Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.567
Filtrar
1.
BMC Gastroenterol ; 24(1): 158, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720308

RESUMEN

BACKGROUND: Primary sclerosing cholangitis (PSC) is a complex disease with pathogenic mechanisms that remain to be elucidated. Previous observational studies with small sample sizes have reported associations between PSC, dyslipidemia, and gut microbiota dysbiosis. However, the causality of these associations is uncertain, and there has been no systematic analysis to date. METHODS: The datasets comprise data on PSC, 179 lipid species, and 412 gut microbiota species. PSC data (n = 14,890) were sourced from the International PSC Study Group, while the dataset pertaining to plasma lipidomics originated from a study involving 7174 Finnish individuals. Data on gut microbiota species were derived from the Dutch Microbiome Project study, which conducted a genome-wide association study involving 7738 participants. Furthermore, we employed a two-step Mendelian randomization (MR) analysis to quantify the proportion of the effect of gut microbiota-mediated lipidomics on PSC. RESULTS: Following a rigorous screening process, our MR analysis revealed a causal relationship between higher levels of gene-predicted Phosphatidylcholine (O-16:1_18:1) (PC O-16:1_18:1) and an increased risk of developing PSC (inverse variance-weighted method, odds ratio (OR) 1.30, 95% confidence interval (CI) 1.03-1.63). There is insufficient evidence to suggest that gene-predicted PSC impacts the levels of PC O-16:1_18:1 (OR 1.01, 95% CI 0.98-1.05). When incorporating gut microbiota data into the analysis, we found that Eubacterium rectale-mediated genetic prediction explains 17.59% of the variance in PC O-16:1_18:1 levels. CONCLUSION: Our study revealed a causal association between PC O-16:1_18:1 levels and PSC, with a minor portion of the effect mediated by Eubacterium rectale. This study aims to further explore the pathogenesis of PSC and identify promising therapeutic targets. For patients with PSC who lack effective treatment options, the results are encouraging.


Asunto(s)
Colangitis Esclerosante , Microbioma Gastrointestinal , Lipidómica , Análisis de la Aleatorización Mendeliana , Humanos , Colangitis Esclerosante/sangre , Colangitis Esclerosante/microbiología , Colangitis Esclerosante/genética , Microbioma Gastrointestinal/genética , Masculino , Estudio de Asociación del Genoma Completo , Femenino , Fosfatidilcolinas/sangre , Disbiosis/sangre , Persona de Mediana Edad , Adulto
2.
Skin Res Technol ; 30(5): e13706, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38721854

RESUMEN

BACKGROUND: The incidence rates of cutaneous squamous cell carcinoma (cSCC) and basal cell carcinoma (BCC) skin cancers are rising, while the current diagnostic process is time-consuming. We describe the development of a novel approach to high-throughput sampling of tissue lipids using electroporation-based biopsy, termed e-biopsy. We report on the ability of the e-biopsy technique to harvest large amounts of lipids from human skin samples. MATERIALS AND METHODS: Here, 168 lipids were reliably identified from 12 patients providing a total of 13 samples. The extracted lipids were profiled with ultra-performance liquid chromatography and tandem mass spectrometry (UPLC-MS-MS) providing cSCC, BCC, and healthy skin lipidomic profiles. RESULTS: Comparative analysis identified 27 differentially expressed lipids (p < 0.05). The general profile trend is low diglycerides in both cSCC and BCC, high phospholipids in BCC, and high lyso-phospholipids in cSCC compared to healthy skin tissue samples. CONCLUSION: The results contribute to the growing body of knowledge that can potentially lead to novel insights into these skin cancers and demonstrate the potential of the e-biopsy technique for the analysis of lipidomic profiles of human skin tissues.


Asunto(s)
Carcinoma Basocelular , Carcinoma de Células Escamosas , Electroporación , Lipidómica , Neoplasias Cutáneas , Piel , Humanos , Carcinoma Basocelular/patología , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/diagnóstico , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/química , Lipidómica/métodos , Biopsia , Piel/patología , Piel/metabolismo , Piel/química , Femenino , Masculino , Electroporación/métodos , Persona de Mediana Edad , Anciano , Lípidos/análisis , Espectrometría de Masas en Tándem/métodos
3.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731998

RESUMEN

Meibomian Glands (MG) are sebaceous glands responsible for the production of meibum, the main component of the Tear Film Lipid Layer (TFLL). The TFLL facilitates the spread of the tear film over the ocular surface, provides stability and reduces tear evaporation. Alterations in meibum composition lead to different ocular alterations like Meibomian Gland Dysfunction (MGD) and subsequent Evaporative Dry Eye (EDE). The aim of the present study was to investigate the composition and abundance of meibum lipids and their relationship with eyelid margin abnormalities, lipid layer patterns and MG status. The study utilizes a lipidomic approach to identify and quantify lipids in meibum samples using an Elute UHPLC system. This system considered all four dimensions (mass/charge, retention time, ion mobility and intensity) to provide the accurate identification of lipid species. Samples were categorized as healthy or low/no signs of alteration (group 1) or severe signs of alteration or EDE/MGD (group 2). The current investigation found differences in Variable Importance in Projection lipid abundance between both groups for the MGD signs studied. Changes in meibum composition occur and are related to higher scores in eyelid margin hyperaemia, eyelid margin irregularity, MG orifice plugging, MG loss and lipid layer pattern.


Asunto(s)
Síndromes de Ojo Seco , Lipidómica , Lípidos , Disfunción de la Glándula de Meibomio , Glándulas Tarsales , Lágrimas , Humanos , Lipidómica/métodos , Glándulas Tarsales/metabolismo , Síndromes de Ojo Seco/metabolismo , Lágrimas/metabolismo , Lágrimas/química , Lípidos/análisis , Femenino , Masculino , Persona de Mediana Edad , Disfunción de la Glándula de Meibomio/metabolismo , Adulto , Anciano , Metabolismo de los Lípidos
4.
Lipids Health Dis ; 23(1): 138, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734619

RESUMEN

BACKGROUND: Skin barrier alterations play a crucial function in melasma development. Past researches have demonstrated variations in lipid content between the epidermis of melasma lesions and normal tissues, along with the varied expression of lipid-related genes in melasma. This study aimed to analyze the lipidome profiles of skin surface lipids (SSL) in patients with melasma before and after treatment to understand associated abnormalities. METHODS: Melasma was treated with tranexamic acid orally and hydroquinone cream topically. Disease was assessed using the Melasma Area and Severity Index (MASI), and the impact to life was evaluated with Melasma Quality of Life (MELASQoL) score. Epidermal melanin particles were observed using reflection confocal microscopy (RCM), whereas epidermal pigment and blood vessel morphology were observed using dermoscopy, and SSL samples were collected. Specific information regarding alterations in lipid composition was obtained through multivariate analysis of the liquid chromatography-mass spectrometry data. RESULTS: After treatment, patients with melasma exhibited decreased MASI and MELASQoL scores (P < 0.001); RCM revealed reduced melanin content in the lesions, and dermoscopy revealed fewer blood vessels. Fifteen lipid subclasses and 382 lipid molecules were identified using lipidomic assays. The expression levels of total lipids, phosphatidylcholine, and phosphatidylethanolamine in the melasma lesions decreased after treatment (P < 0.05). CONCLUSION: This study revealed alterations in the SSL composition after effective melasma treatment, suggesting a compensatory role for lipids in melasma barrier function. The mechanism involving SSL and the lipid barrier, which influences melasma's occurrence, needs further elucidation.


Asunto(s)
Hidroquinonas , Lipidómica , Melanosis , Calidad de Vida , Humanos , Melanosis/tratamiento farmacológico , Femenino , Adulto , Hidroquinonas/uso terapéutico , Hidroquinonas/administración & dosificación , Ácido Tranexámico/uso terapéutico , Persona de Mediana Edad , Melaninas/metabolismo , Masculino , Lípidos/sangre , Lípidos/análisis , Epidermis/metabolismo , Epidermis/efectos de los fármacos , Epidermis/patología , Fosfatidiletanolaminas/metabolismo , Fosfatidilcolinas/metabolismo , Piel/patología , Piel/efectos de los fármacos , Piel/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos
5.
PLoS One ; 19(5): e0303569, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743756

RESUMEN

There is a phenotype of obese individuals termed metabolically healthy obese that present a reduced cardiometabolic risk. This phenotype offers a valuable model for investigating the mechanisms connecting obesity and metabolic alterations such as Type 2 Diabetes Mellitus (T2DM). Previously, in an untargeted metabolomics analysis in a cohort of morbidly obese women, we observed a different lipid metabolite pattern between metabolically healthy morbid obese individuals and those with associated T2DM. To validate these findings, we have performed a complementary study of lipidomics. In this study, we assessed a liquid chromatography coupled to a mass spectrometer untargeted lipidomic analysis on serum samples from 209 women, 73 normal-weight women (control group) and 136 morbid obese women. From those, 65 metabolically healthy morbid obese and 71 with associated T2DM. In this work, we find elevated levels of ceramides, sphingomyelins, diacyl and triacylglycerols, fatty acids, and phosphoethanolamines in morbid obese vs normal weight. Conversely, decreased levels of acylcarnitines, bile acids, lyso-phosphatidylcholines, phosphatidylcholines (PC), phosphatidylinositols, and phosphoethanolamine PE (O-38:4) were noted. Furthermore, comparing morbid obese women with T2DM vs metabolically healthy MO, a distinct lipid profile emerged, featuring increased levels of metabolites: deoxycholic acid, diacylglycerol DG (36:2), triacylglycerols, phosphatidylcholines, phosphoethanolamines, phosphatidylinositols, and lyso-phosphatidylinositol LPI (16:0). To conclude, analysing both comparatives, we observed decreased levels of deoxycholic acid, PC (34:3), and PE (O-38:4) in morbid obese women vs normal-weight. Conversely, we found elevated levels of these lipids in morbid obese women with T2DM vs metabolically healthy MO. These profiles of metabolites could be explored for the research as potential markers of metabolic risk of T2DM in morbid obese women.


Asunto(s)
Diabetes Mellitus Tipo 2 , Lipidómica , Obesidad Mórbida , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Obesidad Mórbida/sangre , Obesidad Mórbida/metabolismo , Obesidad Mórbida/complicaciones , Lipidómica/métodos , Persona de Mediana Edad , Adulto , Lípidos/sangre , Metabolómica/métodos , Estudios de Casos y Controles , Triglicéridos/sangre , Esfingomielinas/sangre , Esfingomielinas/metabolismo , Ceramidas/sangre , Ceramidas/metabolismo , Metabolismo de los Lípidos
6.
J Agric Food Chem ; 72(19): 11268-11277, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38695399

RESUMEN

Buttermilk is a potential material for the production of a milk fat globule membrane (MFGM) and can be mainly classified into two types: whole cream buttermilk and cheese whey cream buttermilk (WCB). Due to the high casein micelle content of whole cream buttermilk, the removal of casein micelles to improve the purity of MFGM materials is always required. This study investigated the effects of rennet and acid coagulation on the lipid profile of buttermilk rennet-coagulated whey (BRW) and buttermilk acid-coagulated whey (BAW) and compared them with WCB. BRW has significantly higher phospholipids (PLs) and ganglioside contents than BAW and WCB. The abundance of arachidonic acid (ARA)- and eicosapentaenoic acid (EPA)-structured PLs was higher in WCB, while docosahexaenoic acid (DHA)-structured PLs were higher in BRW, indicating that BRW and WCB intake might have a greater effect on improving cardiovascular conditions and neurodevelopment. WCB and BRW had a higher abundance of plasmanyl PL and plasmalogen PL, respectively. Phosphatidylcholine (PC) (28:1), LPE (20:5), and PC (26:0) are characteristic lipids among BRW, BAW, and WCB, and they can be used to distinguish MFGM-enriched whey from different sources.


Asunto(s)
Suero de Mantequilla , Queso , Cabras , Lipidómica , Suero Lácteo , Animales , Suero de Mantequilla/análisis , Queso/análisis , Suero Lácteo/química , Fosfolípidos/análisis , Fosfolípidos/química , Glucolípidos/química , Leche/química , Gotas Lipídicas/química , Glicoproteínas/química , Glicoproteínas/análisis , Lípidos/química , Lípidos/análisis
7.
Nat Commun ; 15(1): 3818, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740760

RESUMEN

The growing disparity between the demand for transplants and the available donor supply, coupled with an aging donor population and increasing prevalence of chronic diseases, highlights the urgent need for the development of platforms enabling reconditioning, repair, and regeneration of deceased donor organs. This necessitates the ability to preserve metabolically active kidneys ex vivo for days. However, current kidney normothermic machine perfusion (NMP) approaches allow metabolic preservation only for hours. Here we show that human kidneys discarded for transplantation can be preserved in a metabolically active state up to 4 days when perfused with a cell-free perfusate supplemented with TCA cycle intermediates at subnormothermia (25 °C). Using spatially resolved isotope tracing we demonstrate preserved metabolic fluxes in the kidney microenvironment up to Day 4 of perfusion. Beyond Day 4, significant changes were observed in renal cell populations through spatial lipidomics, and increases in injury markers such as LDH, NGAL and oxidized lipids. Finally, we demonstrate that perfused kidneys maintain functional parameters up to Day 4. Collectively, these findings provide evidence that this approach enables metabolic and functional preservation of human kidneys over multiple days, establishing a solid foundation for future clinical investigations.


Asunto(s)
Riñón , Preservación de Órganos , Perfusión , Humanos , Riñón/metabolismo , Preservación de Órganos/métodos , Perfusión/métodos , Trasplante de Riñón , Masculino , Soluciones Preservantes de Órganos , Femenino , Persona de Mediana Edad , Sistema Libre de Células , Ciclo del Ácido Cítrico , Adulto , Nutrientes/metabolismo , Lipidómica/métodos , Anciano
8.
Metabolomics ; 20(3): 53, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722395

RESUMEN

INTRODUCTION: Despite the well-recognized health benefits, the mechanisms and site of action of metformin remains elusive. Metformin-induced global lipidomic changes in plasma of animal models and human subjects have been reported. However, there is a lack of systemic evaluation of metformin-induced lipidomic changes in different tissues. Metformin uptake requires active transporters such as organic cation transporters (OCTs), and hence, it is anticipated that metformin actions are tissue-dependent. In this study, we aim to characterize metformin effects in non-diabetic male mice with a special focus on lipidomics analysis. The findings from this study will help us to better understand the cell-autonomous (direct actions in target cells) or non-cell-autonomous (indirect actions in target cells) mechanisms of metformin and provide insights into the development of more potent yet safe drugs targeting a particular organ instead of systemic metabolism for metabolic regulations without major side effects. OBJECTIVES: To characterize metformin-induced lipidomic alterations in different tissues of non-diabetic male mice and further identify lipids affected by metformin through cell-autonomous or systemic mechanisms based on the correlation between lipid alterations in tissues and the corresponding in-tissue metformin concentrations. METHODS: A dual extraction method involving 80% methanol followed by MTBE (methyl tert-butyl ether) extraction enables the analysis of free fatty acids, polar metabolites, and lipids. Extracts from tissues and plasma of male mice treated with or without metformin in drinking water for 12 days were analyzed using HILIC chromatography coupled to Q Exactive Plus mass spectrometer or reversed-phase liquid chromatography coupled to MS/MS scan workflow (hybrid mode) on LC-Orbitrap Exploris 480 mass spectrometer using biologically relevant lipids-containing inclusion list for data-independent acquisition (DIA), named as BRI-DIA workflow followed by data-dependent acquisition (DDA), to maximum the coverage of lipids and minimize the negative effect of stochasticity of precursor selection on experimental consistency and reproducibility. RESULTS: Lipidomics analysis of 6 mouse tissues and plasma allowed a systemic evaluation of lipidomic changes induced by metformin in different tissues. We observed that (1) the degrees of lipidomic changes induced by metformin treatment overly correlated with tissue concentrations of metformin; (2) the impact on lysophosphatidylcholine (lysoPC) and cardiolipins was positively correlated with tissue concentrations of metformin, while neutral lipids such as triglycerides did not correlate with the corresponding tissue metformin concentrations; (3) increase of intestinal tricarboxylic acid (TCA) cycle intermediates after metformin treatment. CONCLUSION: The data collected in this study from non-diabetic mice with 12-day metformin treatment suggest that the overall metabolic effect of metformin is positively correlated with tissue concentrations and the effect on individual lipid subclass is via both cell-autonomous mechanisms (cardiolipins and lysoPC) and non-cell-autonomous mechanisms (triglycerides).


Asunto(s)
Metabolismo de los Lípidos , Lipidómica , Metformina , Metformina/farmacología , Metformina/metabolismo , Animales , Ratones , Masculino , Lipidómica/métodos , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/sangre , Hipoglucemiantes/farmacología , Hipoglucemiantes/metabolismo , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem/métodos
9.
Cell Biol Toxicol ; 40(1): 25, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691184

RESUMEN

Lung cancer is a common malignancy that is frequently associated with systemic metabolic disorders. Early detection is pivotal to survival improvement. Although blood biomarkers have been used in its early diagnosis, missed diagnosis and misdiagnosis still exist due to the heterogeneity of lung cancer. Integration of multiple biomarkers or trans-omics results can improve the accuracy and reliability for lung cancer diagnosis. As metabolic reprogramming is a hallmark of lung cancer, metabolites, specifically lipids might be useful for lung cancer detection, yet systematic characterizations of metabolites in lung cancer are still incipient. The present study profiled the polar metabolome and lipidome in the plasma of lung cancer patients to construct an inclusive metabolomic atlas of lung cancer. A comprehensive analysis of lung cancer was also conducted combining metabolomics with clinical phenotypes. Furthermore, the differences in plasma lipid metabolites were compared and analyzed among different lung cancer subtypes. Alcohols, amides, and peptide metabolites were significantly increased in lung cancer, while carboxylic acids, hydrocarbons, and fatty acids were remarkably decreased. Lipid profiling revealed a significant increase in plasma levels of CER, PE, SM, and TAG in individuals with lung cancer as compared to those in healthy controls. Correlation analysis confirmed the association between a panel of metabolites and TAGs. Clinical trans-omics studies elucidated the complex correlations between lipidomic data and clinical phenotypes. The present study emphasized the clinical importance of lipidomics in lung cancer, which involves the correlation between metabolites and the expressions of other omics, ultimately influencing clinical phenotypes. This novel trans-omics network approach would facilitate the development of precision therapy for lung cancer.


Asunto(s)
Neoplasias Pulmonares , Metabolómica , Medicina de Precisión , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/metabolismo , Metabolómica/métodos , Medicina de Precisión/métodos , Biomarcadores de Tumor/sangre , Masculino , Persona de Mediana Edad , Femenino , Lipidómica/métodos , Fenotipo , Metaboloma , Anciano , Lípidos/sangre
10.
Rapid Commun Mass Spectrom ; 38(14): e9761, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38714820

RESUMEN

RATIONALE: Himalayan marmot oil (SPO) has been used for pharmaceutical purposes for centuries, but its composition is still unclear. The bioactivity of SPO highly depends on the techniques used for its processing. This study focused on the comprehensive lipidomics of SPO, especially on the ones derived from dry rendering, wet rendering, cold pressing, and ultrasound-assisted solvent extraction. METHODS: We performed lipid profiling of SPO acquired by different extraction methods using ultrahigh-performance liquid chromatography Q-Exactive Orbitrap mass spectrometry, and 17 classes of lipids (2 BMPs, 12 LysoPCs, 9 LysoPEs, 41 PCs, 24 PEs, 23 Plasmenyl-PCs, 10 Plasmenyl-PEs, 10 MGs, 63 DGs, 187 TGs, 2 MGDGs, 3 Cer[NDS]s, 22 Cer[NS]s, 2 GlcCer[NS]s, 14 SMs, 14 CEs, and 6 AcylCarnitines) were characterized. RESULTS: Fifty-five lipids were differentially altered (VIP > 1.5, p < 0.05) between the extraction techniques, which can be used as potential biomarkers to differentiate SPO extracted by various methods. Additionally, the contents of oleic acid and arachidic acid were abundant in all samples that may suggest their medicinal values and are conducive to in-depth research. CONCLUSIONS: These findings reveal the alterations of lipid profile and free fatty acid composition in SPO obtained with different extraction methods, providing a theoretical foundation for investigating its important components as functional factors in medicines and cosmetics.


Asunto(s)
Lípidos , Marmota , Espectrometría de Masas , Cromatografía Líquida de Alta Presión/métodos , Lípidos/química , Lípidos/análisis , Espectrometría de Masas/métodos , Aceites de Plantas/química , Aceites de Plantas/análisis , Lipidómica/métodos , Fraccionamiento Químico/métodos
11.
PeerJ ; 12: e17272, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699187

RESUMEN

Background: Esophageal squamous cell carcinoma (ESCC) is highly prevalent and has a high mortality rate. Traditional diagnostic methods, such as imaging examinations and blood tumor marker tests, are not effective in accurately diagnosing ESCC due to their low sensitivity and specificity. Esophageal endoscopic biopsy, which is considered as the gold standard, is not suitable for screening due to its invasiveness and high cost. Therefore, this study aimed to develop a convenient and low-cost diagnostic method for ESCC using plasma-based lipidomics analysis combined with machine learning (ML) algorithms. Methods: Plasma samples from a total of 40 ESCC patients and 31 healthy controls were used for lipidomics study. Untargeted lipidomics analysis was conducted through liquid chromatography-mass spectrometry (LC-MS) analysis. Differentially expressed lipid features were filtered based on multivariate and univariate analysis, and lipid annotation was performed using MS-DIAL software. Results: A total of 99 differential lipids were identified, with 15 up-regulated lipids and 84 down-regulated lipids, suggesting their potential as diagnostic targets for ESCC. In the single-lipid plasma-based diagnostic model, nine specific lipids (FA 15:4, FA 27:1, FA 28:7, FA 28:0, FA 36:0, FA 39:0, FA 42:0, FA 44:0, and DG 37:7) exhibited excellent diagnostic performance, with an area under the curve (AUC) exceeding 0.99. Furthermore, multiple lipid-based ML models also demonstrated comparable diagnostic ability for ESCC. These findings indicate plasma lipids as a promising diagnostic approach for ESCC.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Lipidómica , Humanos , Carcinoma de Células Escamosas de Esófago/sangre , Carcinoma de Células Escamosas de Esófago/diagnóstico , Neoplasias Esofágicas/sangre , Neoplasias Esofágicas/diagnóstico , Masculino , Lipidómica/métodos , Femenino , Biomarcadores de Tumor/sangre , Estudios Retrospectivos , Persona de Mediana Edad , Anciano , Aprendizaje Automático , Lípidos/sangre , Cromatografía Liquida , Estudios de Casos y Controles
12.
Clin Transl Med ; 14(5): e1679, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38706045

RESUMEN

Metabolic abnormalities represent one of the pathological features of chronic obstructive pulmonary disease (COPD). Glutamic pyruvate transaminase 2 (GPT2) is involved in glutamate metabolism and lipid synthesis pathways, whilst the exact roles of GPT2 in the occurrence and development of COPD remains uncertain. This study aims at investigating how GPT2 and the associated genes modulate smoking-induced airway epithelial metabolism and damage by reprogramming lipid synthesis. The circulating or human airway epithelial metabolomic and lipidomic profiles of COPD patients or cell-lines explored with smoking were assessed to elucidate the pivotal roles of GPT2 in reprogramming processes. We found that GPT2 regulate the reprogramming of lipid metabolisms caused by smoking, especially phosphatidylcholine (PC) and triacylglycerol (TAG), along with changes in the expression of lipid metabolism-associated genes. GPT2 modulated cell sensitivities and survival in response to smoking by enhancing mitochondrial functions and maintaining lipid and energy homeostasis. Our findings provide evidence for the involvement of GPT2 in the reprogramming of airway epithelial lipids following smoking, as well as the molecular mechanisms underlying GPT2-mediated regulation, which may offer an alternative of therapeutic strategies for chronic lung diseases.


Asunto(s)
Lipidómica , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Lipidómica/métodos , Fumar/efectos adversos , Fumar/metabolismo , Metabolismo de los Lípidos/genética , Masculino , Femenino , Metabolómica/métodos , Persona de Mediana Edad
13.
Nature ; 629(8010): 174-183, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693412

RESUMEN

Regular exercise promotes whole-body health and prevents disease, but the underlying molecular mechanisms are incompletely understood1-3. Here, the Molecular Transducers of Physical Activity Consortium4 profiled the temporal transcriptome, proteome, metabolome, lipidome, phosphoproteome, acetylproteome, ubiquitylproteome, epigenome and immunome in whole blood, plasma and 18 solid tissues in male and female Rattus norvegicus over eight weeks of endurance exercise training. The resulting data compendium encompasses 9,466 assays across 19 tissues, 25 molecular platforms and 4 training time points. Thousands of shared and tissue-specific molecular alterations were identified, with sex differences found in multiple tissues. Temporal multi-omic and multi-tissue analyses revealed expansive biological insights into the adaptive responses to endurance training, including widespread regulation of immune, metabolic, stress response and mitochondrial pathways. Many changes were relevant to human health, including non-alcoholic fatty liver disease, inflammatory bowel disease, cardiovascular health and tissue injury and recovery. The data and analyses presented in this study will serve as valuable resources for understanding and exploring the multi-tissue molecular effects of endurance training and are provided in a public repository ( https://motrpac-data.org/ ).


Asunto(s)
Entrenamiento Aeróbico , Multiómica , Condicionamiento Físico Animal , Resistencia Física , Animales , Femenino , Humanos , Masculino , Ratas , Acetilación , Sangre/inmunología , Sangre/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/metabolismo , Bases de Datos Factuales , Epigenoma , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Internet , Lipidómica , Metaboloma , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Especificidad de Órganos/fisiología , Fosforilación , Condicionamiento Físico Animal/fisiología , Resistencia Física/genética , Resistencia Física/fisiología , Proteoma/metabolismo , Proteómica , Factores de Tiempo , Transcriptoma/genética , Ubiquitinación , Heridas y Lesiones/genética , Heridas y Lesiones/inmunología , Heridas y Lesiones/metabolismo
14.
JCO Precis Oncol ; 8: e2300690, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38691814

RESUMEN

PURPOSE: Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting side effect of cytotoxic cancer treatment, often necessitating dose reduction (DR) or chemotherapy discontinuation (CD). Studies on peripheral neuropathy related to chemotherapy, obesity, and diabetes have implicated lipid metabolism. This study examined the association between circulating lipids and CIPN. METHODS: Lipidomic analysis was performed on plasma samples from 137 patients receiving taxane-based treatment. CIPN was graded using Total Neuropathy Score-clinical version (TNSc) and patient-reported outcome measure European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-CIPN (EORTC-QLQ-CIPN20). RESULTS: A significant proportion of elevated baseline lipids were associated with high-grade CIPN defined by TNSc and EORTC-QLQ-CIPN20 including triacylglycerols (TGs). Multivariable Cox regression on lipid species, adjusting for BMI, age, and diabetes, showed several elevated baseline TG associated with shorter time to DR/CD. Latent class analysis identified two baseline lipid profiles with differences in risk of CIPN (hazard ratio, 2.80 [95% CI, 1.50 to 5.23]; P = .0013). The higher risk lipid profile had several elevated TG species and was independently associated with DR/CD when modeled with other clinical factors (diabetes, age, BMI, or prior numbness/tingling). CONCLUSION: Elevated baseline plasma TG is associated with an increased risk of CIPN development and warrants further validation in other cohorts. Ultimately, this may enable therapeutic intervention.


Asunto(s)
Hidrocarburos Aromáticos con Puentes , Lipidómica , Enfermedades del Sistema Nervioso Periférico , Triglicéridos , Humanos , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/sangre , Femenino , Masculino , Persona de Mediana Edad , Triglicéridos/sangre , Factores de Riesgo , Anciano , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Adulto , Taxoides/efectos adversos , Taxoides/uso terapéutico
15.
Nutrients ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732546

RESUMEN

In this study, the influence of total sn-2 palmitic triacylglycerols (TAGs) and ratio of 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) to 1,3-dioleoyl-2-palmitoylglycerol (OPO) in human milk fat substitute (HMFS) on the metabolic changes were investigated in Sprague-Dawley rats. Metabolomics and lipidomics profiling analysis indicated that increasing the total sn-2 palmitic TAGs and OPL to OPO ratio in HMFS could significantly influence glycine, serine and threonine metabolism, glycerophospholipid metabolism, glycerolipid metabolism, sphingolipid metabolism, bile acid biosynthesis, and taurine and hypotaurine metabolism pathways in rats after 4 weeks of feeding, which were mainly related to lipid, bile acid and energy metabolism. Meanwhile, the up-regulation of taurine, L-tryptophan, and L-cysteine, and down-regulations of lysoPC (18:0) and hypoxanthine would contribute to the reduction in inflammatory response and oxidative stress, and improvement of immunity function in rats. In addition, analysis of targeted biochemical factors also revealed that HMFS-fed rats had significantly increased levels of anti-inflammatory factor (IL-4), immunoglobulin A (IgA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px), and decreased levels of pro-inflammatory factors (IL-6 and TNF-α) and malondialdehyde (MDA), compared with those of the control fat-fed rats. Collectively, these observations present new in vivo nutritional evidence for the metabolic regulatory effects of the TAG structure and composition of human milk fat substitutes on the host.


Asunto(s)
Sustitutos de Grasa , Leche Humana , Ratas Sprague-Dawley , Triglicéridos , Animales , Leche Humana/química , Triglicéridos/metabolismo , Humanos , Ratas , Sustitutos de Grasa/farmacología , Masculino , Metabolismo de los Lípidos/efectos de los fármacos , Glicéridos/metabolismo , Glicéridos/farmacología , Metabolómica/métodos , Lipidómica , Estrés Oxidativo/efectos de los fármacos , Femenino
16.
J Transl Med ; 22(1): 448, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741137

RESUMEN

PURPOSE: The duration of type 2 diabetes mellitus (T2DM) and blood glucose levels have a significant impact on the development of T2DM complications. However, currently known risk factors are not good predictors of the onset or progression of diabetic retinopathy (DR). Therefore, we aimed to investigate the differences in the serum lipid composition in patients with T2DM, without and with DR, and search for potential serological indicators associated with the development of DR. METHODS: A total of 622 patients with T2DM hospitalized in the Department of Endocrinology of the First Affiliated Hospital of Xi'an JiaoTong University were selected as the discovery set. One-to-one case-control matching was performed according to the traditional risk factors for DR (i.e., age, duration of diabetes, HbA1c level, and hypertension). All cases with comorbid chronic kidney disease were excluded to eliminate confounding factors. A total of 42 pairs were successfully matched. T2DM patients with DR (DR group) were the case group, and T2DM patients without DR (NDR group) served as control subjects. Ultra-performance liquid chromatography-mass spectrometry (LC-MS/MS) was used for untargeted lipidomics analysis on serum, and a partial least squares discriminant analysis (PLS-DA) model was established to screen differential lipid molecules based on variable importance in the projection (VIP) > 1. An additional 531 T2DM patients were selected as the validation set. Next, 1:1 propensity score matching (PSM) was performed for the traditional risk factors for DR, and a combined 95 pairings in the NDR and DR groups were successfully matched. The screened differential lipid molecules were validated by multiple reaction monitoring (MRM) quantification based on mass spectrometry. RESULTS: The discovery set showed no differences in traditional risk factors associated with the development of DR (i.e., age, disease duration, HbA1c, blood pressure, and glomerular filtration rate). In the DR group compared with the NDR group, the levels of three ceramides (Cer) and seven sphingomyelins (SM) were significantly lower, and one phosphatidylcholine (PC), two lysophosphatidylcholines (LPC), and two SMs were significantly higher. Furthermore, evaluation of these 15 differential lipid molecules in the validation sample set showed that three Cer and SM(d18:1/24:1) molecules were substantially lower in the DR group. After excluding other confounding factors (e.g., sex, BMI, lipid-lowering drug therapy, and lipid levels), multifactorial logistic regression analysis revealed that a lower abundance of two ceramides, i.e., Cer(d18:0/22:0) and Cer(d18:0/24:0), was an independent risk factor for the occurrence of DR in T2DM patients. CONCLUSION: Disturbances in lipid metabolism are closely associated with the occurrence of DR in patients with T2DM, especially in ceramides. Our study revealed for the first time that Cer(d18:0/22:0) and Cer(d18:0/24:0) might be potential serological markers for the diagnosis of DR occurrence in T2DM patients, providing new ideas for the early diagnosis of DR.


Asunto(s)
Biomarcadores , Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Lipidómica , Humanos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Masculino , Retinopatía Diabética/sangre , Retinopatía Diabética/diagnóstico , Femenino , Persona de Mediana Edad , Biomarcadores/sangre , Estudios de Casos y Controles , Lípidos/sangre , Anciano , Análisis Discriminante , Factores de Riesgo , Análisis de los Mínimos Cuadrados
17.
Anal Chem ; 96(19): 7380-7385, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38693701

RESUMEN

Ion mobility-mass spectrometry (IM-MS) offers benefits for lipidomics by obtaining IM-derived collision cross sections (CCS), a conditional property of an ion that can enhance lipid identification. While drift tube (DT) IM-MS retains a direct link to the primary experimental method to derive CCS values, other IM technologies rely solely on external CCS calibration, posing challenges due to dissimilar chemical properties between lipids and calibrants. To address this, we introduce MobiLipid, a novel tool facilitating the CCS quality control of IM-MS lipidomics workflows by internal standardization. MobiLipid utilizes a newly established DTCCSN2 library for uniformly (U)13C-labeled lipids, derived from a U13C-labeled yeast extract, containing 377 DTCCSN2 values. This automated open-source R Markdown tool enables internal monitoring and straightforward compensation for CCSN2 biases. It supports lipid class- and adduct-specific CCS corrections, requiring only three U13C-labeled lipids per lipid class-adduct combination across 10 lipid classes without requiring additional external measurements. The applicability of MobiLipid is demonstrated for trapped IM (TIM)-MS measurements of an unlabeled yeast extract spiked with U13C-labeled lipids. Monitoring the CCSN2 biases of TIMCCSN2 values compared to DTCCSN2 library entries utilizing MobiLipid resulted in mean absolute biases of 0.78% and 0.33% in positive and negative ionization mode, respectively. By applying the CCS correction integrated into the tool for the exemplary data set, the mean absolute CCSN2 biases of 10 lipid classes could be reduced to approximately 0%.


Asunto(s)
Lipidómica , Lípidos , Espectrometría de Masas , Lipidómica/métodos , Lípidos/química , Lípidos/análisis , Espectrometría de Movilidad Iónica/métodos , Control de Calidad , Estándares de Referencia , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(5): 159491, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38565373

RESUMEN

Inborn errors of metabolism (IEM) represent a heterogeneous group of more than 1800 rare disorders, many of which are causing significant childhood morbidity and mortality. More than 100 IEM are linked to dyslipidaemia, but yet our knowledge in connecting genetic information with lipidomic data is limited. Stable isotope tracing studies of the lipid metabolism (STL) provide insights on the dynamic of cellular lipid processes and could thereby facilitate the delineation of underlying metabolic (patho)mechanisms. This mini-review focuses on principles as well as technical limitations of STL and describes potential clinical applications by discussing recently published STL focusing on IEM.


Asunto(s)
Metabolismo de los Lípidos , Lipidómica , Humanos , Lipidómica/métodos , Metabolismo de los Lípidos/genética , Errores Innatos del Metabolismo Lipídico/metabolismo , Errores Innatos del Metabolismo Lipídico/genética , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/genética , Animales , Lípidos/genética , Marcaje Isotópico/métodos
19.
Food Funct ; 15(9): 5158-5174, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38630029

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the main reason for chronic liver diseases and malignancies. Currently, there is a lack of approved drugs for the prevention or treatment of NAFLD. Vine tea (Ampelopsis grossedentata) has been used as a traditional Chinese beverage for centuries. Vine tea carries out several biological activities including the regulation of plasma lipids and blood glucose, hepato-protective function, and anti-tumor activity and contains the highest content of flavonoids. However, the underlying mechanisms of total flavonoids from vine tea (TF) in the attenuation of NAFLD remain unclear. Therefore, we investigated the interventions and mechanisms of TF in mice with NAFLD using an integrated analysis of network pharmacology, lipidomics, and transcriptomics. Staining and biochemical tests revealed a significant increase in AKT-overexpression-induced (abbreviated as AKT-induced) NAFLD in mice. Lipid accumulation in hepatic intracellular vacuoles was alleviated after TF treatment. In addition, TF reduced the hepatic and serum triglyceride levels in mice with AKT-induced NAFLD. Lipidomics results showed 32 differential lipids in the liver, mainly including triglycerides (TG), diglycerides (DG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). Transcriptomic analysis revealed that 314 differentially expressed genes were commonly upregulated in the AKT group and downregulated in the TF group. The differential regulation of lipids by the genes Pparg, Scd1, Chpt1, Dgkz, and Pla2g12b was further revealed by network enrichment analysis and confirmed by RT-qPCR. Furthermore, we used immunohistochemistry (IHC) to detect changes in the protein levels of the key proteins PPARγ and SCD1. In summary, TF can improve hepatic steatosis by targeting the PPAR signaling pathway, thereby reducing de novo fatty acid synthesis and modulating the glycerophospholipid metabolism.


Asunto(s)
Flavonoides , Lipidómica , Farmacología en Red , Enfermedad del Hígado Graso no Alcohólico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Animales , Flavonoides/farmacología , Ratones , Masculino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Metabolismo de los Lípidos/efectos de los fármacos , Ratones Endogámicos C57BL , Transcriptoma , Hígado/metabolismo , Hígado/efectos de los fármacos , Té/química , Modelos Animales de Enfermedad , Extractos Vegetales/farmacología , Perfilación de la Expresión Génica , Humanos , Triglicéridos/metabolismo
20.
Sci Total Environ ; 929: 172483, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38631629

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) remain controversial due to their high persistency and potential human toxicity. Although occupational exposure to PFAS has been widely investigated, the implications of PFAS occurrence in the general population remain to be unraveled. Considering that serum from most people contains PFAS, the aim of this study was to characterize the lipidomic profile in human serum from a general cohort (n = 40) with residual PFAS levels. The geometric means of ∑PFAS (11.8 and 4.4 ng/mL) showed significant differences (p < 0.05) for the samples with the highest (n = 20) and lowest (n = 20) concentrations from the general population respectively. Reverse-phase liquid chromatography coupled to drift tube ion mobility and high-resolution mass spectrometry using dual polarity ionization was used to characterize the lipid profile in both groups. The structural elucidation involved the integration of various parameters, such as retention time, mass-to-charge ratio, tandem mass spectra and collision cross section values. This approach yielded a total of 20 potential biomarkers linked to the perturbed glycerophospholipid metabolism, energy metabolism and sphingolipid metabolism. Among these alterations, most lipids were down-regulated and some specific lipids (PC 36:5, PC 37:4 and PI O-34:2) exhibited a relatively strong Spearman correlation and predictive capacity for PFAS contamination. This study could support further toxicological assessments and mechanistic investigations into the effects of PFAS exposure on the lipidome.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Lipidómica , Humanos , Fluorocarburos/sangre , Contaminantes Ambientales/sangre , Cromatografía Liquida , China , Espectrometría de Masas , Estudios de Cohortes , Adulto , Masculino , Exposición a Riesgos Ambientales/estadística & datos numéricos , Femenino , Persona de Mediana Edad , Espectrometría de Movilidad Iónica/métodos , Lípidos/sangre , Monitoreo del Ambiente/métodos , Pueblos del Este de Asia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA