Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 631
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673873

RESUMEN

The lipocalin proteins are a large family of small extracellular proteins that demonstrate significant heterogeneity in sequence similarity and have highly conserved crystal structures. They have a variety of functions, including acting as carrier proteins, transporting retinol, participating in olfaction, and synthesizing prostaglandins. Importantly, they also play a critical role in human diseases, including cancer. Additionally, they are involved in regulating cellular homeostasis and immune response and dispensing various compounds. This comprehensive review provides information on the lipocalin family, including their structure, functions, and implications in various diseases. It focuses on selective important human lipocalin proteins, such as lipocalin 2 (LCN2), retinol binding protein 4 (RBP4), prostaglandin D2 synthase (PTGDS), and α1-microglobulin (A1M).


Asunto(s)
Oxidorreductasas Intramoleculares , Lipocalinas , Humanos , Lipocalinas/metabolismo , Lipocalinas/química , Lipocalinas/genética , Neoplasias/metabolismo , Relación Estructura-Actividad , Animales
2.
Neurosci Lett ; 815: 137497, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37748675

RESUMEN

Roles for lipocalin-2 (LCN2, also referred to as neutrophil gelatinase associated lipocalin, NGAL) in the progression of disease in multiple sclerosis and its animal models have been reported; however, the importance of astrocyte-derived LCN2, a major source of LCN2, have not been defined. We found that clinical scores in experimental autoimmune encephalomyelitis (EAE) were modestly delayed in mice with conditional knockout of LCN2 from astrocytes, associated with a small decrease in astrocyte GFAP expression. Immunostaining and qPCR of spinal cord samples showed decreased oligodendrocyte proteolipid protein and transcription factor Olig2 expression, but no changes in PDGFRα expression. These results suggest astrocyte LCN2 contributes to early events in EAE and reduces damage to mature oligodendrocytes at later times.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Lipocalina 2/genética , Lipocalina 2/metabolismo , Esclerosis Múltiple/metabolismo , Astrocitos/metabolismo , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Modelos Animales de Enfermedad , Oligodendroglía/metabolismo , ARN Mensajero/metabolismo , Ratones Endogámicos C57BL
3.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 9): 231-239, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584182

RESUMEN

Using Anticalin technology, a lipocalin protein dubbed Colchicalin, with the ability to bind the toxic plant alkaloid colchicine with picomolar affinity, has previously been engineered, thus offering a potential antidote in vivo and also allowing its sensitive detection in biological samples. To further analyze the mode of ligand recognition, the crystal structure of Colchicalin is now reported in its unliganded form and is compared with the colchicine complex. A superposition of the protein structures revealed major rearrangements in the four structurally variable loops of the engineered lipocalin. Notably, the binding pocket in the unbound protein is largely occupied by the inward-bent loop #3, in particular Ile97, as well as by the phenylalanine side chain at position 71 in loop #2. Upon binding of colchicine, a dramatic shift of loop #3 by up to 11.1 Šoccurs, in combination with a side-chain flip of Phe71, thus liberating the necessary space within the ligand pocket. Interestingly, the proline residue at the neighboring position 72, which arose during the combinatorial engineering of Colchicalin, remained in a cis configuration in both structures. These findings provide a striking example of a conformational adaptation mechanism, which is a long-known phenomenon for antibodies in immunochemistry, during the recognition of a small ligand by an engineered lipocalin, thus illustrating the general similarity between the mode of antigen/ligand binding by immunoglobulins and lipocalins.


Asunto(s)
Colchicina , Lipocalinas , Lipocalinas/genética , Lipocalinas/química , Lipocalinas/metabolismo , Ingeniería de Proteínas , Ligandos , Cristalografía por Rayos X
4.
Ticks Tick Borne Dis ; 14(6): 102209, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37327738

RESUMEN

Tick saliva helps blood feeding by its antihemostatic and immunomodulatory activities. Tick salivary gland transcriptomes (sialotranscriptomes) revealed thousands of transcripts coding for putative secreted polypeptides. Hundreds of these transcripts code for groups of similar proteins, constituting protein families, such as the lipocalins and metalloproteases. However, while many of these transcriptome-derived protein sequences matches sequences predicted by tick genome assemblies, the majority are not represented in these proteomes. The diversity of these transcriptome-derived transcripts could derive from artifacts generated during assembly of short Illumina reads or derive from polymorphisms of the genes coding for these proteins. To investigate this discrepancy, we collected salivary glands from blood-feeding ticks and, from the same homogenate, made and sequenced libraries following Illumina and PacBio protocols, with the assumption that the longer PacBio reads would reveal the sequences generated by the assembly of Illumina reads. Using both Rhipicephalus zambeziensis and Ixodes scapularis ticks, we have obtained more lipocalin transcripts from the Illumina library than the PacBio library. To verify whether these unique Illumina transcripts were real, we selected 9 uniquely Illumina-derived lipocalin transcripts from I. scapularis and attempted to obtain PCR products. These were obtained and their sequences confirmed the presence of these transcripts in the I. scapularis salivary homogenate. We further compared the predicted salivary lipocalins and metalloproteases from I. scapularis sialotranscriptomes with those found in the predicted proteomes of 3 publicly available genomes of I. scapularis. Results indicate that the discrepancy between the genome and transcriptome sequences for these salivary protein families is due to a high degree of polymorphism within these genes.


Asunto(s)
Ixodes , Rhipicephalus , Animales , Transcriptoma , Proteoma/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Glándulas Salivales , Rhipicephalus/genética , Ixodes/genética , Proteínas y Péptidos Salivales/genética
5.
Chembiochem ; 24(10): e202200795, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37005222

RESUMEN

The transferrin receptor (TfR) mediates transcytosis across the blood-brain barrier (BBB), which offers a promising approach for the non-invasive delivery of therapeutics into the brain parenchyma. Employing the recombinant homodimeric murine TfR ectodomain, prepared in a biochemically functional state, we have selected a cognate Anticalin via phage display and bacterial cell surface display from a random library based on the human lipocalin 2 (Lcn2). After affinity maturation, several engineered lipocalin variants were identified that bind murine TfR in a non-competitive manner with the natural ligand (transferrin ⋅ Fe3+ ), among those an Anticalin - dubbed FerryCalin - exhibiting a dissociation constant (KD ) of 3.8 nM. Epitope analysis using the SPOT technique revealed a sequential epitope in a surface region of TfR remote from the transferrin-binding site. Due to the fast kon rate and short complex half-life, as evidenced by real-time surface plasmon resonance (SPR) measurements, FerryCalin, or one of its related mutants, shows characteristics as a potential vehicle for the brain delivery of biopharmaceuticals.


Asunto(s)
Lipocalinas , Receptores de Transferrina , Ratones , Humanos , Animales , Lipocalinas/genética , Receptores de Transferrina/química , Receptores de Transferrina/metabolismo , Encéfalo/metabolismo , Transferrina/química , Transferrina/metabolismo , Epítopos
6.
Acta Biochim Biophys Sin (Shanghai) ; 55(2): 314-321, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36762499

RESUMEN

As the essential tissue for sperm maturation and storage, the epididymis secretes a number of tissue-specific proteins to exert its functions. Among these proteins, epididymal lipocalins have been intensively studied because of their epididymis-specific expression pattern and clustered genomic organization. In this study, rLcn13, a member of the rat epididymal lipocalin family, is identified and elaborately characterized. The cDNA sequence of rLcn13 consists of 719 nucleotides and encodes a 176 amino-acid protein with a predicted N-terminal signal peptide of 19 amino acids. rLcn13 shares a similar genomic structure and predicted 3D protein structure with other lipocalin family members. A recombinant rLCN13 mature peptide of 157 amino acids is expressed and purified, which is used to raise a polyclonal antibody against rLCN13 with high specificity and sensitivity. Northern blot, western blot, and immunohistochemistry assays reveal that rLcn13 is an epididymis-specific gene which is expressed predominantly in the initial segment and proximal caput epididymis and influenced by androgen. The rLCN13 protein is modified by N-glycosylation and secreted into the epididymal lumen, and then binds to the acrosome region of the sperm. Our data demonstrate that rLcn13 exhibits a specific temporospatial expression pattern and androgen dependence, indicating its potential roles in sperm maturation.


Asunto(s)
Andrógenos , Lipocalinas , Ratas , Masculino , Animales , Secuencia de Aminoácidos , Lipocalinas/genética , Lipocalinas/metabolismo , Andrógenos/metabolismo , Epidídimo , Semen/metabolismo , Espermatozoides/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Autophagy ; 19(8): 2296-2317, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36781380

RESUMEN

LCN2/neutrophil gelatinase-associated lipocalin/24p3 (lipocalin 2) is a secretory protein that acts as a mammalian bacteriostatic molecule. Under neuroinflammatory stress conditions, LCN2 is produced and secreted by activated microglia and reactive astrocytes, resulting in neuronal apoptosis. However, it remains largely unknown whether inflammatory stress and neuronal loss can be minimized by modulating LCN2 production and secretion. Here, we first demonstrated that LCN2 was secreted from reactive astrocytes, which were stimulated by treatment with lipopolysaccharide (LPS) as an inflammatory stressor. Notably, we found two effective conditions that led to the reduction of induced LCN2 levels in reactive astrocytes: proteasome inhibition and macroautophagic/autophagic flux activation. Mechanistically, proteasome inhibition suppresses NFKB/NF-κB activation through NFKBIA/IκBα stabilization in primary astrocytes, even under inflammatory stress conditions, resulting in the downregulation of Lcn2 expression. In contrast, autophagic flux activation via MTOR inhibition reduced the intracellular levels of LCN2 through its pre-secretory degradation. In addition, we demonstrated that the N-terminal signal peptide of LCN2 is critical for its secretion and degradation, suggesting that these two pathways may be mechanistically coupled. Finally, we observed that LPS-induced and secreted LCN2 levels were reduced in the astrocyte-cultured medium under the above-mentioned conditions, resulting in increased neuronal viability, even under inflammatory stress.Abbreviations: ACM, astrocyte-conditioned medium; ALP, autophagy-lysosome pathway; BAF, bafilomycin A1; BTZ, bortezomib; CHX, cycloheximide; CNS, central nervous system; ER, endoplasmic reticulum; GFAP, glial fibrillary acidic protein; GFP, green fluorescent protein; JAK, Janus kinase; KD, knockdown; LCN2, lipocalin 2; LPS, lipopolysaccharide; MACS, magnetic-activated cell sorting; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; MTOR, mechanistic target of rapamycin kinase; NFKB/NF-κB, nuclear factor of kappa light polypeptide gene enhancer in B cells 1, p105; NFKBIA/IκBα, nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha; OVEX, overexpression; SLC22A17, solute carrier family 22 member 17; SP, signal peptide; SQSTM1, sequestosome 1; STAT3, signal transducer and activator of transcription 3; TNF/TNF-α, tumor necrosis factor; TUBA, tubulin, alpha; TUBB3/ß3-TUB, tubulin, beta 3 class III; UB, ubiquitin; UPS, ubiquitin-proteasome system.


Asunto(s)
Lipocalinas , FN-kappa B , Animales , Lipocalinas/genética , Lipocalinas/metabolismo , Lipocalinas/farmacología , Lipocalina 2/metabolismo , Lipocalina 2/farmacología , FN-kappa B/metabolismo , Astrocitos/metabolismo , Tubulina (Proteína)/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Inhibidor NF-kappaB alfa/farmacología , Lipopolisacáridos/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Autofagia , Sistema Nervioso Central/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Mamíferos/metabolismo
8.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36674705

RESUMEN

Exposure to the Mus m 1 aeroallergen is a significant risk factor for laboratory animal allergy. This allergen, primarily expressed in mouse urine where it is characterized by a marked and dynamic polymorphism, is also present in epithelium and dander. Considering the relevance of sequence/structure assessment in protein antigenic reactivity, we compared the sequence of the variant Mus m 1.0102 to other members of the Mus m 1 allergen, and used Discotope 2.0 to predict conformational epitopes based on its 3D-structure. Conventional diagnosis of mouse allergy is based on serum IgE testing, using an epithelial extract as the antigen source. Given the heterogeneous and variable composition of extracts, we developed an indirect ELISA assay based on the recombinant component Mus m 1.0102. The assay performed with adequate precision and reasonable diagnostic accuracy (AUC = 0.87) compared to a routine clinical diagnostic test that exploits the native allergen. Recombinant Mus m 1.0102 turned out to be a valuable tool to study the fine epitope mapping of specific IgE reactivity to the major allergen responsible for mouse allergy. We believe that advancing in its functional characterization will lead to the standardization of murine lipocalins and to the development of allergen-specific immunotherapy.


Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Animales , Ratones , Lipocalinas/genética , Ensayo de Inmunoadsorción Enzimática , Inmunoglobulina E , Proteínas Recombinantes/genética
9.
J Exp Med ; 220(3)2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36547668

RESUMEN

Androgen deprivation therapy (ADT) is a systemic therapy for advanced prostate cancer (PCa); although most patients initially respond to ADT, almost all cancers eventually develop castration-resistant PCa (CRPC). Currently, most research focuses on castration-resistant tumors, and the role of tumors in remission is almost completely ignored. Here, we report that odorant-binding protein (OBP2A) released from tumors in remission during ADT catches survival factors, such as CXCL15/IL8, to promote PCa cell androgen-independent growth and enhance the infiltration of myeloid-derived suppressor cells (MDSCs) into tumor microenvironment, leading to the emergence of castration resistance. OBP2A knockdown significantly inhibits CRPC and metastatic CRPC development and improves therapeutic efficacy of CTLA-4/PD-1 antibodies. Treatment with OBP2A-binding ligand α-pinene interrupts the function of OBP2A and suppresses CRPC development. Furthermore, α-pinene-conjugated doxorubicin/docetaxel can be specifically delivered to tumors, resulting in improved anticancer efficacy. Thus, our studies establish a novel concept for the emergence of PCa castration resistance and provide new therapeutic strategies for advanced PCa.


Asunto(s)
Antagonistas de Andrógenos , Andrógenos , Monoterpenos Bicíclicos , Resistencia a Antineoplásicos , Lipocalinas , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino , Antagonistas de Andrógenos/uso terapéutico , Andrógenos/deficiencia , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos , Microambiente Tumoral , Monoterpenos Bicíclicos/uso terapéutico , Lipocalinas/genética , Lipocalinas/metabolismo , Línea Celular Tumoral , Animales , Ratones , Anticuerpos/uso terapéutico , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
10.
Gene ; 854: 147093, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36476662

RESUMEN

Black rockfish (Sebastes schlegelii) and its relatives are viviparous marine fish. Males produce urinary proteins during the copulation season; however, the identity of these proteins was unknown. In this study, we focused on high-molecular-weight urinary proteins (HMWups) in male black rockfish. The HMWups were identified by liquid chromatography and tandem mass spectrometry (LC-MS/MS) of urine. In silico analyses of RNA-seq data predicted the tissue distribution of candidate HMWup transcripts and their gene structures. Candidate cDNAs were cloned and a recombinant protein of a major candidate was prepared. Western blotting of urine using an antiserum against the recombinant protein was performed to reconfirm the LC-MS/MS results. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry were employed to validate the prediction by RNA-seq and identify the cells producing HMWups, respectively. LC-MS/MS, in conjunction with Western blotting and cDNA cloning, identified the HMWups as lipocalin-type prostaglandin D2 synthase (l-PGDS) homologs. RNA-seq analyses and qRT-PCR revealed that the l-PGDS homolog transcripts were dominantly expressed in the testis and male kidney; Sertoli cells and epithelial cells in the renal tubules were immunoreactive. These results indicated that major protein components in the urine of male black rockfish are l-PGDS homologs, potentially produced by the renal tubules in the kidney. Male rockfish (genus Sebastes) are thought to release unknown pheromone substances during mating behavior. The knowledge and tools obtained in this study empower research into the role(s) of HMWups in pheromone systems underlying rockfish reproduction. No protein-type teleost pheromone has heretofore been discovered.


Asunto(s)
Lubina , Perciformes , Animales , Masculino , Cromatografía Liquida , Espectrometría de Masas en Tándem , Perciformes/genética , Proteínas Recombinantes , Lipocalinas/genética , Prostaglandinas
11.
Insect Sci ; 30(1): 15-30, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35343650

RESUMEN

Lipocalins exhibit functional diversity, including roles in retinol transport, invertebrate cryptic coloration, and stress response. However, genome-wide identification and characterization of lipocalin in the insect lineage have not been thoroughly explored. Here, we found that a lineage-specific expansion of the lipocalin genes in Lepidoptera occurred in large part due to tandem duplication events and several lipocalin genes involving insect coloration were expanded more via tandem duplication in butterflies. A comparative analysis of conserved motifs showed both conservation and divergence of lepidopteran lipocalin family protein structures during evolution. We observe dynamic changes in tissue expression preference of paralogs in Bombyx mori, suggesting differential contribution of paralogs to specific organ functions during evolution. Subcellular localization experiments revealed that lipocalins localize to the cytoplasm, nuclear membrane, or nucleus in BmN cells. Moreover, several lipocalin genes exhibited divergent responses to abiotic and biotic stresses, and 1 lipocalin gene was upregulated by 300 fold in B. mori. These results suggest that lipocalins act as signaling components in defense responses by mediating crosstalk between abiotic and biotic stress responses. This study deepens our understanding of the comprehensive characteristics of lipocalins in insects.


Asunto(s)
Bombyx , Mariposas Diurnas , Lepidópteros , Animales , Lepidópteros/genética , Bombyx/genética , Mariposas Diurnas/genética , Lipocalinas/genética , Genoma de los Insectos , Familia de Multigenes , Filogenia
12.
Vet Res ; 53(1): 98, 2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36435808

RESUMEN

Dairy cows often develop different degrees of endometritis after calving and this is attributed to pathogenic bacterial infections such as by Escherichia coli and Staphylococcus aureus. Infection of the bovine endometrium causes tissue damage and increases the expression of prostaglandin D2 (PGD2), which exerts anti-inflammatory effects on lung inflammation. However, the roles of PGD2 and its DP1 receptor in endometritis in cows remain unclear. Here, we examined the anti-inflammatory roles of the lipocalin-type prostaglandin D2 synthase (L-PGDS)/PGD2 and DP1 receptor regulatory pathways in bovine endometritis. We evaluated the regulatory effects of PGD2 on inflammation and tissue damage in E. coli- and S. aureus-infected bovine endometrial cells cultured in vitro. We found that the secretion of pro-inflammatory cytokines interleukin (IL)-6, IL-1ß, and tumour necrosis factor (TNF)-α as well as expression of matrix metalloproteinase (MMP)-2, platelet-activating factor receptor (PAFR), and high mobility group box (HMGB)-1 were suppressed after DP1 receptor agonist treatment. In contrast, IL-6, IL-1ß, and TNF-α release and MMP-2, PAFR, and HMGB-1 expression levels were increased after treatment of bovine endometrial tissue with DP1 receptor antagonists. DP1-induced anti-inflammatory effects were dependent on cellular signal transduction. The L-PGDS/PGD2 pathway and DP1 receptor induced anti-inflammatory effects in bovine endometrium infected with S. aureus and E. coli by inhibiting the mitogen-activated protein kinase and nuclear factor-κB signalling pathways, thereby reducing tissue damage. Overall, our findings provide important insights into the pathophysiological roles of PGD2 in bovine endometritis and establish a theoretical basis for applying prostaglandins or non-steroidal anti-inflammatory drugs for treating endometrial inflammatory infertility in bovines.


Asunto(s)
Enfermedades de los Bovinos , Endometritis , Femenino , Bovinos , Animales , Endometritis/veterinaria , Escherichia coli/metabolismo , Staphylococcus aureus/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Prostaglandinas , Enfermedades de los Bovinos/tratamiento farmacológico , Enfermedades de los Bovinos/metabolismo
13.
Insect Biochem Mol Biol ; 146: 103797, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35640811

RESUMEN

The haematophagy process by arthropods has been one of the main targets of studies in the parasite-host interaction, and the kissing-bug Rhodnius prolixus, vector of the protozoan Trypanosoma cruzi, has been one of the main models for such studies. Still in the 1980s, it was identified that among the salivary proteins for disrupting vertebrate host homeostasis, lipocalins were among the most relevant proteins for this process. Since then, 30 lipocalins have been identified in the salivary glands of R. prolixus, that promotes vasodilatation, prevents inflammation, act as anticoagulants and inhibits platelet aggregation. The present work aims to identify new lipocalins from R. prolixus, combining transcriptome and genome data. Identified new genes were mapped and had their structure annotated. To infer an evolutionary relationship between lipocalins, and to support the predicted functions for each lipocalin, all amino acid sequences were used to construct phylogenetic trees. We identified a total of 29 new lipocalins, 3 new bioaminogenic-biding proteins (which act to inhibit platelet aggregation and vasodilation), 9 new inhibitors of platelet aggregation, 7 new apolipoproteins and 10 lipocalins with no putative function. In addition, we observed that several of the lipocalins are also expressed in different R. prolxius tissues, including gut, central nervous system, antennae, and reproductive organs. In addition to newly identified lipocalins and a mapping the new and old lipocalins in the genome of R. prolixus, our study also carried out a review on functional status and nomenclature of some of the already identified lipocalins. Our study reinforces that we are far from understanding the role of lipocalins in the physiology of R. prolixus, and that studies of this family are still of great relevance.


Asunto(s)
Enfermedad de Chagas , Rhodnius , Animales , Insectos Vectores/genética , Lipocalinas/genética , Filogenia , Rhodnius/química , Rhodnius/genética
14.
FASEB J ; 36(3): e22235, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35199864

RESUMEN

Matricellular proteins, a group of extracellular matrix (ECM) proteins, are key regulators of skin repair and their dysregulation impairs wound healing in diabetes. Tubulointerstitial nephritis antigen like 1 (TINAGL1) is a new member of matricellular protein family, and the understanding of its functional role is still relatively limited. In the current study, we detected the expression of TINAGL1 in diabetic skin wound tissues through RT-PCR, ELISA and Western blot analysis, investigated the contribution of TINAGL1 to wound healing through cutaneous administration of recombinant TINAGL1 protein, and characterized its regulation by hyperglycemia through RNA-seq and signal pathway inhibition assay. We showed that TINAGL1 expression has dynamic change and reaching a peak on day-9 after wound during the wound healing process in wild-type (WT) mice. Interestingly, decreased TINAGL1 expression is detected in skin tissues of diabetic patients and mice after wound. Then, we found that high glucose (HG), an important factor that impairs wound healing, reduces the expression of TINAGL1 in fibroblasts through JNK pathway. Notably, the histology analysis, Masson trichrome assay and IHC assay showed that exogenous TINAGL1 promotes wound healing in diabetic mice by accelerating the formation of granulation tissues. Our study provides evidence that TINAGL1 has an essential role in diabetic wound healing, and meanwhile, indicates that manipulation of TINAGL1 might be a possible therapeutic approach.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Lipocalinas/metabolismo , Proteínas de Neoplasias/metabolismo , Cicatrización de Heridas , Adulto , Animales , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Regulación hacia Abajo , Femenino , Glucosa/metabolismo , Humanos , Lipocalinas/genética , MAP Quinasa Quinasa 4/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Células 3T3 NIH , Proteínas de Neoplasias/genética
15.
Appl Biochem Biotechnol ; 194(6): 2565-2580, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35171466

RESUMEN

It is an urgent and difficult task to establish a simple and efficient method for identifying and isolating sperm cells from mixed stains in forensic science. In this project, we developed a DNA aptamer-based system for sperm separation and purification from mixed stain samples by targeting sperm surface proteins. Human lipocalin 6 (hLCN6) is an epididymal secreted protein that binds to the head and tail of sperm cells and associated with sperm maturation. Using systematic evolution of ligands by exponential enrichment (SELEX) technology, aptamers that bind with high affinity and specificity to hLCN6 were screened from a random single-stranded DNA (ssDNA) library using magnetic bead-bound hLCN6 as target. The enriched library was obtained after 15 SELEX rounds. Of hLCN6-binding aptamer variants, 19 were further classified into one of the four groups based on their N60 random sequence regions, wherein one representative from each group was characterized. Prediction analysis of the secondary structure suggested discrete features with typical loop and stem motifs. Binding capability of selected aptamers was investigated by quantitative PCR, and aptamer H2 was found to be the most specific aptamer to sperm cells. The dissociation constant (Kd) of H2 aptamer was calculated as 3.21 ± 0.75 nM. Furthermore, H2 aptamer-coupled magnetic beads can recognize and capture sperm cells, which establishes the foundation of an approach for rapidly isolating sperm cells from mixed stains based on nucleic acid-protein interaction.


Asunto(s)
Aptámeros de Nucleótidos , Aptámeros de Nucleótidos/química , ADN de Cadena Simple , Biblioteca de Genes , Humanos , Ligandos , Lipocalinas/genética , Lipocalinas/metabolismo , Masculino , Técnica SELEX de Producción de Aptámeros/métodos , Espermatozoides
16.
Int Arch Allergy Immunol ; 183(1): 93-104, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34515139

RESUMEN

BACKGROUND: Cow's milk allergy (CMA) is the most common IgE-mediated food allergy and Bos d 5 is the major allergen in cow's milk proteins. More than 60% of the patients with CMA are sensitized to this protein. METHODS AND RESULTS: A recombinant protein, encoded by a synthetic gene and consisting of reassembled Bos d 5 fragments, was expressed in E. coli strain BL21 (DE3) cells and purified to homogeneity. The B5M lacked relevant IgE-reactivity and allergenic activity compared with Bos d 5 in dot-blot and basophil activation assays. T-cell proliferation experiments demonstrated that B5M preserved the main T cell epitopes of Bos d 5. Immunization of rabbits with B5M induced protective IgG antibodies that blocked the binding of patients' IgE antibodies to the wild-type allergen and inhibited the degranulation of basophils induced by Bos d 5. CONCLUSION: Thus, we developed a new strategy, which was based on rational molecular reassembly for allergen-specific immunotherapy (AIT) of CMA and food allergy.


Asunto(s)
Alérgenos/inmunología , Lipocalinas/inmunología , Hipersensibilidad a la Leche/inmunología , Leche/efectos adversos , Vacunas/inmunología , Alérgenos/química , Alérgenos/genética , Animales , Especificidad de Anticuerpos/inmunología , Basófilos/inmunología , Basófilos/metabolismo , Bovinos , Epítopos de Linfocito T/inmunología , Humanos , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Inmunoterapia , Lipocalinas/química , Lipocalinas/genética , Hipersensibilidad a la Leche/prevención & control , Unión Proteica/inmunología , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Vacunas/administración & dosificación
17.
Biochimie ; 192: 22-29, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34534611

RESUMEN

Lipocalins are important carriers of preferentially hydrophobic molecules, but they can also bind other ligands, like highly polar siderophores or intact proteins. Consequently, they are involved in a variety of physiological processes in many species. Since lipocalins are mainly extracellular proteins, they have to interact with cell receptors to exert their biological effects. In contrast to the large number of lipocalins identified in the last years, the number of receptors known is still limited. Nevertheless, some novel findings concerning the molecules involved in cellular uptake or signaling effects of lipocalins have been made recently. This review presents a detailed overview of the receptors identified so far. The methods used for isolation or identification are described and structural as well as functional information on these proteins is presented essentially in chronological order of their initial discovery.


Asunto(s)
Lipocalinas , Receptores de Superficie Celular , Transducción de Señal/genética , Animales , Humanos , Lipocalinas/genética , Lipocalinas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
18.
Cell Death Differ ; 29(3): 642-656, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34743203

RESUMEN

Glycoprotein prostaglandin D2 synthase (PTGDS) is a member of the lipocalin superfamily and plays dual roles in prostaglandins metabolism and lipid transport. PTGDS has been involved in various cellular processes including the tumorigenesis of solid tumors, yet its role in carcinogenesis is contradictory and the significance of PTGDS in hematological malignancies is ill-defined. Here, we aimed to explore the expression and function of PTGDS in diffuse large B-cell lymphoma (DLBCL), especially the potential role of PTGDS inhibitor, AT56, in lymphoma therapy. Remarkable high expression of PTGDS was found in DLBCL, which was significantly correlated with poor prognosis. PTGDS overexpression and rhPTGDS were found to promote cell proliferation. Besides, in vitro and in vivo studies indicated that PTGDS knockdown and AT56 treatment exerted an anti-tumor effect by regulating cell viability, proliferation, apoptosis, cell cycle, and invasion, and enhanced the drug sensitivity to adriamycin and bendamustine through promoting DNA damage. Moreover, the co-immunoprecipitation-based mass spectrum identified the interaction between PTGDS and MYH9, which was found to promote DLBCL progression. PTGDS inhibition led to reduced expression of MYH9, and then declined activation of the Wnt-ß-catenin-STAT3 pathway through influencing the ubiquitination and degradation of GSK3-ß in DLBCL. The rescue experiment demonstrated that PTGDS exerted an oncogenic role through regulating MYH9 and then the Wnt-ß-catenin-STAT3 pathway. Based on point mutation of glycosylation sites, we confirmed the N-glycosylation of PTGDS in Asn51 and Asn78 and found that abnormal glycosylation of PTGDS resulted in its nuclear translocation, prolonged half-life, and enhanced cell proliferation. Collectively, our findings identified for the first time that glycoprotein PTGDS promoted tumorigenesis of DLBCL through MYH9-mediated regulation of Wnt-ß-catenin-STAT3 signaling, and highlighted the potential role of AT56 as a novel therapeutic strategy for DLBCL treatment.


Asunto(s)
Oxidorreductasas Intramoleculares/metabolismo , Linfoma de Células B Grandes Difuso , beta Catenina , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glucógeno Sintasa Quinasa 3/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Lipocalinas/genética , Lipocalinas/metabolismo , Lipocalinas/farmacología , Linfoma de Células B Grandes Difuso/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
19.
Int J Biol Macromol ; 193(Pt B): 1659-1668, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34742835

RESUMEN

The GOBP2 protein has a unique function in the yellow peach moth (Conogethes punctiferalis (Guenée)). Several general odorant-binding proteins (GOBPs) have been identified in various lepidopteran species, but the functional difference between GOBP1 and GOBP2 in recognition of host plant odorants is still unknown. The functions of GOBP1 and GOBP2 in the yellow peach moth were evaluated in this study by using the CRISPR-Cas9 system. The results revealed the importance of GOBP2 in the olfaction mechanism in the yellow peach moth. The perception of the GOBP1-knockout larvae toward feeding decreased but did not reach a significant level while knocking out the GOBP2 and GOBP1/2 genes resulted in huge differences. On the other hand, electroantennograms (EAGs) and wind tunnel tests showed that the sensitivity of GOBP2 knockout adults to odorants decreased more than that of GOBP1 knockout individuals. The results of STRING database text mining grabbed our attention in protein-protein interaction studies. In this research, we first proved the existence of physical interactions between GOBPs and chemosensory proteins (CSPs) through the surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) methods. Interestingly, GOBP1 and GOBP2 could not interact with each other, but they could interact with CSPs. The interaction results indicated that GOBP2 could physically interact with CSP15, CSP5, and OBP17, whereas GOBP1 could bind only with CSP5 and CSP10, and its association constant (ka) was also more substantial than that of GOBP1. These results strongly suggest the importance of the function of GOBP2 in the perception of host plant odorants by the yellow peach moth.


Asunto(s)
Proteínas de Insectos/metabolismo , Lipocalinas/metabolismo , Mariposas Nocturnas/metabolismo , Olfato/genética , Animales , Técnicas de Inactivación de Genes , Proteínas de Insectos/genética , Lipocalinas/genética , Mariposas Nocturnas/genética
20.
Prostaglandins Other Lipid Mediat ; 157: 106585, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34371198

RESUMEN

Adipose dysfunction is the primary defect in obesity that contributes to the development of dyslipidemia, insulin resistance, cardiovascular diseases, type 2 diabetes, non-alcoholic fatty liver disease (NAFLD) and some cancers. Previously, we demonstrated the development of NAFLD in lipocalin-type prostaglandin D2 synthase (L-PGDS) knockout mice regardless of diet. In the present study, we examined the role of L-PGDS in adipose in response to a high fat diet. We observed decreased expression of L-PGDS in adipose tissue and concomitant lower plasma levels in a dietary model of obesity as well as in insulin resistant 3T3-L1 adipocytes. We show reduced adiponectin expression and phosphorylation of AMPK in white adipose tissue of L-PGDS KO mice after 14 weeks on a high fat diet as compared to control C57BL/6 mice. We also observe an increased fat content in L-PGDS KO mice as demonstrated by adipocyte hypertrophy and increased expression of lipogenenic genes. We confirmed our in vivo findings in in vitro 3T3-L1 adipocytes, using an enzymatic inhibitor of L-PGDS (AT56). Rosiglitazone treatment drastically increased L-PGDS expression in insulin resistant 3T3-L1 adipocytes and increased adiponectin expression and AMPK phosphorylation in AT56 treated 3T3-L1 adipocytes. We conclude that the absence of L-PGDS has a deleterious effect on adipose tissue functioning, which further reduces insulin sensitivity in adipose tissue. Consequently, we propose L-PGDS appears to function as a potential member of the adipokine secretome involved in the regulation of the obesity-associated metabolic syndrome.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Células 3T3-L1 , Adipoquinas/metabolismo , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Oxidorreductasas Intramoleculares , Lipocalinas/genética , Lipocalinas/metabolismo , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA