Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.094
Filtrar
1.
Folia Neuropathol ; 62(1): 21-31, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741434

RESUMEN

Neuronal ceroid lipofuscinoses (NCLs) are a growing group of neurodegenerative storage diseases, in which specific features are sought to facilitate the creation of a universal diagnostic algorithm in the future. In our ultrastructural studies, the group of NCLs was represented by the CLN2 disease caused by a defect in the TPP1 gene encoding the enzyme tripeptidyl-peptidase 1. A 3.5-year-old girl was affected by this disease. Due to diagnostic difficulties, the spectrum of clinical, enzymatic, and genetic tests was extended to include analysis of the ultrastructure of cells from a rectal biopsy. The aim of our research was to search for pathognomonic features of CLN2 and to analyse the mitochondrial damage accompanying the disease. In the examined cells of the rectal mucosa, as expected, filamentous deposits of the curvilinear profile (CVP) type were found, which dominated quantitatively. Mixed deposits of the CVP/fingerprint profile (FPP) type were observed less frequently in the examined cells. A form of inclusions of unknown origin, not described so far in CLN2 disease, were wads of osmophilic material (WOMs). They occurred alone or co-formed mixed deposits. In addition, atypically damaged mitochondria were observed in muscularis mucosae. Their deformed cristae had contact with inclusions that looked like CVPs. Considering the confirmed role of the c subunit of the mitochondrial ATP synthase in the formation of filamentous lipopigment deposits in the group of NCLs, we suggest the possible significance of other mitochondrial proteins, such as mitochondrial contact site and cristae organizing system (MICOS), in the formation of these deposits. The presence of WOMs in the context of searching for ultrastructural pathognomonic features in CLN2 disease also requires further research.


Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Cuerpos de Inclusión , Mitocondrias , Lipofuscinosis Ceroideas Neuronales , Tripeptidil Peptidasa 1 , Lipofuscinosis Ceroideas Neuronales/patología , Lipofuscinosis Ceroideas Neuronales/genética , Humanos , Femenino , Preescolar , Mitocondrias/patología , Mitocondrias/ultraestructura , Cuerpos de Inclusión/patología , Cuerpos de Inclusión/ultraestructura , Biopsia , Recto/patología , Serina Proteasas/genética , Aminopeptidasas/genética
2.
Arq Neuropsiquiatr ; 82(5): 1-8, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38763144

RESUMEN

BACKGROUND: Neuronal ceroid lipofuscinoses (NCL) are a group of autosomal recessive, inherited, lysosomal, and neurodegenerative diseases that causes progressive dementia, seizures, movement disorders, language delay/regression, progressive visual failure, and early death. Neuronal ceroid lipofuscinosis type 2 (CLN2), caused by biallelic pathogenic variants of the TPP1 gene, is the only NCL with an approved targeted therapy. The laboratory diagnosis of CLN2 is established through highly specific tests, leading to diagnostic delays and eventually hampering the provision of specific treatment for patients with CLN2. Epilepsy is a common and clinically-identifiable feature among NCLs, and seizure onset is the main driver for families to seek medical care. OBJECTIVE: To evaluate the results of the Latin America Epilepsy and Genetics Program, an epilepsy gene panel, as a comprehensive tool for the investigation of CLN2 among other genetic causes of epilepsy. METHODS: A total of 1,284 patients with epilepsy without a specific cause who had at least 1 symptom associated with CLN2 were screened for variants in 160 genes associated with epilepsy or metabolic disorders presenting with epilepsy through an epilepsy gene panel. RESULTS: Variants of the TPP1 gene were identified in 25 individuals (1.9%), 21 of them with 2 variants. The 2 most frequently reported variants were p.Arg208* and p.Asp276Val, and 2 novel variants were detected in the present study: p.Leu308Pro and c.89 + 3G > C Intron 2. CONCLUSION: The results suggest that these genetic panels can be very useful tools to confirm or exclude CLN2 diagnosis and, if confirmed, provide disease-specific treatment for the patients.


ANTECEDENTES: As lipofuscinoses ceroides neuronais (neuronal ceroid lipofuscinoses, NCLs, em inglês) são um grupo de doenças autossômicas recessivas, hereditárias, lisossomais e neurodegenerativas que causam demência progressiva, crises epiléticas, distúrbios de movimento, atraso/regressão da linguagem, deficiência visual progressiva e morte precoce. A lipofuscinose ceroide neuronal tipo 2 (neuronal ceroid lipofuscinosis type 2, CLN2, em inglês), causada por variantes patogênicas bialélicas do gene TPP1, é a única com terapia-alvo aprovada. O diagnóstico laboratorial é realizado por testes específicos, o que leva a atrasos diagnósticos e, consequentemente, prejudica a disponibilização de tratamento. A epilepsia é uma característica comum e clinicamente identificável entre as NCLs, e o início das convulsões é o principal motivo para as famílias buscarem atendimento médico. OBJETIVO: Avaliar os resultados do Programa de Epilepsia e Genética da América Latina, um painel genético, como uma ferramenta abrangente para a investigação de CLN2 entre outras causas genéticas de epilepsia. MéTODOS: Um total de 1.284 pacientes com epilepsia sem uma causa específica e que tinham pelo menos 1 sintoma associado à CLN2 foram rastreados em busca de variantes em 160 genes associados à epilepsia ou a distúrbios metabólicos que apresentam epilepsia, por meio de um painel genético. RESULTADOS: Variantes do gene TPP1 foram identificadas em 25 indivíduos (1,9%), sendo que ; 21 apresentavam duas variantes. As duas variantes mais frequentes foram p.Arg208* e p.Asp276Val, e duas variantes novas foram detectadas neste: p.Leu308Pro e c.89 + 3G > C Intron 2. CONCLUSãO: Os resultados sugerem que os painéis genéticos de epilepsia podem ser uma ferramenta útil para confirmar ou excluir o diagnóstico de CLN2 e, se confirmado, fornecer tratamento específico para os pacientes.


Asunto(s)
Aminopeptidasas , Epilepsia , Lipofuscinosis Ceroideas Neuronales , Serina Proteasas , Tripeptidil Peptidasa 1 , Humanos , Lipofuscinosis Ceroideas Neuronales/genética , Femenino , Masculino , Epilepsia/genética , Aminopeptidasas/genética , Serina Proteasas/genética , Niño , Adolescente , Adulto , Adulto Joven , Preescolar , Proteínas de Unión a Telómeros/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Mutación , Pruebas Genéticas/métodos , Persona de Mediana Edad , Lactante
3.
Pediatr Neurol ; 155: 149-155, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653183

RESUMEN

BACKGROUND: Neuronal ceroid lipofuscinoses (NCLs) represent a heterogeneous group of inherited metabolic lysosomal disorders characterized by neurodegeneration. This study sought to describe the clinical and molecular characteristics of NCLs in Saudi Arabia and determine the most common types in that population. METHODS: A retrospective review of electronic medical records was conducted for 63 patients with NCL (55 families) from six tertiary and referral centers in Saudi Arabia between 2008 and 2022. Clinical, radiological, and neurophysiological data as well as genetic diagnoses were reviewed. RESULTS: CLN6 was the predominant type, accounting for 45% of cases in 25 families. The most common initial symptoms were speech delay (53%), cognitive decline (50%) and/or gait abnormalities (48%), and seizure (40%). Behavioral symptomatology was observed in 20%, whereas visual impairment was less frequently (9.3%) encountered. Diffuse cerebral and cerebellar atrophy was the predominant finding on brain magnetic resonance imaging. Electroencephalography generally revealed background slowing in all patients with generalized epileptiform discharges in 60%. The most common genotype detected was the p.Ser265del variant found in 36% (20 of 55 families). The most rapidly progressive subtypes were CLN2 and CLN6. Two patients with each died at age five years. The earliest age at which a patient was nonambulatory was two years in a patient with CLN14. CONCLUSIONS: This is the largest molecularly confirmed NCL cohort study from Saudi Arabia. Characterizing the natural history of specific NLC types can increase understanding of the underlying pathophysiology and distinctive genotype-phenotype characteristics, facilitating early diagnosis and treatment initiation as well as genetic counseling for families.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Tripeptidil Peptidasa 1 , Humanos , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Lipofuscinosis Ceroideas Neuronales/diagnóstico , Arabia Saudita , Masculino , Femenino , Niño , Preescolar , Estudios Retrospectivos , Adolescente , Proteínas de la Membrana/genética , Lactante , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Adulto Joven , Imagen por Resonancia Magnética
5.
Pediatr Neurol ; 154: 51-57, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531163

RESUMEN

BACKGROUND: Mutations in the CLN6 gene cause late infantile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disease of childhood onset. Clinically, individuals present with progressive motor and cognitive regression, ataxia, and early death. The aim of this study is to establish natural history data of individuals with classic, late-infantile-onset (age less than five years) CLN6 disease. METHODS: We analyzed the natural history of 25 patients with late-infantile-onset CLN6, utilizing the Hamburg motor-language scale to measure disease progression. The key outcomes were CLN6 disease progression, assessed by rate of decline in motor and language clinical domain summary scores (0 to 6 total points); onset and type of first symptom; onset of first seizure; and time from first symptom to complete loss of function. RESULTS: Median age of total motor and language onset of decline was 42 months (interquartile range 36 to 48). The estimated rate of decline in total score was at a slope of -1.20 (S.D. 0.30) per year, after the start of decline. Complete loss of both motor and language function was found to be, on average, 88.1 months (S.D. 13.5). CONCLUSIONS: To our knowledge, this is the largest international study that monitors the longitudinal natural history and progression of CLN6 disease. These data may serve as a template for future interventional trials targeted to slow the progression of this devastating disease.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Humanos , Preescolar , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/diagnóstico , Proteínas de la Membrana/genética , Mutación/genética , Convulsiones , Progresión de la Enfermedad
6.
Mol Cell ; 84(7): 1354-1364.e9, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38447580

RESUMEN

Batten disease, the most prevalent form of neurodegeneration in children, is caused by mutations in the CLN3 gene, which encodes a lysosomal transmembrane protein. CLN3 loss leads to significant accumulation of glycerophosphodiesters (GPDs), the end products of glycerophospholipid catabolism in the lysosome. Despite GPD storage being robustly observed upon CLN3 loss, the role of GPDs in neuropathology remains unclear. Here, we demonstrate that GPDs act as potent inhibitors of glycerophospholipid catabolism in the lysosome using human cell lines and mouse models. Mechanistically, GPDs bind and competitively inhibit the lysosomal phospholipases PLA2G15 and PLBD2, which we establish to possess phospholipase B activity. GPDs effectively inhibit the rate-limiting lysophospholipase activity of these phospholipases. Consistently, lysosomes of CLN3-deficient cells and tissues accumulate toxic lysophospholipids. Our work establishes that the storage material in Batten disease directly disrupts lysosomal lipid homeostasis, suggesting GPD clearance as a potential therapeutic approach to this fatal disease.


Asunto(s)
Glicoproteínas de Membrana , Lipofuscinosis Ceroideas Neuronales , Ratones , Animales , Niño , Humanos , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Lipofuscinosis Ceroideas Neuronales/patología , Lisosomas/metabolismo , Fosfolipasas/metabolismo , Glicerofosfolípidos/metabolismo , Fosfolípidos/metabolismo
7.
Orphanet J Rare Dis ; 19(1): 125, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500130

RESUMEN

BACKGROUND: CLN3 disease (also known as CLN3 Batten disease or Juvenile Neuronal Ceroid Lipofuscinosis) is a rare pediatric neurodegenerative disorder caused by biallelic mutations in CLN3. While extensive efforts have been undertaken to understand CLN3 disease etiology, pathology, and clinical progression, little is known about the impact of CLN3 disease on parents and caregivers. Here, we investigated CLN3 disease progression, clinical care, and family experiences using semi-structured interviews with 39 parents of individuals with CLN3 disease. Analysis included response categorization by independent observers and quantitative methods. RESULTS: Parents reported patterns of disease progression that aligned with previous reports. Insomnia and thought- and mood-related concerns were reported frequently. "Decline in visual acuity" was the first sign/symptom noticed by n = 28 parents (70%). A minority of parents reported "behavioral issues" (n = 5, 12.5%), "communication issues" (n = 3, 7.5%), "cognitive decline" (n = 1, 2.5%), or "seizures" (n = 1, 2.5%) as the first sign/symptom. The mean time from the first signs or symptoms to a diagnosis of CLN3 disease was 2.8 years (SD = 4.1). Misdiagnosis was common, being reported by n = 24 participants (55.8%). Diagnostic tests and treatments were closely aligned with observed symptoms. Desires for improved or stabilized vision (top therapeutic treatment concern for n = 14, 32.6%), cognition (n = 8, 18.6%), and mobility (n = 3, 7%) dominated parental concerns and wishes for therapeutic correction. Family impacts were common, with n = 34 (81%) of respondents reporting a financial impact on the family and n = 20 (46.5%) reporting marital strain related to the disease. CONCLUSIONS: Collectively, responses demonstrated clear patterns of disease progression, a strong desire for therapies to treat symptoms related to vision and cognition, and a powerful family impact driven by the unrelenting nature of disease progression.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Humanos , Niño , Lipofuscinosis Ceroideas Neuronales/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/uso terapéutico , Glicoproteínas de Membrana/genética , Padres , Progresión de la Enfermedad , Encuestas y Cuestionarios
8.
J Vet Diagn Invest ; 36(3): 438-446, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38516801

RESUMEN

Thirteen American Hereford cattle were reported blind with presumed onset when ~12-mo-old. All blind cattle shared a common ancestor through both the maternal and paternal pedigrees, suggesting a recessive genetic origin. Given the pedigree relationships and novel phenotype, we characterized the ophthalmo-pathologic changes associated with blindness and identified the responsible gene variant. Ophthalmologic examinations of 5 blind cattle revealed retinal degeneration. Histologically, 2 blind cattle had loss of the retinal photoreceptor layer. Whole-genome sequencing (WGS) of 7 blind cattle and 9 unaffected relatives revealed a 1-bp frameshift deletion in ceroid lipofuscinosis neuronal 3 (CLN3; chr25 g.26043843del) for which the blind cattle were homozygous and their parents heterozygous. The identified variant in exon 16 of 17 is predicted to truncate the encoded protein (p. Pro369Argfs*8) battenin, which is involved in lysosomal function necessary for photoreceptor layer maintenance. Of 462 cattle genotyped, only blind cattle were homozygous for the deletion. A query of WGS data of > 5,800 animals further revealed that the variant was only observed in related Hereford cattle. Mutations in CLN3 are associated with human juvenile neuronal ceroid lipofuscinosis (JNCL), or Batten disease, which results in early-onset retinal degeneration and lesions similar to those observed in our cases. Our data support the frameshift variant of CLN3 as causative of blindness in these Hereford cattle, and provide additional evidence of the role of this gene in retinal lesions, possibly as a model for human non-syndromic JNCL.


Asunto(s)
Enfermedades de los Bovinos , Degeneración Retiniana , Animales , Bovinos , Degeneración Retiniana/veterinaria , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Enfermedades de los Bovinos/genética , Enfermedades de los Bovinos/patología , Femenino , Linaje , Masculino , Glicoproteínas de Membrana/genética , Lipofuscinosis Ceroideas Neuronales/veterinaria , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Chaperonas Moleculares/genética , Mutación del Sistema de Lectura
9.
Life Sci Alliance ; 7(3)2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38195117

RESUMEN

Juvenile neuronal ceroid lipofuscinosis (or Batten disease) is an autosomal recessive, rare neurodegenerative disorder that affects mainly children above the age of 5 yr and is most commonly caused by mutations in the highly conserved CLN3 gene. Here, we generated cln3 morphants and stable mutant lines in zebrafish. Although neither morphant nor mutant cln3 larvae showed any obvious developmental or morphological defects, behavioral phenotyping of the mutant larvae revealed hyposensitivity to abrupt light changes and hypersensitivity to pro-convulsive drugs. Importantly, in-depth metabolomics and lipidomics analyses revealed significant accumulation of several glycerophosphodiesters (GPDs) and cholesteryl esters, and a global decrease in bis(monoacylglycero)phosphate species, two of which (GPDs and bis(monoacylglycero)phosphates) were previously proposed as potential biomarkers for CLN3 disease based on independent studies in other organisms. We could also demonstrate GPD accumulation in human-induced pluripotent stem cell-derived cerebral organoids carrying a pathogenic variant for CLN3 Our models revealed that GPDs accumulate at very early stages of life in the absence of functional CLN3 and highlight glycerophosphoinositol and BMP as promising biomarker candidates for pre-symptomatic CLN3 disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Lipofuscinosis Ceroideas Neuronales , Animales , Humanos , Ésteres del Colesterol , Glicoproteínas de Membrana/genética , Metabolómica , Chaperonas Moleculares , Lipofuscinosis Ceroideas Neuronales/genética , Pez Cebra/genética
10.
Traffic ; 25(1): e12925, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38272448

RESUMEN

Ceroid lipofuscinosis neuronal 5 (CLN5) and cathepsin D (CTSD) are soluble lysosomal enzymes that also localize extracellularly. In humans, homozygous mutations in CLN5 and CTSD cause CLN5 disease and CLN10 disease, respectively, which are two subtypes of neuronal ceroid lipofuscinosis (commonly known as Batten disease). The mechanisms regulating the intracellular trafficking of CLN5 and CTSD and their release from cells are not well understood. Here, we used the social amoeba Dictyostelium discoideum as a model system to examine the pathways and cellular components that regulate the intracellular trafficking and release of the D. discoideum homologs of human CLN5 (Cln5) and CTSD (CtsD). We show that both Cln5 and CtsD contain signal peptides for secretion that facilitate their release from cells. Like Cln5, extracellular CtsD is glycosylated. In addition, Cln5 release is regulated by the amount of extracellular CtsD. Autophagy induction promotes the release of Cln5, and to a lesser extent CtsD. Release of Cln5 requires the autophagy proteins Atg1, Atg5, and Atg9, as well as autophagosomal-lysosomal fusion. Atg1 and Atg5 are required for the release of CtsD. Together, these data support a model where Cln5 and CtsD are actively released from cells via their signal peptides for secretion and pathways linked to autophagy. The release of Cln5 and CtsD from cells also requires microfilaments and the D. discoideum homologs of human AP-3 complex mu subunit, the lysosomal-trafficking regulator LYST, mucopilin-1, and the Wiskott-Aldrich syndrome-associated protein WASH, which all regulate lysosomal exocytosis in this model organism. These findings suggest that lysosomal exocytosis also facilitates the release of Cln5 and CtsD from cells. In addition, we report the roles of ABC transporters, microtubules, osmotic stress, and the putative D. discoideum homologs of human sortilin and cation-independent mannose-6-phosphate receptor in regulating the intracellular/extracellular distribution of Cln5 and CtsD. In total, this study identifies the cellular mechanisms regulating the release of Cln5 and CtsD from D. discoideum cells and provides insight into how altered trafficking of CLN5 and CTSD causes disease in humans.


Asunto(s)
Dictyostelium , Lipofuscinosis Ceroideas Neuronales , Humanos , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Catepsina D/metabolismo , Dictyostelium/metabolismo , Señales de Clasificación de Proteína , Proteínas de Membrana de los Lisosomas/genética
11.
Metab Brain Dis ; 39(4): 545-558, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38185715

RESUMEN

Neuronal ceroid-lipofuscinosis (NCLs) are a group of severe neurodegenerative conditions, most likely present in infantile, late infantile, juvenile, and adult-onset forms. Their phenotypic characteristics comprise eyesight damage, reduced motor activity and cognitive function, and sometimes tend to die in the initial stage. In recent studies, NCLs have been categorized into at least 14 genetic collections (CLN1-14). CLN2 gene encodes Tripeptidyl peptidase 1 (TPP1), which affects late infantile-onset form. In this study, we retrieved a mutational dataset screening for TPP1 protein from various databases (ClinVar, UniProt, HGMD). Fifty-six missense mutants were enumerated with computational methods to perceive the significant mutants (G475R and G501C) and correlated with clinical and literature data. A structure-based screening method was initiated to understand protein-ligand interaction and dynamic simulation. The docking procedure was performed for the native (3EDY) and mutant (G473R and G501C) structures with Gemfibrozil (gem), which lowers the lipid level, decreases the triglycerides amount in the blood circulation, and controls hyperlipidemia. The Native had an interaction score of -5.57 kcal/mol, and the mutants had respective average binding scores of -6.24 (G473R) and - 5.17 (G501C) kcal/mol. Finally, molecular dynamics simulation showed that G473R and G501C mutants had better flexible and stable orientation in all trajectory analyses. Therefore, this work gives an extended understanding of both functional and structural levels of influence for the mutant form that leads to NCL disorder.


Asunto(s)
Aminopeptidasas , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Mutación Missense , Lipofuscinosis Ceroideas Neuronales , Serina Proteasas , Tripeptidil Peptidasa 1 , Lipofuscinosis Ceroideas Neuronales/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Serina Proteasas/genética , Humanos , Aminopeptidasas/genética , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular
12.
J Pediatr Endocrinol Metab ; 37(3): 280-288, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38253347

RESUMEN

OBJECTIVES: Neuronal ceroid lipofuscinosis type 11 (NCL11) is a rare disease that presents with progressive cognitive decline, epilepsy, visual impairment, retinal atrophy, cerebellar ataxia and cerebellar atrophy. We present herein a case of NCL11 in a patient diagnosed with neuromotor developmental delay, epilepsy, bronchiolitis obliterans and hypothyroidism. CASE PRESENTATION: A 4-year-old male patient was admitted to our clinic with global developmental delay and a medical history that included recurrent hospitalizations for pneumonia at the age of 17 days, and in months 4, 5 and 7. Family history revealed a brother with similar clinical findings (recurrent pneumonia, hypothyroidism, hypotonicity, swallowing dysfunction and neuromotor delay) who died from pneumonia at the age of 22 months. Computed tomography of the thorax was consistent with bronchiolitis obliterans, while epileptic discharges were identified on electroencephalogram with a high incidence of bilateral fronto-centro-temporal and generalized spike-wave activity but no photoparoxysmal response. Cranial MRI revealed T2 hyperintense areas in the occipital periventricular white matter and volume loss in the white matter, a thin corpus callosum and vermis atrophy. A whole-exome sequencing molecular analysis revealed compound heterozygous c.430G>A (p.Asp144Asn) and c.415T>C (p.Cys139Arg) variants in the GRN gene. CONCLUSIONS: The presented case indicates that NCL11 should be taken into account in patients with epilepsy and neurodegenerative diseases.


Asunto(s)
Bronquiolitis Obliterante , Epilepsia , Hipotiroidismo , Lipofuscinosis Ceroideas Neuronales , Neumonía , Masculino , Humanos , Recién Nacido , Lactante , Preescolar , Lipofuscinosis Ceroideas Neuronales/complicaciones , Lipofuscinosis Ceroideas Neuronales/diagnóstico , Lipofuscinosis Ceroideas Neuronales/genética , Epilepsia/genética , Atrofia , Progranulinas/genética
13.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(1): 75-80, 2024 Jan 10.
Artículo en Chino | MEDLINE | ID: mdl-38171563

RESUMEN

OBJECTIVE: To analyze the clinical data and genetic characteristics of a child with CLN1 neuronal ceroid lipofuscinosis in conjunct with Hereditary hyperferritinemia cataract syndrome (HHCS). METHODS: A child who was admitted to the PICU of the First Affiliated Hospital of Zhengzhou University in November 2020 was selected as the study subject. Clinical data of the child was collected. Genetic testing was carried out for the child, and the result was analyzed in the light of literature review to explore the clinical and genetic characteristics to facilitate early identification. RESULTS: The patient, a 3-year-old male, had mainly presented with visual impairment, progressive cognitive and motor regression, and epilepsy. Cranial magnetic resonance imaging revealed deepened sulci in bilateral cerebral hemispheres, and delayed myelination. The activity of palmitoyl protein thioesterase was low (8.4 nmol/g/min, reference range: 132.2 ~ 301.4 nmol/g/min), whilst serum ferritin was increased (2417.70 ng/mL, reference range: 30 ~ 400 ng/ml). Fundoscopy has revealed retinal pigment degeneration. Whole exome sequencing revealed that he has harbored c.280A>C and c.124-124+3delG compound heterozygous variants of the PPT1 gene, which were respectively inherited from his father and mother. Neither variant has been reported previously. The child has also harbored a heterozygous c.-160A>G variant of the FTL gene, which was inherited from his father. Based on the clinical phenotype and results of genetic testing, the child was diagnosed as CLN1 and HHCS. CONCLUSION: The compound heterozygous variants of the PPT1 gene probably underlay the disorders in this child. For children with CLN1 and rapidly progressing visual impairment, ophthalmological examination should be recommended, and detailed family history should be taken For those suspected for HHCS, genetic testing should be performed to confirm the diagnosis.


Asunto(s)
Catarata , Lipofuscinosis Ceroideas Neuronales , Preescolar , Humanos , Masculino , Catarata/genética , Pruebas Genéticas , Mutación , Lipofuscinosis Ceroideas Neuronales/diagnóstico , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Trastornos de la Visión/genética
14.
Pediatr Neurol ; 152: 107-114, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242022

RESUMEN

BACKGROUND: Batten disease is a rare, progressive neurogenetic disorder composed of 13 genotypes that often presents in childhood. Children present with seizures, vision loss, and developmental regression. Neurorehabilitation services (i.e., physical therapy, occupational therapy, and speech-language therapy) can help improve the quality of life for children and their families. Owing to the rarity of Batten disease, there are no standardized clinical recommendations or outcome assessments. To describe developmental profiles, current dose of neurorehabilitation, and outcome assessments used clinically for children diagnosed with Batten disease. METHODS: Electronic medical records of 70 children with Batten disease (subtypes n = 5 CLN1; n = 25 CLN2; n = 23 CLN3; n = 17 CLN6) were reviewed (7.0 ± 3.4 years). Descriptive statistics were used to describe clinical features, developmental skills, dose of neurorehabilitation, and outcome assessment use. RESULTS: Across CLN subtypes, most children experienced vision impairments (61%) and seizures (68%). Most children demonstrated delays in fine motor (65%), gross motor (80%), cognitive (63%), and language skills (83%). The most common frequency of neurorehabilitation was weekly (42% to 43%). Two standardized outcome assessments were used to track developmental outcomes: Peabody Developmental Motor Scales, second edition (30% of children completed this assessment) and Preschool Language Scales, fifth edition (27.4% of children completed this assessment). CONCLUSIONS: Neurorehabilitation professionals should understand the clinical features and prognosis for children with Batten disease. The child's clinical features and family preferences should guide the rehabilitation plan of care. Future work needs to be completed to define dosing parameters and validate outcome assessments for neurorehabilitation services.


Asunto(s)
Rehabilitación Neurológica , Lipofuscinosis Ceroideas Neuronales , Niño , Preescolar , Humanos , Lipofuscinosis Ceroideas Neuronales/genética , Estudios Retrospectivos , Calidad de Vida , Convulsiones , Glicoproteínas de Membrana , Chaperonas Moleculares , Proteínas de la Membrana
15.
J Am Chem Soc ; 146(1): 145-158, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38055807

RESUMEN

Ceroid lipofuscinosis neuronal protein 5 (Cln5) is encoded by the CLN5 gene. The genetic variants of this gene are associated with the CLN5 form of Batten disease. Recently, the first crystal structure of Cln5 was reported. Cln5 shows cysteine palmitoyl thioesterase S-depalmitoylation activity, which was explored via fluorescent emission spectroscopy utilizing the fluorescent probe DDP-5. In this work, the mechanism of the reaction between Cln5 and DDP-5 was studied computationally by applying a QM/MM methodology at the ωB97X-D/6-31G(d,p):AMBER level. The results of our study clearly demonstrate the critical role of the catalytic triad Cys280-His166-Glu183 in S-depalmitoylation activity. This is evidenced through a comparison of the pathways catalyzed by the Cys280-His166-Glu183 triad and those with only Cys280 involved. The computed reaction barriers are in agreement with the catalytic efficiency. The calculated Gibb's free-energy profile suggests that S-depalmitoylation is a rate-limiting step compared to the preceding S-palmitoylation, with barriers of 26.1 and 25.3 kcal/mol, respectively. The energetics were complemented by monitoring the fluctuations in the electron density distribution through NBO charges and bond strength alterations via local mode stretching force constants during the catalytic pathways. This comprehensive protocol led to a more holistic picture of the reaction mechanism at the atomic level. It forms the foundation for future studies on the effects of gene mutations on both the S-palmitoylation and S-depalmitoylation steps, providing valuable data for the further development of enzyme replacement therapy, which is currently the only FDA-approved therapy for childhood neurodegenerative diseases, including Batten disease.


Asunto(s)
Proteínas de la Membrana , Lipofuscinosis Ceroideas Neuronales , Humanos , Niño , Proteínas de la Membrana/metabolismo , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Mutación
16.
Stem Cell Res ; 74: 103291, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38141358

RESUMEN

The neuronal ceroid lipofuscinoses (NCLs) are a group of common inherited neurodegenerative disorders of childhood. All forms of NCLs are life-limiting with no curative treatments. Most of the 13 NCL genes encode proteins residing in endolysosomal pathways, such as CLN5, a potential lysosomal enzyme. Two induced pluripotent stem cell lines (hiPSCs) were generated from skin fibroblasts of CLN5 disease patients via non-integrating Sendai virus reprogramming. They demonstrate typical stem cell morphology, express pluripotency markers, exhibit trilineage differentiation potential and also successfully differentiate into neurons. These hiPSCs represent a potential resource to model CLN5 disease in a human context and investigate potential therapies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Lipofuscinosis Ceroideas Neuronales , Humanos , Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/genética , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Mutación/genética , Fibroblastos/metabolismo
18.
Lancet Neurol ; 23(1): 60-70, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101904

RESUMEN

BACKGROUND: Cerliponase alfa is a recombinant human tripeptidyl peptidase 1 (TPP1) enzyme replacement therapy for the treatment of neuronal ceroid lipofuscinosis type 2 (CLN2 disease), which is caused by mutations in the TPP1 gene. We aimed to determine the long-term safety and efficacy of intracerebroventricular cerliponase alfa in children with CLN2 disease. METHODS: This analysis includes cumulative data from a primary 48-week, single-arm, open-label, multicentre, dose-escalation study (NCT01907087) and the 240-week open-label extension with 6-month safety follow-up, conducted at five hospitals in Germany, Italy, the UK, and the USA. Children aged 3-16 years with CLN2 disease confirmed by genetic analysis and enzyme testing were eligible for inclusion. Treatment was intracerebroventricular infusion of 300 mg cerliponase alfa every 2 weeks. Historical controls with untreated CLN2 disease in the DEM-CHILD database were used as a comparator group. The primary efficacy outcome was time to an unreversed 2-point decline or score of 0 in the combined motor and language domains of the CLN2 Clinical Rating Scale. This extension study is registered with ClinicalTrials.gov, NCT02485899, and is complete. FINDINGS: Between Sept 13, 2013, and Dec 22, 2014, 24 participants were enrolled in the primary study (15 female and 9 male). Of those, 23 participants were enrolled in the extension study, conducted between Feb 2, 2015, and Dec 10, 2020, and received 300 mg cerliponase alfa for a mean of 272·1 (range 162·1-300·1) weeks. 17 participants completed the extension and six discontinued prematurely. Treated patients were significantly less likely than historical untreated controls to have an unreversed 2-point decline or score of 0 in the combined motor and language domains (hazard ratio 0·14, 95% CI 0·06 to 0·33; p<0·0001). All participants experienced at least one adverse event and 21 (88%) experienced a serious adverse event; nine participants experienced intracerebroventricular device-related infections, with nine events in six participants resulting in device replacement. There were no study discontinuations because of an adverse event and no deaths. INTERPRETATION: Cerliponase alfa over a mean treatment period of more than 5 years was seen to confer a clinically meaningful slowing of decline of motor and language function in children with CLN2 disease. Although our study does not have a contemporaneous control group, the results provide crucial insights into the effects of long-term treatment. FUNDING: BioMarin Pharmaceutical.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Humanos , Masculino , Femenino , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Lipofuscinosis Ceroideas Neuronales/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/uso terapéutico , Tripeptidil Peptidasa 1 , Proteínas Recombinantes/efectos adversos
19.
Neurogenetics ; 25(1): 39-46, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38117343

RESUMEN

Neuronal ceroid lipofuscinosis (NCL) is an umbrella term referring to the most frequent childhood-onset neurodegenerative diseases, which are also the main cause of childhood dementia. Although the molecular mechanisms underlying the NCLs remain elusive, evidence is increasingly pointing to shared disease pathways and common clinical features across the disease forms. The characterization of pathological mechanisms, disease modifiers, and biomarkers might facilitate the development of treatment strategies.The DEM-AGING project aims to define molecular signatures in NCL and expedite biomarker discovery with a view to identifying novel targets for monitoring disease status and progression and accelerating clinical trial readiness in this field. In this study, we fused multiomic assessments in established NCL models with similar data on the more common late-onset neurodegenerative conditions in order to test the hypothesis of shared molecular fingerprints critical to the underlying pathological mechanisms. Our aim, ultimately, is to combine data analysis, cell models, and omic strategies in an effort to trace new routes to therapies that might readily be applied in the most common forms of dementia.


Asunto(s)
Demencia , Lipofuscinosis Ceroideas Neuronales , Humanos , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Lipofuscinosis Ceroideas Neuronales/patología , Demencia/genética
20.
Mol Genet Metab ; 140(4): 107713, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37922835

RESUMEN

Neuronal ceroid lipofuscinosis type 2 (CLN2) is an autosomal recessive neurodegenerative disorder with enzyme replacement therapy available. We present two siblings with a clinical diagnosis of CLN2 disease, but no identifiable TPP1 variants after standard clinical testing. Long-read sequencing identified a homozygous deep intronic variant predicted to affect splicing, confirmed by clinical DNA and RNA sequencing. This case demonstrates how traditional laboratory assays can complement emerging molecular technologies to provide a precise molecular diagnosis.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Tripeptidil Peptidasa 1 , Humanos , Serina Proteasas/genética , Aminopeptidasas/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Lipofuscinosis Ceroideas Neuronales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA