Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.612
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673873

RESUMEN

The lipocalin proteins are a large family of small extracellular proteins that demonstrate significant heterogeneity in sequence similarity and have highly conserved crystal structures. They have a variety of functions, including acting as carrier proteins, transporting retinol, participating in olfaction, and synthesizing prostaglandins. Importantly, they also play a critical role in human diseases, including cancer. Additionally, they are involved in regulating cellular homeostasis and immune response and dispensing various compounds. This comprehensive review provides information on the lipocalin family, including their structure, functions, and implications in various diseases. It focuses on selective important human lipocalin proteins, such as lipocalin 2 (LCN2), retinol binding protein 4 (RBP4), prostaglandin D2 synthase (PTGDS), and α1-microglobulin (A1M).


Asunto(s)
Oxidorreductasas Intramoleculares , Lipocalinas , Humanos , Lipocalinas/metabolismo , Lipocalinas/química , Lipocalinas/genética , Neoplasias/metabolismo , Relación Estructura-Actividad , Animales
2.
Biomol NMR Assign ; 18(1): 79-84, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38564159

RESUMEN

The lipocalin protein family is a structurally conserved group of proteins with a variety of biological functions defined by their ability to bind small molecule ligands and interact with partner proteins. One member of this family is siderocalin, a protein found in mammals. Its role is discussed in inflammatory processes, iron trafficking, protection against bacterial infections and oxidative stress, cell migration, induction of apoptosis, and cancer. Though it seems to be involved in numerous essential pathways, the exact mechanisms are often not fully understood. The NMR backbone assignments for the human siderocalin and its rat ortholog have been published before. In this work we describe the backbone NMR assignments of siderocalin for another important model organism, the mouse - data that might become important for structure-based drug discovery. Secondary structure elements were predicted based on the assigned backbone chemical shifts using TALOS-N and CSI 3.0, revealing a high content of beta strands and one prominent alpha helical region. Our findings correlate well with the known crystal structure and the overall conserved fold of the lipocalin family.


Asunto(s)
Lipocalinas , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Animales , Ratones , Secuencia de Aminoácidos , Lipocalina 2/química , Lipocalinas/química
3.
Int Immunopharmacol ; 131: 111812, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38493698

RESUMEN

BACKGROUND: Lipocalin 13 (LCN13) is a member of the lipocalin family that consists of numerous secretory proteins. LCN13 high-expression has been reported to possess anti-obesity and anti-diabetic effects. Although metabolic dysfunction-associated steatotic liver diseases (MASLD) including metabolic dysfunction-associated steatohepatitis (MASH) are frequently associated with obesity and insulin resistance, the functional role of endogenous LCN13 and the therapeutic effect of LCN13 in MASH and related metabolic deterioration have not been evaluated. METHODS: We employed a methionine-choline deficient diet model and MASH cell models to investigate the role of LCN13 in MASH development. We sought to explore the effects of LCN13 on lipid metabolism and inflammation in hepatocytes under PA/OA exposure using Western blotting, real-time RT-PCR, enzyme-linked immunosorbent assay, hematoxylin and eosin staining, oil red O staining. Using RNA sequencing, chromatin immunoprecipitation assay, and luciferase reporter assays to elucidate whether farnesoid X receptor (FXR) regulates human LCN13 transcription as a transcription factor. RESULTS: Our study found that LCN13 was down-regulated in MASH patients, MASH mouse and cell models. LCN13 overexpression in hepatocyte cells significantly inhibited lipid accumulation and inflammation in vitro. Conversely, LCN13 downregulation significantly exacerbated lipid accumulation and inflammatory responses in vivo and in vitro. Mechanistically, we provided the first evidence that LCN13 was transcriptionally activated by FXR, representing a novel direct target gene of FXR. And the key promoter region of LCN13 binds to FXR was also elucidated. We further revealed that LCN13 overexpression via FXR activation ameliorates hepatocellular lipid accumulation and inflammation in vivo and in vitro. Furthermore, LCN13-down-regulated mice exhibited aggravated MASH phenotypes, including increased hepatic lipid accumulation and inflammation. CONCLUSION: Our findings provide new insight regarding the protective role of LCN13 in MASH development and suggest an innovative therapeutic strategy for treating MASH or related metabolic disorders.


Asunto(s)
Carcinoma Hepatocelular , Hígado Graso , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/metabolismo , Hígado Graso/metabolismo , Inflamación/metabolismo , Lípidos , Lipocalinas/metabolismo , Hígado , Neoplasias Hepáticas/metabolismo , Ratones Endogámicos C57BL , Obesidad/metabolismo
4.
J Med Chem ; 67(7): 5144-5167, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38525852

RESUMEN

Lipid transfer proteins (LTPs) are crucial players in nonvesicular lipid trafficking. LTPs sharing a lipocalin lipid transfer domain (lipocalin-like proteins) have a wide range of biological functions, such as regulating immune responses and cell proliferation, differentiation, and death as well as participating in the pathogenesis of inflammatory, metabolic, and neurological disorders and cancer. Therefore, the development of small-molecule inhibitors targeting these LTPs is important and has potential clinical applications. Herein, we summarize the structure and function of lipocalin-like proteins, mainly including retinol-binding proteins, lipocalins, and fatty acid-binding proteins and discuss the recent advances on small-molecule inhibitors for these protein families and their applications in disease treatment. The findings of our Perspective can provide guidance for the development of inhibitors of these LTPs and highlight the challenges that might be faced during the procedures.


Asunto(s)
Lipocalinas , Proteínas , Lipocalinas/metabolismo , Proteínas/metabolismo , Proteínas de Unión a Ácidos Grasos , Lípidos
5.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38339125

RESUMEN

The leading cause of death for patients with Duchenne muscular dystrophy (DMD), a progressive muscle disease, is heart failure. Prostaglandin (PG) D2, a physiologically active fatty acid, is synthesized from the precursor PGH2 by hematopoietic prostaglandin D synthase (HPGDS). Using a DMD animal model (mdx mice), we previously found that HPGDS expression is increased not only in injured muscle but also in the heart. Moreover, HPGDS inhibitors can slow the progression of muscle injury and cardiomyopathy. However, the location of HPGDS in the heart is still unknown. Thus, this study investigated HPGDS expression in autopsy myocardial samples from DMD patients. We confirmed the presence of fibrosis, a characteristic phenotype of DMD, in the autopsy myocardial sections. Additionally, HPGDS was expressed in mast cells, pericytes, and myeloid cells of the myocardial specimens but not in the myocardium. Compared with the non-DMD group, the DMD group showed increased HPGDS expression in mast cells and pericytes. Our findings confirm the possibility of using HPGDS inhibitor therapy to suppress PGD2 production to treat skeletal muscle disorders and cardiomyopathy. It thus provides significant insights for developing therapeutic drugs for DMD.


Asunto(s)
Cardiomiopatías , Oxidorreductasas Intramoleculares , Lipocalinas , Distrofia Muscular de Duchenne , Animales , Humanos , Ratones , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Modelos Animales de Enfermedad , Mastocitos/metabolismo , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Miocardio/metabolismo , Pericitos/metabolismo
6.
Sci Signal ; 17(824): eadg9256, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38377179

RESUMEN

High-density lipoprotein (HDL) nanoparticles promote endothelial cell (EC) function and suppress inflammation, but their utility in treating EC dysfunction has not been fully explored. Here, we describe a fusion protein named ApoA1-ApoM (A1M) consisting of apolipoprotein A1 (ApoA1), the principal structural protein of HDL that forms lipid nanoparticles, and ApoM, a chaperone for the bioactive lipid sphingosine 1-phosphate (S1P). A1M forms HDL-like particles, binds to S1P, and is signaling competent. Molecular dynamics simulations showed that the S1P-bound ApoM moiety in A1M efficiently activated EC surface receptors. Treatment of human umbilical vein ECs with A1M-S1P stimulated barrier function either alone or cooperatively with other barrier-enhancing molecules, including the stable prostacyclin analog iloprost, and suppressed cytokine-induced inflammation. A1M-S1P injection into mice during sterile inflammation suppressed neutrophil influx and inflammatory mediator secretion. Moreover, systemic A1M administration led to a sustained increase in circulating HDL-bound S1P and suppressed inflammation in a murine model of LPS-induced endotoxemia. We propose that A1M administration may enhance vascular endothelial barrier function, suppress cytokine storm, and promote resilience of the vascular endothelium.


Asunto(s)
Apolipoproteínas , Lipocalinas , Humanos , Ratones , Animales , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacología , Lipocalinas/metabolismo , Lipocalinas/farmacología , Receptores de Lisoesfingolípidos/metabolismo , Apolipoproteínas M , Inflamación , Lipoproteínas HDL/farmacología , Lipoproteínas HDL/metabolismo , Lisofosfolípidos/farmacología , Lisofosfolípidos/metabolismo , Esfingosina
7.
Biomed Pharmacother ; 171: 116091, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171248

RESUMEN

Lipocalin 2 (LCN2) is a secreted glycoprotein that is produced by immune cells, including neutrophils and macrophages. It serves various functions such as transporting hydrophobic ligands across the cellular membrane, regulating immune responses, keeping iron balance, and fostering epithelial cell differentiation. LCN2 plays a crucial role in several physiological processes. LCN2 expression is upregulated in a variety of human diseases and cancers. High levels of LCN2 are specifically linked to breast cancer (BC) cell proliferation, apoptosis, invasion, migration, angiogenesis, immune regulation, chemotherapy resistance, and prognosis. As a result, LCN2 has gained attention as a potential therapeutic target for BC. This article offered an in-depth review of the advancement of LCN2 in the context of BC occurrence and development.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Lipocalina 2/metabolismo , Neoplasias de la Mama/metabolismo , Proteínas de Fase Aguda/metabolismo , Lipocalinas/metabolismo , Macrófagos/metabolismo
8.
Scand J Rheumatol ; 53(1): 21-28, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37339383

RESUMEN

OBJECTIVES: Obesity and psoriatic arthritis (PsA) have a complicated relationship. While weight alone does not cause PsA, it is suspected to cause worse symptoms. Neutrophil gelatinase-associated lipocalin (NGAL) is secreted through various cell types. Our objective was to assess the changes and trajectories in serum NGAL and clinical outcomes in patients with PsA during 12 months of anti-inflammatory treatment. METHOD: This exploratory prospective cohort study enrolled PsA patients initiating conventional synthetic or biological disease-modifying anti-rheumatic drugs (csDMARDs/bDMARDs). Clinical, biomarker, and patient-reported outcome measures were retrieved at baseline, and 4 and 12 months. Control groups at baseline were psoriasis (PsO) patients and apparently healthy controls. The serum NGAL concentration was quantified by a high-performance singleplex immunoassay. RESULTS: In total, 117 PsA patients started a csDMARD or bDMARD, and were compared indirectly at baseline with a cross-sectional sample of 20 PsO patients and 20 healthy controls. The trajectory in NGAL related to anti-inflammatory treatment for all included PsA patients showed an overall change of -11% from baseline to 12 months. Trajectories in NGAL for patients with PsA, divided into treatment groups, showed no clear trend in clinically significant decrease or increase following anti-inflammatory treatment. NGAL concentrations in the PsA group at baseline corresponded to the levels in the control groups. No correlation was found between changes in NGAL and changes in PsA outcomes. CONCLUSION: Based on these results, serum NGAL does not add any value as a biomarker in patients with peripheral PsA, either for disease activity or for monitoring.


Asunto(s)
Artritis Psoriásica , Humanos , Lipocalina 2 , Estudios de Cohortes , Estudios Prospectivos , Artritis Psoriásica/tratamiento farmacológico , Estudios Transversales , Lipocalinas/uso terapéutico , Proteínas Proto-Oncogénicas/uso terapéutico , Proteínas de Fase Aguda , Biomarcadores , Antiinflamatorios/uso terapéutico
9.
Glycobiology ; 34(2)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38015986

RESUMEN

The unique viviparous Pacific Beetle cockroaches provide nutrition to their embryo by secreting milk proteins Lili-Mip, a lipid-binding glycoprotein that crystallises in-vivo. The resolved in-vivo crystal structure of variably glycosylated Lili-Mip shows a classical Lipocalin fold with an eight-stranded antiparallel beta-barrel enclosing a fatty acid. The availability of physiologically unaltered glycoprotein structure makes Lili-Mip a very attractive model system to investigate the role of glycans on protein structure, dynamics, and function. Towards that end, we have employed all-atom molecular dynamics simulations on various glycosylated stages of a bound and free Lili-Mip protein and characterised the impact of glycans and the bound lipid on the dynamics of this glycoconjugate. Our work provides important molecular-level mechanistic insights into the role of glycans in the nutrient storage function of the Lili-Mip protein. Our analyses show that the glycans stabilise spatially proximal residues and regulate the low amplitude opening motions of the residues at the entrance of the binding pocket. Glycans also preserve the native orientation and conformational flexibility of the ligand. However, we find that either deglycosylation or glycosylation with high-mannose and paucimannose on the core glycans, which better mimic the natural insect glycosylation state, significantly affects the conformation and dynamics. A simple but effective distance- and correlation-based network analysis of the protein also reveals the key residues regulating the barrel's architecture and ligand binding characteristics in response to glycosylation.


Asunto(s)
Glicoproteínas , Lipocalinas , Lipocalinas/química , Lipocalinas/metabolismo , Ligandos , Glicoproteínas/metabolismo , Polisacáridos/química , Lípidos , Unión Proteica
10.
Blood Purif ; 53(4): 316-324, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37992697

RESUMEN

INTRODUCTION: The present study aimed to monitor peritoneal neutrophil gelatinase-associated lipocalin (pNGAL) during peritonitis episodes and to enhance its diagnostic value by evaluating pNGAL at scheduled times in parallel with white blood cell (WBC) count. In addition, we investigated possible correlations between pNGAL and the etiology of peritonitis, evaluating it as a possible marker of the clinical outcome. METHODS: Twenty-two patients with peritoneal dialysis (PD)-related peritonitis were enrolled. Peritonitis was divided into Gram-positive, Gram-negative, polymicrobial, and sterile. WBC count and neutrophil gelatinase-associated lipocalin (NGAL) in PD effluent were measured at different times (days 0, 1, 5, 10, 15, and/or 20 and 10 days after antibiotic therapy discontinuation). NGAL was measured by standard quantitative laboratory-based immunoassay and by colorimetric NGAL dipstick (NGALds) (dipstick test). RESULTS: We found strong correlations between peritoneal WBC, laboratory-based NGAL, and NGALds values, both overall and separated at each time point. On day 1, we observed no significant difference in WBC, both NGALds (p = 0.3, 0.9, and 0.2) between Gram-positive, Gram-negative, polymicrobial, and sterile peritonitis. No significant difference has been found between de novo versus relapsing peritonitis for all markers (p > 0.05). We observed a parallel decrease of WBC and both NGAL in patients with favorable outcomes. WBC count and both pNGAL resulted higher in patients with negative outcomes (defined as relapsing peritonitis, peritonitis-associated catheter removal, peritonitis-associated hemodialysis transfer, peritonitis-associated death) at day 10 (p = 0.04, p = 0.03, and p = 0.05, respectively) and day 15 (p = 0.01, p = 0.04, and tendency for p = 0.005). There was a tendency toward higher levels of WBC and NGAL in patients with a negative outcome at day 5. No significant difference in all parameters was proven at day 1 (p = 0.3, p = 0.9, p = 0.2) between groups. CONCLUSION: This study confirms pNGAL as a valid and reliable biomarker for the diagnosis of PD-peritonitis and its monitoring. Its trend is parallel to WBC count during peritonitis episodes, in particular, patients with unfavorable outcomes.


Asunto(s)
Diálisis Peritoneal , Peritonitis , Humanos , Lipocalina 2 , Proteínas de Fase Aguda/metabolismo , Proteínas de Fase Aguda/uso terapéutico , Lipocalinas/metabolismo , Lipocalinas/uso terapéutico , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/uso terapéutico , Diálisis Peritoneal/efectos adversos , Peritonitis/diagnóstico , Peritonitis/etiología , Peritonitis/tratamiento farmacológico , Biomarcadores/metabolismo , Leucocitos/metabolismo
11.
Nephrol Dial Transplant ; 39(3): 483-495, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37858309

RESUMEN

BACKGROUND: The objective of this study was to investigate the utility of neutrophil gelatinase-associated lipocalin (NGAL) and calprotectin (CPT) to predict long-term graft survival in stable kidney transplant recipients (KTR). METHODS: A total of 709 stable outpatient KTR were enrolled >2 months post-transplant. The utility of plasma and urinary NGAL (pNGAL, uNGAL) and plasma and urinary CPT at enrollment to predict death-censored graft loss was evaluated during a 58-month follow-up. RESULTS: Among biomarkers, pNGAL showed the best predictive ability for graft loss and was the only biomarker with an area under the curve (AUC) > 0.7 for graft loss within 5 years. Patients with graft loss within 5 years (n = 49) had a median pNGAL of 304 [interquartile range (IQR) 235-358] versus 182 (IQR 128-246) ng/mL with surviving grafts (P < .001). Time-dependent receiver operating characteristic analyses at 58 months indicated an AUC for pNGAL of 0.795, serum creatinine-based Chronic Kidney Disease Epidemiology Collaboration estimated glomerular filtration rate (eGFR) had an AUC of 0.866. pNGAL added to a model based on conventional risk factors for graft loss with death as competing risk (age, transplant age, presence of donor-specific antibodies, presence of proteinuria, history of delayed graft function) had a strong independent association with graft loss {subdistribution hazard ratio (sHR) for binary log-transformed pNGAL [log2(pNGAL)] 3.4, 95% confidence interval (CI) 2.24-5.15, P < .0001}. This association was substantially attenuated when eGFR was added to the model [sHR for log2(pNGAL) 1.63, 95% CI 0.92-2.88, P = .095]. Category-free net reclassification improvement of a risk model including log2(pNGAL) in addition to conventional risk factors and eGFR was 54.3% (95% CI 9.2%-99.3%) but C-statistic did not improve significantly. CONCLUSIONS: pNGAL was an independent predictor of renal allograft loss in stable KTR from one transplant center but did not show consistent added value when compared with baseline predictors including the conventional marker eGFR. Future studies in larger cohorts are warranted.


Asunto(s)
Trasplante de Riñón , Humanos , Proteínas de Fase Aguda , Aloinjertos , Biomarcadores , Lipocalina 2 , Lipocalinas , Proteínas Proto-Oncogénicas
12.
Biochim Biophys Acta Gen Subj ; 1868(2): 130540, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103756

RESUMEN

Arabidopsis thaliana temperature-induced lipocalin (AtTIL) is a prototypical member of plant lipocalins and participates in a variety of cellular processes, particularly stress responses. Bioinformatical and physiological studies have proposed its promiscuous ligand-binding ability, but the molecular basis is yet unclear. Here, we report the 1.9-Šcrystal structure of AtTIL in complex with heme. Spectrophotometric absorbance titration with heme yields a dissociation constant of ∼2 micromolar, indicating the relatively weak interaction between AtTIL and heme, which is confirmed by the AtTIL-heme structure. Although binding to retinal or biliverdin is not detected, such possibility can not be precluded as suggested by comparison with other lipocalin structures. These results show that AtTIL is a structural and functional homolog of the bacterial lipocalin Blc.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Hemo/metabolismo , Lipocalinas , Temperatura
13.
J Diabetes Complications ; 37(12): 108635, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37989066

RESUMEN

INTRODUCTION: This study aimed to investigate circulating biomarkers associated with the risk of developing diabetic peripheral neuropathy (DPN) and nephropathy in type 1 diabetes (T1D). MATERIALS AND METHODS: Patients with childhood-onset T1D (n = 49, age 38.3 ± 3.8 yrs.) followed prospectively were evaluated after 30 years of diabetes duration. DPN was defined as an abnormality in nerve conduction tests. Matrix metalloproteinase-9 (MMP-9) and its tissue inhibitor TIMP-1, neutrophil gelatinase-associated lipocalin-2 (NGAL), soluble P-selectin (sP-selectin), estimated GFR (eGFR), micro/macroalbuminuria and routine biochemistry were assessed. For comparison, control subjects were included (n = 30, age 37.9 ± 5.5 yrs.). RESULTS: In all, twenty-five patients (51 %) were diagnosed with DPN, and nine patients (18 %) had nephropathy (five microalbuminuria and four macroalbuminuria). Patients with DPN had higher levels of TIMP-1 (p = 0.036) and sP-selectin (p = 0.005) than controls. Patients with DPN also displayed higher levels of TIMP-1 compared to patients without DPN (p = 0.035). Patients with macroalbuminuria had kidney disease stage 3 with lower eGFR, higher levels of TIMP-1 (p = 0.038), and NGAL (p = 0.002). In all patients, we found only weak negative correlations between eGFR and TIMP-1 (rho = -0.304, p = 0.040) and NGAL (rho = -0.277, p = 0.062, ns), respectively. MMP-9 was higher in patients with microalbuminuria (p = 0.021) compared with normoalbuminuric patients. CONCLUSIONS: Our findings indicate that TIMP-1 and MMP-9, as well as sP-selectin and NGAL, are involved in microvascular complications in T1D. Monitoring and targeting these biomarkers may be a potential strategy for treating diabetic nephropathy and neuropathy.


Asunto(s)
Diabetes Mellitus Tipo 1 , Nefropatías Diabéticas , Humanos , Niño , Adulto , Lipocalina 2 , Diabetes Mellitus Tipo 1/complicaciones , Inhibidor Tisular de Metaloproteinasa-1 , Metaloproteinasa 9 de la Matriz , Estudios de Seguimiento , Proteínas de Fase Aguda , Lipocalinas , Proteínas Proto-Oncogénicas , Estudios Prospectivos , Biomarcadores , Nefropatías Diabéticas/diagnóstico , Selectinas
14.
Exp Mol Med ; 55(10): 2138-2146, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37779143

RESUMEN

Glial cell activation precedes neuronal cell death during brain aging and the progression of neurodegenerative diseases. Under neuroinflammatory stress conditions, lipocalin-2 (LCN2), also known as neutrophil gelatinase-associated lipocalin or 24p3, is produced and secreted by activated microglia and reactive astrocytes. Lcn2 expression levels are known to be increased in various cells, including reactive astrocytes, through the activation of the NF-κB signaling pathway. In the central nervous system, as LCN2 exerts neurotoxicity when secreted from reactive astrocytes, many researchers have attempted to identify various strategies to inhibit LCN2 production, secretion, and function to minimize neuroinflammation and neuronal cell death. These strategies include regulation at the transcriptional, posttranscriptional, and posttranslational levels, as well as blocking its functions using neutralizing antibodies or antagonists of its receptor. The suppression of NF-κB signaling is a strategy to inhibit LCN2 production, but it may also affect other cellular activities, raising questions about its effectiveness and feasibility. Recently, LCN2 was found to be a target of the autophagy‒lysosome pathway. Therefore, autophagy activation may be a promising therapeutic strategy to reduce the levels of secreted LCN2 and overcome neurodegenerative diseases. In this review, we focused on research progress on astrocyte-derived LCN2 in the central nervous system.


Asunto(s)
Lipocalinas , Enfermedades Neurodegenerativas , Humanos , Lipocalina 2/genética , Lipocalina 2/metabolismo , Lipocalinas/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Gliosis , FN-kappa B/metabolismo , Inflamación
15.
Physiol Plant ; 175(5): e13994, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882277

RESUMEN

Plant lipocalins perform diverse functions. Recently, allene oxide cyclase, a lipocalin family member, has been shown to co-express with vindoline pathway genes in Catharanthus roseus under various biotic/abiotic stresses. This brought focus to another family member, a temperature-induced lipocalin (CrTIL), which was selected for full-length cloning, tissue-specific expression profiling, in silico characterization, and upstream genomic region analysis for cis-regulatory elements. Stress-mediated variations in CrTIL expression were reflected as disturbances in cell membrane integrity, assayed through measurement of electrolyte leakage and lipid peroxidation product, MDA, which implicated the role of CrTIL in maintaining cell membrane integrity. For ascertaining the function of CrTIL in maintaining membrane stability and elucidating the relationship between CrTIL expression and vindoline content, if any, a direct approach was adopted, whereby CrTIL was transiently silenced and overexpressed in C. roseus. CrTIL silencing and overexpression confirmed its role in the maintenance of membrane integrity and indicated an inverse relationship of its expression with vindoline content. GFP fusion-based subcellular localization indicated membrane localization of CrTIL, which was in agreement with its role in maintaining membrane integrity. Altogether, the role of CrTIL in maintaining membrane structure has possible implications for the intracellular sequestration, storage, and viability of vindoline.


Asunto(s)
Catharanthus , Catharanthus/genética , Catharanthus/metabolismo , Temperatura , Vinblastina/química , Vinblastina/metabolismo , Lipocalinas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
16.
Biochemistry (Mosc) ; 88(9): 1232-1247, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37770391

RESUMEN

Extensive application of technologies like phage display in screening peptide and protein combinatorial libraries has not only facilitated creation of new recombinant antibodies but has also significantly enriched repertoire of the protein binders that have polypeptide scaffolds without homology to immunoglobulins. These innovative synthetic binding protein (SBP) platforms have grown in number and now encompass monobodies/adnectins, DARPins, lipocalins/anticalins, and a variety of miniproteins such as affibodies and knottins, among others. They serve as versatile modules for developing complex affinity tools that hold promise in both diagnostic and therapeutic settings. An optimal scaffold typically has low molecular weight, minimal immunogenicity, and demonstrates resistance against various challenging conditions, including proteolysis - making it potentially suitable for peroral administration. Retaining functionality under reducing intracellular milieu is also advantageous. However, paramount to its functionality is the scaffold's ability to tolerate mutations across numerous positions, allowing for the formation of a sufficiently large target binding region. This is achieved through the library construction, screening, and subsequent expression in an appropriate system. Scaffolds that exhibit high thermodynamic stability are especially coveted by the developers of new SBPs. These are steadily making their way into clinical settings, notably as antagonists of oncoproteins in signaling pathways. This review surveys the diverse landscape of SBPs, placing particular emphasis on the inhibitors targeting the oncoprotein KRAS, and highlights groundbreaking opportunities for SBPs in oncology.


Asunto(s)
Lipocalinas , Péptidos , Péptidos/química , Proteínas Recombinantes/química , Lipocalinas/química , Lipocalinas/uso terapéutico , Clonación Molecular , Biblioteca de Péptidos , Unión Proteica
17.
Neurosci Lett ; 815: 137497, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37748675

RESUMEN

Roles for lipocalin-2 (LCN2, also referred to as neutrophil gelatinase associated lipocalin, NGAL) in the progression of disease in multiple sclerosis and its animal models have been reported; however, the importance of astrocyte-derived LCN2, a major source of LCN2, have not been defined. We found that clinical scores in experimental autoimmune encephalomyelitis (EAE) were modestly delayed in mice with conditional knockout of LCN2 from astrocytes, associated with a small decrease in astrocyte GFAP expression. Immunostaining and qPCR of spinal cord samples showed decreased oligodendrocyte proteolipid protein and transcription factor Olig2 expression, but no changes in PDGFRα expression. These results suggest astrocyte LCN2 contributes to early events in EAE and reduces damage to mature oligodendrocytes at later times.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Lipocalina 2/genética , Lipocalina 2/metabolismo , Esclerosis Múltiple/metabolismo , Astrocitos/metabolismo , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Modelos Animales de Enfermedad , Oligodendroglía/metabolismo , ARN Mensajero/metabolismo , Ratones Endogámicos C57BL
18.
Transpl Immunol ; 81: 101934, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37739236

RESUMEN

BACKGROUND: The study aimed to find predictive biomarkers to evaluate donor kidney function to predict graft dysfunction as well as to assess an early signs of acute graft rejection. METHOD: Twenty-seven deceased donors and 54 recipients who underwent a successful kidney transplantation were enrolled in the study. An assessment was made in serum and urine from donors and recipients to measure the following biomarkers: neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), tissue inhibitor of metalloproteinase 2 (TIMP-2) and urinary N-acetyl-b-D-glucosaminidase (uNAG). These biomarkers were used to establish a model for predicting a reduced graft function (RGF) classified as either a delayed or slow graft function. RESULT: Our analysis suggest that out of four tested biomarkers, the serum TIMP-2 and uNAG levels of the donors had a predictive value for RGF; the area under the receiver operating characteristic curves (AUROC) of serum TIMP-2 and uNAG were 0.714 and 0.779, respectively. The combined best fitting prediction model of serum TIMP-2, uNAG, and creatinine levels was better in predicting RGF than the serum creatinine level alone. In addition, the recipient serum TIMP-2 level on the third day post-transplantation (D3) was associated with the estimated glomerular filtration rate (eGFR) on the seventh day post-transplantation (D7; OR 1.119, 95% CI 1.016-1.233, p = 0.022). Furthermore, the ROC curve value revealed that the AUROC of TIMP-2 on D3 was 0.99 (95% CI 0.97-1, p < 0.001), and this was the best predictive value of the renal function on D7. CONCLUSIONS: Donor serum TIMP-2 and uNAG levels are useful predictive biomarkers because they can provide the donor-based prediction for RGF.


Asunto(s)
Lesión Renal Aguda , Trasplante de Riñón , Humanos , Trasplante de Riñón/efectos adversos , Inhibidor Tisular de Metaloproteinasa-2 , Lipocalinas , Proteínas Proto-Oncogénicas , Proteínas de Fase Aguda , Funcionamiento Retardado del Injerto/diagnóstico , Estudios Prospectivos , Riñón , Biomarcadores , Rechazo de Injerto/diagnóstico
19.
J Immunol Methods ; 522: 113570, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37774777

RESUMEN

BACKGROUND: Human neutrophil lipocalin (HNL) is a marker of neutrophil activation and has a high efficacy in diagnosing bacterial infections. In this study, we applied the AlphaLISA technique to measure the serum level of HNL, evaluate HNL's efficacy in diagnosing septic shock, and identify any association between HNL level and septic patients' prognosis. METHODS: We collected 146 serum samples from the Fifth Medical Center of Chinese PLA General Hospital. HNL was measured by AlphaLISA and results were compared with commercial ELISA kits. We studied 78 patients admitted to the ICU with sepsis and data on their clinical and physiological characteristics were recorded. Blood levels of HNL, procalcitonin (PCT), high-sensitivity C-reactive protein (hs-CRP), and lactate were measured. A receiver operating characteristic (ROC) curve was used to evaluate the performance of each marker. RESULTS: The AlphaLISA assay for serum HNL had a detection range from 1.5 ng/mL to 1000 ng/mL, with a detection limit of 1 ng/mL and a detection time of approximately 25 min. The AlphaLISA assay's results were in high agreement with ELISA results (R2 = 0.9413). HNL levels were analyzed in sepsis patients, and HNL was significantly higher in sepsis patients with shock compared to sepsis patients without shock (median 356.47 ng/mL vs 158.93 ng/mL, P < 0.0001) and in the 28-day non-survivor group compared to the 28-day survivor group (median 331.83 ng/mL vs 175.17 ng/mL, P < 0.0001). ROC curve analysis was performed for the biomarkers. In differentiating the diagnosis of septic shock from sepsis patients, HNL was the most effective marker (AUC = 0.857), followed by PCT (AUC = 0.754) and hs-CRP (AUC = 0.627). In predicting the prognosis of septic patients, lactate had the best effect (AUC = 0.805), followed by HNL (AUC = 0.784), PCT (AUC = 0.721), and hs-CRP (AUC = 0.583). CONCLUSIONS: As an assessment tool, we found that our AlphaLISA had good consistency with an ELISA and had several other advantages, including requiring a shorter processing time and detecting a wider range of serum HNL concentrations. Monitoring serum HNL levels of patients admitted to the ICU might be useful in distinguishing sepsis patients who have septic shock from other sepsis patients, indicating its value in the prediction of sepsis patient prognosis.


Asunto(s)
Sepsis , Choque Séptico , Humanos , Choque Séptico/diagnóstico , Proteína C-Reactiva/análisis , Lipocalinas , Neutrófilos , Biomarcadores , Polipéptido alfa Relacionado con Calcitonina , Pronóstico , Ácido Láctico , Curva ROC
20.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 9): 231-239, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584182

RESUMEN

Using Anticalin technology, a lipocalin protein dubbed Colchicalin, with the ability to bind the toxic plant alkaloid colchicine with picomolar affinity, has previously been engineered, thus offering a potential antidote in vivo and also allowing its sensitive detection in biological samples. To further analyze the mode of ligand recognition, the crystal structure of Colchicalin is now reported in its unliganded form and is compared with the colchicine complex. A superposition of the protein structures revealed major rearrangements in the four structurally variable loops of the engineered lipocalin. Notably, the binding pocket in the unbound protein is largely occupied by the inward-bent loop #3, in particular Ile97, as well as by the phenylalanine side chain at position 71 in loop #2. Upon binding of colchicine, a dramatic shift of loop #3 by up to 11.1 Šoccurs, in combination with a side-chain flip of Phe71, thus liberating the necessary space within the ligand pocket. Interestingly, the proline residue at the neighboring position 72, which arose during the combinatorial engineering of Colchicalin, remained in a cis configuration in both structures. These findings provide a striking example of a conformational adaptation mechanism, which is a long-known phenomenon for antibodies in immunochemistry, during the recognition of a small ligand by an engineered lipocalin, thus illustrating the general similarity between the mode of antigen/ligand binding by immunoglobulins and lipocalins.


Asunto(s)
Colchicina , Lipocalinas , Lipocalinas/genética , Lipocalinas/química , Lipocalinas/metabolismo , Ingeniería de Proteínas , Ligandos , Cristalografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA