ablation of lymphatic vessels in mouse tails. Compared with wild-type mice, tail lymphedema in Tp-deficient mice was enhanced, which was associated with suppressed lymphangiogenesis as indicated by decreased lymphatic vessel area and pro-lymphangiogenesis-stimulating factors. Numerous macrophages were found in the tail tissues of Tp-deficient mice. Furthermore, the deletion of TP in macrophages increased tail edema and decreased lymphangiogenesis and pro-lymphangiogenic cytokines, which was accompanied by increased numbers of macrophages and gene expression related to a pro-inflammatory macrophage phenotype in tail tissues. In vivo microscopic studies revealed fluorescent dye leakage in the lymphatic vessels in the wounded tissues. CONCLUSIONS: The results suggest that TP signaling in macrophages promotes lymphangiogenesis and prevents tail lymphedema. TP signaling may be a therapeutic target for improving lymphedema-related symptoms by enhancing lymphangiogenesis.


Asunto(s)
Vasos Linfáticos , Linfedema , Ratones , Animales , Linfangiogénesis , Prostaglandinas/metabolismo , Tromboxanos/metabolismo , Vasos Linfáticos/metabolismo , Macrófagos/metabolismo , Linfedema/genética , Linfedema/metabolismo
10.
Peptides ; 168: 171045, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37507091

RESUMEN

Secondary lymphedema often occurs after filariasis, trauma, lymph node dissection and radiation therapy, which is manifested by infiltration of inflammatory cells and fibrosis formation in pathologically. Substance P is a widely used neuropeptide in the field of tissue repair, while the regenerative potential of the substance P has not been proven in the secondary lymphedema. In this study, animal model of secondary lymphedema was constructed by excising the skin and subcutaneous lymphatic network in the tail of mice, and the degree of swelling in the tail of mice was evaluated after 6 weeks under the treatment with substance P. Immunofluorescence staining was also performed to assess immune cell infiltration, subcutaneous fibrosis and lymphangiogenesis. The results revealed that substance P significantly alleviated post-surgical lymphedema in mice. Furthermore, we found that substance P promoted macrophages M2 polarization, a process associated with downregulation of the NF-kB/NLRP3 pathway. After application of disodium clodronate (macrophage scavenger, CLO), the positive effect of substance P in lymphedema is significantly inhibited. In vitro experiments, we further demonstrated the polarizing effect of substance P on bone marrow-derived macrophages (BMDMs), while substance P inhibited the activation of the NF-kB/NLRP3 pathway in BMDMs after the treatment of lipopolysaccharide (LPS). In addition, polarized macrophages were demonstrated to promote the proliferation, tube-forming and migratory functions of human lymphatic endothelial cells (hLEC). In conclusion, our study provides preliminary evidence that substance P alleviates secondary lymphedema by promoting macrophage M2 polarization, and this therapeutic effect may be associated with downregulation of the NF-kB/NLRP3 pathway.


Asunto(s)
Linfedema , FN-kappa B , Ratones , Humanos , Animales , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Sustancia P/metabolismo , Células Endoteliales/metabolismo , Transducción de Señal , Macrófagos/metabolismo , Fibrosis , Linfedema/tratamiento farmacológico , Linfedema/metabolismo
11.
J Hepatol ; 79(4): 945-954, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37328071

RESUMEN

BACKGROUND & AIMS: Lymphedema cholestasis syndrome 1 or Aagenaes syndrome is a condition characterized by neonatal cholestasis, lymphedema, and giant cell hepatitis. The genetic background of this autosomal recessive disease was unknown up to now. METHODS: A total of 26 patients with Aagenaes syndrome and 17 parents were investigated with whole-genome sequencing and/or Sanger sequencing. PCR and western blot analyses were used to assess levels of mRNA and protein, respectively. CRISPR/Cas9 was used to generate the variant in HEK293T cells. Light microscopy, transmission electron microscopy and immunohistochemistry for biliary transport proteins were performed in liver biopsies. RESULTS: One specific variant (c.-98G>T) in the 5'-untranslated region of Unc-45 myosin chaperone A (UNC45A) was identified in all tested patients with Aagenaes syndrome. Nineteen were homozygous for the c.-98G>T variant and seven were compound heterozygous for the variant in the 5'-untranslated region and an exonic loss-of-function variant in UNC45A. Patients with Aagenaes syndrome exhibited lower expression of UNC45A mRNA and protein than controls, and this was reproduced in a CRISPR/Cas9-created cell model. Liver biopsies from the neonatal period demonstrated cholestasis, paucity of bile ducts and pronounced formation of multinucleated giant cells. Immunohistochemistry revealed mislocalization of the hepatobiliary transport proteins BSEP (bile salt export pump) and MRP2 (multidrug resistance-associated protein 2). CONCLUSIONS: c.-98G>T in the 5'-untranslated region of UNC45A is the causative genetic variant in Aagenaes syndrome. IMPACT AND IMPLICATIONS: The genetic background of Aagenaes syndrome, a disease presenting with cholestasis and lymphedema in childhood, was unknown until now. A variant in the 5'-untranslated region of the Unc-45 myosin chaperone A (UNC45A) was identified in all tested patients with Aagenaes syndrome, providing evidence of the genetic background of the disease. Identification of the genetic background provides a tool for diagnosis of patients with Aagenaes syndrome before lymphedema is evident.


Asunto(s)
Colestasis , Péptidos y Proteínas de Señalización Intracelular , Linfedema , Humanos , Recién Nacido , Regiones no Traducidas 5'/genética , Proteínas Portadoras/genética , Colestasis/genética , Células HEK293 , Péptidos y Proteínas de Señalización Intracelular/genética , Linfedema/diagnóstico , Linfedema/genética , Linfedema/metabolismo , Miosinas/genética , Miosinas/metabolismo
12.
Dev Dyn ; 252(2): 227-238, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35137473

RESUMEN

BACKGROUND: Initial lymphatic vessels do not have a continuous basement membrane. Therefore, the ability of lymphatic endothelial cells (LECs) to produce extracellular matrix (ECM) has received little attention. Untreated lymphedema is a chronic disease that progresses to massive fibrosclerosis in advanced stages. Expansion of the intercellular space and fibrosclerosis cause hypoxia, which also affects the LECs. RESULTS: We studied the expression of genes in human LECs in vitro by RNA sequencing, analyzed the effects of hypoxia (1% O2 ) vs. normoxia (21% O2 ), and focused on ECM genes. LECs express fibrillin-1 and many typical components of a basement membrane such as type IV, VIII, and XVIII collagen, laminin ß1, ß2, and α4, perlecan, and fibronectin. Under hypoxia, we found significant upregulation of expression of genes controlling hydroxylation of procollagen (PLOD2, P4HA1), and also cross-linking, bundling, and stabilization of collagen fibrils and fibers. Also striking was the highly significant downregulation of elastin expression, whereas fibulin-5, which controls the assembly of tropoelastin monomers, was upregulated under hypoxia. In the dermis from genital lymphedema, we observed significant PLOD2 expression in initial lymphatics. CONCLUSIONS: Overall, hypoxia results in the picture of a dysregulated ECM production of LECs, which might be partly responsible for the progression of fibrosclerosis in lymphedema.


Asunto(s)
Células Endoteliales , Linfedema , Humanos , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Laminina/metabolismo , Hipoxia/metabolismo , Linfedema/metabolismo
13.
Biomolecules ; 12(11)2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36421681

RESUMEN

Secondary lymphedema is a chronic, debilitating disease and one of the most common side effects of oncologic surgery, substantially decreasing quality of life. Despite the progress conducted in lymphedema research, the underlying pathomechanisms remain elusive. Lymphedema is considered to be a disease affecting an isolated extremity, yet imaging studies suggest systemic changes of the lymphatic system in the affected patients. To evaluate potential systemic manifestations in lymphedema, we collected matched fat and skin tissue from the edematous and non-edematous side of the same 10 lymphedema patients as well as anatomically matched probes from control patients to evaluate whether known lymphedema manifestations are present systemically and in comparison to health controls. The lymphedematous tissue displayed various known hallmarks of lymphedema compared to the healthy controls, such as increased epidermis thickness, collagen deposition in the periadipocyte space and the distinct infiltration of CD4+ cells. Furthermore, morphological changes in the lymphatic vasculature between the affected and unaffected limb in the same lymphedema patient were visible. Surprisingly, an increased collagen deposition as well as CD4 expression were also detectable in the non-lymphedematous tissue of lymphedema patients, suggesting that lymphedema may trigger systemic changes beyond the affected extremity.


Asunto(s)
Vasos Linfáticos , Linfedema , Humanos , Calidad de Vida , Linfedema/metabolismo , Linfedema/patología , Linfedema/cirugía , Sistema Linfático , Colágeno/metabolismo
14.
J R Soc Interface ; 19(193): 20220223, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36000230

RESUMEN

Lymphatic vessel contractions generate net antegrade pulsatile lymph flow. By contrast, impaired lymphatic vessels are often associated with lymphoedema and altered lymph flow. The effect of lymphoedema on the lymph flow field and endothelium is not completely known. Here, we characterized the lymphatic flow field of a platelet-specific receptor C-type lectin-like receptor 2 (CLEC2) deficient lymphoedema mouse model. In regions of lymphoedema, collecting vessels were significantly distended, vessel contractility was greatly diminished and pulsatile lymph flow was replaced by quasi-steady flow. In vitro exposure of human dermal lymphatic endothelial cells (LECs) to lymphoedema-like quasi-steady flow conditions increased intercellular gap formation and permeability in comparison to normal pulsatile lymph flow. In the absence of flow, LECs exposed to steady pressure (SP) increased intercellular gap formation in contrast with pulsatile pressure (PP). The absence of pulsatility in steady fluid flow and SP conditions without flow-induced upregulation of myosin light chain (MLCs) regulatory subunits 9 and 12B mRNA expression and phosphorylation of MLCs, in contrast with pulsatile flow and PP without flow. These studies reveal that the loss of pulsatility, which can occur with lymphoedema, causes LEC contraction and an increase in intercellular gap formation mediated by MLC phosphorylation.


Asunto(s)
Vasos Linfáticos , Linfedema , Animales , Células Endoteliales/metabolismo , Endotelio , Humanos , Sistema Linfático/fisiología , Vasos Linfáticos/metabolismo , Linfedema/metabolismo , Ratones
15.
Adv Healthc Mater ; 11(16): e2200464, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35678079

RESUMEN

Preparation of human mesenchymal stem cell (hMSC) suspension for lymphedema treatment relies on conventional enzymatic digestion methods, which severely disrupts cell-cell and cell-extracellular matrix (ECM) connections, and drastically impairs cell retention and engraftment after transplantation. The objective of the present study is to evaluate the ability of hMSC-secreted ECM to augment lymphangiogenesis by using an in vitro coculturing model of hMSC sheets with lymphatic endothelial cells (LECs) and an in vivo mouse tail lymphedema model. Results demonstrate that the hMSC-secreted ECM augments the formation of lymphatic capillary-like structure by a factor of 1.2-3.6 relative to the hMSC control group, by serving as a prolymphangiogenic growth factor reservoir and facilitating cell regenerative activities. hMSC-derived ECM enhances MMP-2 mediated matrix remodeling, increases the synthesis of collagen IV and laminin, and promotes lymphatic microvessel-like structure formation. The injection of rat MSC sheet fragments into a mouse tail lymphedema model confirms the benefits of the hMSC-derived ECM by stimulating lymphangiogenesis and wound closure.


Asunto(s)
Linfangiogénesis , Células Madre Mesenquimatosas , Animales , Células Endoteliales , Humanos , Vasos Linfáticos , Linfedema/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratas
16.
J Clin Invest ; 132(15)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35763346

RESUMEN

Vascular endothelial growth factor C (VEGF-C) induces lymphangiogenesis via VEGF receptor 3 (VEGFR3), which is encoded by the most frequently mutated gene in human primary lymphedema. Angiopoietins (Angs) and their Tie receptors regulate lymphatic vessel development, and mutations of the ANGPT2 gene were recently found in human primary lymphedema. However, the mechanistic basis of Ang2 activity in lymphangiogenesis is not fully understood. Here, we used gene deletion, blocking Abs, transgene induction, and gene transfer to study how Ang2, its Tie2 receptor, and Tie1 regulate lymphatic vessels. We discovered that VEGF-C-induced Ang2 secretion from lymphatic endothelial cells (LECs) was involved in full Akt activation downstream of phosphoinositide 3 kinase (PI3K). Neonatal deletion of genes encoding the Tie receptors or Ang2 in LECs, or administration of an Ang2-blocking Ab decreased VEGFR3 presentation on LECs and inhibited lymphangiogenesis. A similar effect was observed in LECs upon deletion of the PI3K catalytic p110α subunit or with small-molecule inhibition of a constitutively active PI3K located downstream of Ang2. Deletion of Tie receptors or blockade of Ang2 decreased VEGF-C-induced lymphangiogenesis also in adult mice. Our results reveal an important crosstalk between the VEGF-C and Ang signaling pathways and suggest new avenues for therapeutic manipulation of lymphangiogenesis by targeting Ang2/Tie/PI3K signaling.


Asunto(s)
Linfangiogénesis , Linfedema , Animales , Células Endoteliales/metabolismo , Humanos , Linfangiogénesis/fisiología , Linfedema/metabolismo , Ratones , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Receptores TIE/metabolismo , Ribonucleasa Pancreática/metabolismo , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
17.
Circ Res ; 131(2): e2-e21, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35701867

RESUMEN

BACKGROUND: Mutations in PIEZO1 (Piezo type mechanosensitive ion channel component 1) cause human lymphatic malformations. We have previously uncovered an ORAI1 (ORAI calcium release-activated calcium modulator 1)-mediated mechanotransduction pathway that triggers lymphatic sprouting through Notch downregulation in response to fluid flow. However, the identity of its upstream mechanosensor remains unknown. This study aimed to identify and characterize the molecular sensor that translates the flow-mediated external signal to the Orai1-regulated lymphatic expansion. METHODS: Various mutant mouse models, cellular, biochemical, and molecular biology tools, and a mouse tail lymphedema model were employed to elucidate the role of Piezo1 in flow-induced lymphatic growth and regeneration. RESULTS: Piezo1 was found to be abundantly expressed in lymphatic endothelial cells. Piezo1 knockdown in cultured lymphatic endothelial cells inhibited the laminar flow-induced calcium influx and abrogated the flow-mediated regulation of the Orai1 downstream genes, such as KLF2 (Krüppel-like factor 2), DTX1 (Deltex E3 ubiquitin ligase 1), DTX3L (Deltex E3 ubiquitin ligase 3L,) and NOTCH1 (Notch receptor 1), which are involved in lymphatic sprouting. Conversely, stimulation of Piezo1 activated the Orai1-regulated mechanotransduction in the absence of fluid flow. Piezo1-mediated mechanotransduction was significantly blocked by Orai1 inhibition, establishing the epistatic relationship between Piezo1 and Orai1. Lymphatic-specific conditional Piezo1 knockout largely phenocopied sprouting defects shown in Orai1- or Klf2- knockout lymphatics during embryo development. Postnatal deletion of Piezo1 induced lymphatic regression in adults. Ectopic Dtx3L expression rescued the lymphatic defects caused by Piezo1 knockout, affirming that the Piezo1 promotes lymphatic sprouting through Notch downregulation. Consistently, transgenic Piezo1 expression or pharmacological Piezo1 activation enhanced lymphatic sprouting. Finally, we assessed a potential therapeutic value of Piezo1 activation in lymphatic regeneration and found that a Piezo1 agonist, Yoda1, effectively suppressed postsurgical lymphedema development. CONCLUSIONS: Piezo1 is an upstream mechanosensor for the lymphatic mechanotransduction pathway and regulates lymphatic growth in response to external physical stimuli. Piezo1 activation presents a novel therapeutic opportunity for preventing postsurgical lymphedema. The Piezo1-regulated lymphangiogenesis mechanism offers a molecular basis for Piezo1-associated lymphatic malformation in humans.


Asunto(s)
Vasos Linfáticos , Linfedema , Animales , Células Endoteliales/metabolismo , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Vasos Linfáticos/metabolismo , Linfedema/metabolismo , Mecanotransducción Celular/fisiología , Ratones , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
18.
Obes Res Clin Pract ; 16(3): 197-205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35659463

RESUMEN

BACKGROUND: Obesity poses deleterious consequences on every organ system, especially the lymphatic network. However, the underlying cellular mechanisms through which obesity causes lymphatic dysfunction remains unclear. We aimed to summarize experimental studies that evaluated the effect of obesity on the lymphatic system on animal models. METHODS: We used the following terms to search the Ovid EMBASE, Ovid MEDLINE(R), Cochrane, and Scopus databases: "lymphedema", "lymphatic diseases", "lymphatic system/complications* ", "lymphatic system/injuries* ", "lymphatic system/abnormalities* ", AND "obesity/complications* ", "diet/high-fat", "adipogenesis" and "lipid metabolism disorder". From a total of 166 articles identified in the initial search, 13 met our eligibility criteria. RESULTS: Long-term exposure to high-fat diet in mice demonstrated significant amount of adipose tissue deposition which sets off an inflammatory cascade resulting in disruption of the chemokine gradient, inhibition of lymphangiogenesis, and changes in gene expression of lymphatic endothelial cells, that alter vessel permeability and induce cell death. Reduced contractile properties of lymphatic collectors, dilated capillaries, increased tissue pressure, and reduced hydraulic conductivity collectively contribute to reduced impaired lymphatic drainage. Aerobic exercise has shown reversal of lymphatic dysfunction in the obese and pharmacological interventions targeting T-cells, iNOS and VEGFR-3 signaling have the potential to combat acquired lymphedema. CONCLUSION: Scientists should focus their future experiments on developing therapies that regulate expression of T-cell derived cytokines and VEGFR-3 expression whereas clinicians are urged to counsel their patients to reduce weight through aerobic exercise.


Asunto(s)
Linfedema , Receptor 3 de Factores de Crecimiento Endotelial Vascular , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Humanos , Linfedema/etiología , Linfedema/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
19.
Clin Transl Med ; 12(6): e758, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35652284

RESUMEN

BACKGROUND: Secondary lymphedema is a common complication of cancer treatment, and previous studies have shown that the expression of transforming growth factor-beta 1 (TGF-ß1), a pro-fibrotic and anti-lymphangiogenic growth factor, is increased in this disease. Inhibition of TGF-ß1 decreases the severity of the disease in mouse models; however, the mechanisms that regulate this improvement remain unknown. METHODS: Expression of TGF-ß1 and extracellular matrix molecules (ECM) was assessed in biopsy specimens from patients with unilateral breast cancer-related lymphedema (BCRL). The effects of TGF-ß1 inhibition using neutralizing antibodies or a topical formulation of pirfenidone (PFD) were analyzed in mouse models of lymphedema. We also assessed the direct effects of TGF-ß1 on lymphatic endothelial cells (LECs) using transgenic mice that expressed a dominant-negative TGF-ß receptor selectively on LECs (LECDN-RII ). RESULTS: The expression of TGF-ß1 and ECM molecules is significantly increased in BCRL skin biopsies. Inhibition of TGF-ß1 in mouse models of lymphedema using neutralizing antibodies or with topical PFD decreased ECM deposition, increased the formation of collateral lymphatics, and inhibited infiltration of T cells. In vitro studies showed that TGF-ß1 in lymphedematous tissues increases fibroblast, lymphatic endothelial cell (LEC), and lymphatic smooth muscle cell stiffness. Knockdown of TGF-ß1 responsiveness in LECDN-RII resulted in increased lymphangiogenesis and collateral lymphatic formation; however, ECM deposition and fibrosis persisted, and the severity of lymphedema was indistinguishable from controls. CONCLUSIONS: Our results show that TGF-ß1 is an essential regulator of ECM deposition in secondary lymphedema and that inhibition of this response is a promising means of treating lymphedema.


Asunto(s)
Linfedema , Factor de Crecimiento Transformador beta1 , Animales , Anticuerpos Neutralizantes/farmacología , Enfermedad Crónica , Células Endoteliales/metabolismo , Células Endoteliales/patología , Fibrosis , Humanos , Inflamación/patología , Linfedema/genética , Linfedema/metabolismo , Linfedema/patología , Ratones , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
20.
J Food Biochem ; 46(9): e14233, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35567300

RESUMEN

Administration of Piper retrofractum extract (PRE) has been reported to alleviate edema, but the mechanism underlying this effect is unknown. Promotion of lymphangiogenesis is known to improve lymphedema, but the effect of PRE on lymphangiogenesis remains unclear. In the present study, we investigated whether PRE and specifically, piperine, the main component of PRE, can induce lymphangiogenesis. Treatments with PRE and piperine significantly promoted the proliferation, migration, and tube formation in human dermal lymphatic microvascular endothelial cells (HDLECs) but had no effect on the expression of lymphangiogenic factors. Furthermore, PRE and piperine significantly promoted the phosphorylation of the AKT and ERK proteins in HDLECs, and pretreatment with AKT and ERK inhibitors significantly attenuated the PRE- and piperine-induced lymphangiogenesis. These results indicate that PRE and piperine promote lymphangiogenesis via an AKT- and ERK-dependent mechanism. PRACTICAL APPLICATIONS: The lymphatic system plays various roles such as maintaining tissue fluid homeostasis, immune defense, and metabolism. Disruption of the lymphatic system results in insufficient fluid drainage, which causes edema. Currently, there are no effective treatments for lymphedema; therefore, the development of novel treatment strategies is desirable. In this study, we showed that PRE and its main component piperine promote lymphangiogenesis in lymphatic endothelial cells. Therefore, PRE has the potential to be used as a novel functional food for relieving lymphedema.


Asunto(s)
Linfedema , Piper , Alcaloides , Benzodioxoles , Células Endoteliales/metabolismo , Humanos , Linfangiogénesis , Linfedema/tratamiento farmacológico , Linfedema/metabolismo , Piperidinas , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Alcamidas Poliinsaturadas , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...