Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50.611
Filtrar
1.
Front Immunol ; 15: 1384417, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726013

RESUMEN

Nipah virus (NiV) poses a significant threat to human and livestock populations across South and Southeast Asia. Vaccines are required to reduce the risk and impact of spillover infection events. Pigs can act as an intermediate amplifying host for NiV and, separately, provide a preclinical model for evaluating human vaccine candidate immunogenicity. The aim of this study was therefore to evaluate the immunogenicity of an mRNA vectored NiV vaccine candidate in pigs. Pigs were immunized twice with 100 µg nucleoside-modified mRNA vaccine encoding soluble G glycoprotein from the Malaysia strain of NiV, formulated in lipid nanoparticles. Potent antigen-binding and virus neutralizing antibodies were detected in serum following the booster immunization. Antibody responses effectively neutralized both the Malaysia and Bangladesh strains of NiV but showed limited neutralization of the related (about 80% amino acid sequence identity for G) Hendra virus. Antibodies were also capable of neutralizing NiV glycoprotein mediated cell-cell fusion. NiV G-specific T cell cytokine responses were also measurable following the booster immunization with evidence for induction of both CD4 and CD8 T cell responses. These data support the further evaluation of mRNA vectored NiV G as a vaccine for both pigs and humans.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Henipavirus , Virus Nipah , Vacunas Virales , Animales , Virus Nipah/inmunología , Virus Nipah/genética , Porcinos , Infecciones por Henipavirus/prevención & control , Infecciones por Henipavirus/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , ARN Mensajero/genética , ARN Mensajero/inmunología , Inmunogenicidad Vacunal , Inmunización Secundaria , Citocinas/inmunología , Vacunas Sintéticas/inmunología , Liposomas , Nanopartículas
2.
PLoS One ; 19(5): e0302264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38723038

RESUMEN

CRISPR/Cas9 is a recently discovered genomic editing technique that altered scientist's sight in studying genes function. Cas9 is controlled via guide (g) RNAs, which match the DNA targeted in cleavage to modify the respective gene. The development in prostate cancer (PC) modeling directed not only to novel resources for recognizing the signaling pathways overriding prostate cell carcinoma, but it has also created a vast reservoir for complementary tools to examine therapies counteracting this type of cancer. Various cultured somatic rat models for prostate cancer have been developed that nearly mimic human prostate cancer. Nano-medicine can passively target cancer cells via increasing bioavailability and conjugation via specific legend, contributing to reduced systemic side-effects and increased efficacy. This article highlights liposomal loaded Nano-medicine as a potential treatment for prostate cancer and clarifies the CRISPR/Cas9 variation accompanied with prostate cancer. PC is induced experimentally in western rat model via ethinyl estradiol for 4 weeks and SC. dose of 3, 2'- dimethyl-4-aminobiphenyl estradiol (DAE) (50mg/kg) followed by treatment via targeted liposomal-coated compounds such as liposomal dexamethasone (DXM), liposomal doxorubicin (DOX) and liposomal Turmeric (TUR) (3mg/kg IP) for four weeks in a comparative study to their non-targeted analogue dexamethasone, doxorubicin and Turmeric. 3, 2'- dimethyl-4-aminobiphenylestradiol elicit prostate cancer in western rats within 5 months. Simultaneous supplementations with these liposomal compounds influence on prostate cancer; tumor markers were investigated via prostate-specific antigen (PSA), Nitric oxide (NOX) and CRISPR/Cas9 gene editing. Several long non-coding RNAs were reported to be deregulated in prostate cell carcinoma, including MALAT1. On the other hand, gene expression of apoptotic biomarkers focal adhesion kinase (AKT-1), phosphatidylinistol kinase (PI3K) and glycogen synthase kinase-3 (GSK-3) was also investigated and further confirming these results via histopathological examination. Liposomal loaded dexamethasone; doxorubicin and Turmeric can be considered as promising therapeutic agents for prostate cancer via modulating CRISPR/Cas9 gene editing and long non coding gene MALAT1.


Asunto(s)
Sistemas CRISPR-Cas , Liposomas , Neoplasias de la Próstata , ARN Largo no Codificante , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/diagnóstico , Animales , Ratas , ARN Largo no Codificante/genética , Sistemas CRISPR-Cas/genética , Humanos , Edición Génica/métodos
5.
J Nanobiotechnology ; 22(1): 233, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725011

RESUMEN

BACKGROUND: Dry Eye Disease (DED) is a prevalent multifactorial ocular disease characterized by a vicious cycle of inflammation, oxidative stress, and mitochondrial dysfunction on the ocular surface, all of which lead to DED deterioration and impair the patients' quality of life and social functioning. Currently, anti-inflammatory drugs have shown promising efficacy in treating DED; however, such drugs are associated with side effects. The bioavailability of ocular drugs is less than 5% owing to factors such as rapid tear turnover and the presence of the corneal barrier. This calls for investigations to overcome these challenges associated with ocular drug administration. RESULTS: A novel hierarchical action liposome nanosystem (PHP-DPS@INS) was developed in this study. In terms of delivery, PHP-DPS@INS nanoparticles (NPs) overcame the ocular surface transport barrier by adopting the strategy of "ocular surface electrostatic adhesion-lysosomal site-directed escape". In terms of therapy, PHP-DPS@INS achieved mitochondrial targeting and antioxidant effects through SS-31 peptide, and exerted an anti-inflammatory effect by loading insulin to reduce mitochondrial inflammatory metabolites. Ultimately, the synergistic action of "anti-inflammation-antioxidation-mitochondrial function restoration" breaks the vicious cycle associated with DED. The PHP-DPS@INS demonstrated remarkable cellular uptake, lysosomal escape, and mitochondrial targeting in vitro. Targeted metabolomics analysis revealed that PHP-DPS@INS effectively normalized the elevated level of mitochondrial proinflammatory metabolite fumarate in an in vitro hypertonic model of DED, thereby reducing the levels of key inflammatory factors (IL-1ß, IL-6, and TNF-α). Additionally, PHP-DPS@INS strongly inhibited reactive oxygen species (ROS) production and facilitated mitochondrial structural repair. In vivo, the PHP-DPS@INS treatment significantly enhanced the adhesion duration and corneal permeability of the ocular surface in DED mice, thereby improving insulin bioavailability. It also restored tear secretion, suppressed ocular surface damage, and reduced inflammation in DED mice. Moreover, it demonstrated favorable safety profiles both in vitro and in vivo. CONCLUSION: In summary, this study successfully developed a comprehensive DED management nanosystem that overcame the ocular surface transmission barrier and disrupted the vicious cycle that lead to dry eye pathogenesis. Additionally, it pioneered the regulation of mitochondrial metabolites as an anti-inflammatory treatment for ocular conditions, presenting a safe, efficient, and innovative therapeutic strategy for DED and other inflammatory diseases.


Asunto(s)
Síndromes de Ojo Seco , Inflamación , Liposomas , Mitocondrias , Estrés Oxidativo , Síndromes de Ojo Seco/tratamiento farmacológico , Animales , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Liposomas/química , Inflamación/tratamiento farmacológico , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/química , Nanopartículas/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Córnea/metabolismo , Córnea/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Oligopéptidos
6.
Commun Biol ; 7(1): 556, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730092

RESUMEN

Lipid nanoparticles (LNPs) have emerged as promising platforms for efficient in vivo mRNA delivery owing to advancements in ionizable lipids. However, maintaining the thermostability of mRNA/LNP systems remains challenging. While the importance of only a small amount of lipid impurities on mRNA inactivation is clear, a fundamental solution has not yet been proposed. In this study, we investigate an approach to limit the generation of aldehyde impurities that react with mRNA nucleosides through the chemical engineering of lipids. We demonstrated that piperidine-based lipids improve the long-term storage stability of mRNA/LNPs at refrigeration temperature as a liquid formulation. High-performance liquid chromatography analysis and additional lipid synthesis revealed that amine moieties of ionizable lipids play a vital role in limiting reactive aldehyde generation, mRNA-lipid adduct formation, and loss of mRNA function during mRNA/LNP storage. These findings highlight the importance of lipid design and help enhance the shelf-life of mRNA/LNP systems.


Asunto(s)
Lípidos , Nanopartículas , Piperidinas , Estabilidad del ARN , ARN Mensajero , Nanopartículas/química , ARN Mensajero/metabolismo , ARN Mensajero/genética , Lípidos/química , Piperidinas/química , Humanos , Temperatura , Liposomas
7.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731964

RESUMEN

Cannabidiol (CBD) is a non-psychoactive compound derived from Cannabis sativa. It has demonstrated promising effects in combating inflammation and holds potential as a treatment for the progression of chronic inflammation. However, the clinical application of CBD is limited due to its poor solubility and bioavailability. This study introduces an effective method for preparing CBD-loaded solid lipid nanoparticles (CBD-SLNs) using a combination of low-energy hot homogenization and ultrasonication. We enhanced this process by employing statistical optimization with response surface methodology (RSM). The optimized CBD-SLN formulation utilizes glyceryl monostearate as the primary lipid component of the nanocarrier. The CBD-SLN formulation is screened as a potential tool for managing chronic inflammation. Stable, uniformly dispersed spherical nanoparticles with a size of 123 nm, a surface charge of -32.1 mV, an encapsulation efficiency of 95.16%, and a drug loading of 2.36% were obtained. The CBD-SLNs exhibited sustained release properties, ensuring prolonged and controlled CBD delivery, which could potentially amplify its therapeutic effects. Additionally, we observed that CBD-SLNs significantly reduced both reactive oxygen and nitrogen species and proinflammatory cytokines in chondrocyte and macrophage cell lines, with these inhibitory effects being more pronounced than those of free CBD. In conclusion, CBD-SLNs demonstrated superiority over free CBD, highlighting its potential as an effective delivery system for CBD.


Asunto(s)
Cannabidiol , Citocinas , Inflamación , Nanopartículas , Cannabidiol/química , Cannabidiol/farmacología , Nanopartículas/química , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Humanos , Animales , Radicales Libres , Ratones , Portadores de Fármacos/química , Lípidos/química , Línea Celular , Especies Reactivas de Oxígeno/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/administración & dosificación , Liposomas
9.
Hum Vaccin Immunother ; 20(1): 2342592, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38714327

RESUMEN

Messenger ribonucleic acid (mRNA) technology has been rapidly applied for the development of the COVID-19 vaccine. However, naked mRNA itself is inherently unstable. Lipid nanoparticles (LNPs) protect mRNAs from extracellular ribonucleases and facilitate mRNA trafficking. For mRNA vaccines, antigen-presenting cells utilize LNPs through uptake to elicit antigen-specific immunity. There are reports on the impact of various physical characteristics of LNPs, particularly those with sizes less than 200 nm, especially 50 to 150 nm, on the overall stability and protective efficacy of mRNA vaccines. To address this, a single change in the size of LNPs using the same mRNA stock solution was assessed for the physicochemical characterization of the resulting mRNA-LNPs vaccine, along with the evaluation of their protective efficacy. Particles of smaller sizes generally disperse more effectively in solutions, with minimized occurrence of particle precipitation and aggregation. Here, we demonstrate that the vaccine containing 80-100 nm mRNA-LNPs showed the best stability and protection at 4°C and -20°C. Furthermore, we can conclude that freezing the vaccine at -20°C is more appropriate for maintaining stability over the long term. This effort is poised to provide a scientific basis for improving the quality of ongoing mRNA vaccine endeavors and providing information on the development of novel products.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Lípidos , Nanopartículas , Tamaño de la Partícula , SARS-CoV-2 , Vacunas de ARNm , Nanopartículas/química , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , COVID-19/inmunología , Lípidos/química , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Animales , Ratones , Anticuerpos Antivirales/inmunología , Femenino , ARN Mensajero/inmunología , ARN Mensajero/genética , Estabilidad de Medicamentos , Inmunogenicidad Vacunal , Humanos , Ratones Endogámicos BALB C , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Liposomas
10.
Sci Rep ; 14(1): 10499, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714740

RESUMEN

Improving the efficacy of chemotherapy remains a key challenge in cancer treatment, considering the low bioavailability, high cytotoxicity, and undesirable side effects of some clinical drugs. Targeted delivery and sustained release of therapeutic drugs to cancer cells can reduce the whole-body cytotoxicity of the agent and deliver a safe localized treatment to the patient. There is growing interest in herbal drugs, such as curcumin, which is highly noted as a promising anti-tumor drug, considering its wide range of bioactivities and therapeutic properties against various tumors. Conversely, the clinical efficacy of curcumin is limited because of poor oral bioavailability, low water solubility, instability in gastrointestinal fluids, and unsuitable pH stability. Drug-delivery colloid vehicles like liposomes and nanoparticles combined with microbubbles and ultrasound-mediated sustained release are currently being explored as effective delivery modes in such cases. This study aimed to synthesize and study the properties of curcumin liposomes (CLs) and optimize the high-frequency ultrasound release and uptake by a human breast cancer cell line (HCC 1954) through in vitro studies of culture viability and cytotoxicity. CLs were effectively prepared with particles sized at 81 ± 2 nm, demonstrating stability and controlled release of curcumin under ultrasound exposure. In vitro studies using HCC1954 cells, the combination of CLs, ultrasound, and Definity microbubbles significantly improved curcumin's anti-tumor effects, particularly under specific conditions: 15 s of continuous ultrasound at 0.12 W/cm2 power density with 0.6 × 107 microbubbles/mL. Furthermore, the study delved into curcumin liposomes' cytotoxic effects using an Annexin V/PI-based apoptosis assay. The treatment with CLs, particularly in conjunction with ultrasound and microbubbles, amplified cell apoptosis, mainly in the late apoptosis stage, which was attributed to heightened cellular uptake within cancer cells.


Asunto(s)
Curcumina , Sistemas de Liberación de Medicamentos , Liposomas , Curcumina/farmacología , Curcumina/química , Curcumina/administración & dosificación , Humanos , Liposomas/química , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Microburbujas , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Ondas Ultrasónicas , Liberación de Fármacos , Apoptosis/efectos de los fármacos
11.
BMC Oral Health ; 24(1): 551, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734599

RESUMEN

BACKGROUND: Periodontal diseases may benefit more from topical treatments with nanoparticles rather than systemic treatments due to advantages such as higher stability and controlled release profile. This study investigated the preparation and characterization of thermosensitive gel formulations containing clindamycin-loaded niosomes and solid lipid nanoparticles (SLNs) loaded with fluconazole (FLZ), as well as their in vitro antibacterial and antifungal effects in the treatment of common microorganisms that cause periodontal diseases. METHODS: This study loaded niosomes and SLNs with clindamycin and FLZ, respectively, and assessed their loading efficiency, particle size, and zeta potential. The particles were characterized using a variety of methods such as differential scanning calorimetry (DSC), dynamic light scattering (DLS), and Transmission Electron Microscopy (TEM). Thermosensitive gels were formulated by combining these particles and their viscosity, gelation temperature, in-vitro release profile, as well as antibacterial and antifungal effects were evaluated. RESULTS: Both types of these nanoparticles were found to be spherical (TEM) with a mean particle size of 243.03 nm in niosomes and 171.97 nm in SLNs (DLS), and respective zeta potentials of -23.3 and -15. The loading rate was 98% in niosomes and 51% in SLNs. The release profiles of niosomal formulations were slower than those of the SLNs. Both formulations allowed the release of the drug by first-order kinetic. Additionally, the gel formulation presented a slower release of both drugs compared to niosomes and SLNs suspensions. CONCLUSION: Thermosensitive gels containing clindamycin-loaded niosomes and/or FLZ-SLNs were found to effectively fight the periodontitis-causing bacteria and fungi.


Asunto(s)
Clindamicina , Fluconazol , Geles , Liposomas , Nanopartículas , Tamaño de la Partícula , Enfermedades Periodontales , Clindamicina/administración & dosificación , Clindamicina/uso terapéutico , Nanopartículas/química , Fluconazol/administración & dosificación , Fluconazol/farmacología , Enfermedades Periodontales/tratamiento farmacológico , Antifúngicos/administración & dosificación , Antifúngicos/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Microscopía Electrónica de Transmisión , Temperatura , Rastreo Diferencial de Calorimetría , Candida albicans/efectos de los fármacos , Viscosidad , Lípidos/química , Humanos
12.
J Am Chem Soc ; 146(19): 12925-12932, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691507

RESUMEN

Technological breakthroughs in cryo-electron microscopy (cryo-EM) methods open new perspectives for highly detailed structural characterizations of extracellular vesicles (EVs) and synthetic liposome-protein assemblies. Structural characterizations of these vesicles in solution under a nearly native hydrated state are of great importance to decipher cell-to-cell communication and to improve EVs' application as markers in diagnosis and as drug carriers in disease therapy. However, difficulties in preparing holey carbon cryo-EM grids with low vesicle heterogeneities, at low concentration and with kinetic control of the chemical reactions or assembly processes, have limited cryo-EM use in the EV study. We report a straightforward membrane vesicle cryo-EM sample preparation method that assists in circumventing these limitations by using a free-standing DNA-affinity superlattice for covering holey carbon cryo-EM grids. Our approach uses DNA origami to self-assemble to a solution-stable and micrometer-sized ordered molecular template in which structure and functional properties can be rationally controlled. We engineered the template with cholesterol-binding sites to specifically trap membrane vesicles. The advantages of this DNA-cholesterol-affinity lattice (DCAL) include (1) local enrichment of artificial and biological vesicles at low concentration and (2) isolation of heterogeneous cell-derived membrane vesicles (exosomes) from a prepurified pellet of cell culture conditioned medium on the grid.


Asunto(s)
Microscopía por Crioelectrón , ADN , Microscopía por Crioelectrón/métodos , ADN/química , Vesículas Extracelulares/química , Humanos , Colesterol/química , Liposomas/química
13.
Int J Nanomedicine ; 19: 3861-3890, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708178

RESUMEN

Introduction: Cystic fibrosis (CF) is associated with pulmonary Pseudomonas aeruginosa infections persistent to antibiotics. Methods: To eradicate pseudomonal biofilms, solid lipid nanoparticles (SLNs) loaded with quorum-sensing-inhibitor (QSI, disrupting bacterial crosstalk), coated with chitosan (CS, improving internalization) and immobilized with alginate lyase (AL, destroying alginate biofilms) were developed. Results: SLNs (140-205 nm) showed prolonged release of QSI with no sign of acute toxicity to A549 and Calu-3 cells. The CS coating improved uptake, whereas immobilized-AL ensured >1.5-fold higher uptake and doubled SLN diffusion across the artificial biofilm sputum model. Respirable microparticles comprising SLNs in carbohydrate matrix elicited aerodynamic diameters MMAD (3.54, 2.48 µm) and fine-particle-fraction FPF (65, 48%) for anionic and cationic SLNs, respectively. The antimicrobial and/or antibiofilm activity of SLNs was explored in Pseudomonas aeruginosa reference mucoid/nonmucoid strains as well as clinical isolates. The full growth inhibition of planktonic bacteria was dependent on SLN type, concentration, growth medium, and strain. OD measurements and live/dead staining proved that anionic SLNs efficiently ceased biofilm formation and eradicated established biofilms, whereas cationic SLNs unexpectedly promoted biofilm progression. AL immobilization increased biofilm vulnerability; instead, CS coating increased biofilm formation confirmed by 3D-time lapse confocal imaging. Incubation of SLNs with mature biofilms of P. aeruginosa isolates increased biofilm density by an average of 1.5-fold. CLSM further confirmed the binding and uptake of the labeled SLNs in P. aeruginosa biofilms. Considerable uptake of CS-coated SLNs in non-mucoid strains could be observed presumably due to interaction of chitosan with LPS glycolipids in the outer cell membrane of P. aeruginosa. Conclusion: The biofilm-destructive potential of QSI/SLNs/AL inhalation is promising for site-specific biofilm-targeted interventional CF therapy. Nevertheless, the intrinsic/extrinsic fundamentals of nanocarrier-biofilm interactions require further investigation.


Asunto(s)
Antibacterianos , Biopelículas , Quitosano , Liposomas , Nanopartículas , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Biopelículas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Humanos , Infecciones por Pseudomonas/tratamiento farmacológico , Nanopartículas/química , Quitosano/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/farmacocinética , Portadores de Fármacos/química , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/microbiología , Lípidos/química , Lípidos/farmacología , Percepción de Quorum/efectos de los fármacos , Células A549 , Alginatos/química
14.
AAPS PharmSciTech ; 25(5): 97, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710894

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the highly fatal types of cancer with high mortality/incidence. Considering the crucial role of vascular endothelial growth factor (VEGF) in PDAC progression, its inhibition can be a viable strategy for the treatment. Pazopanib, a second-generation VEGF inhibitor, is approved for the treatment of various oncological conditions. However, due to associated limitations like low oral bioavailability (14-39%), high inter/intra-subject variability, stability issues, etc., high doses (800 mg) are required, which further lead to non-specific toxicities and also contribute toward cancer resistance. Thus, to overcome these challenges, pazopanib-loaded PEGylated nanoliposomes were developed and evaluated against pancreatic cancer cell lines. The nanoliposomes were prepared by thin-film hydration method, followed by characterization and stability studies. This QbD-enabled process design successfully led to the development of a suitable pazopanib liposomal formulation with desirable properties. The % entrapment of PZP-loaded non-PEGylated and PEGylated nanoliposomes was found to be 75.2% and 84.9%, respectively, whereas their particle size was found to be 129.7 nm and 182.0 nm, respectively. The developed liposomal formulations exhibited a prolonged release and showed desirable physicochemical properties. Furthermore, these liposomal formulations were also assessed for in vitro cell lines, such as cell cytotoxicity assay and cell uptake. These studies confirm the effectiveness of developed liposomal formulations against pancreatic cancer cell lines. The outcomes of this work provide encouraging results and a way forward to thoroughly investigate its potential for PDAC treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Indazoles , Liposomas , Nanopartículas , Neoplasias Pancreáticas , Tamaño de la Partícula , Pirimidinas , Sulfonamidas , Indazoles/administración & dosificación , Indazoles/farmacología , Humanos , Sulfonamidas/administración & dosificación , Sulfonamidas/farmacología , Sulfonamidas/química , Pirimidinas/administración & dosificación , Pirimidinas/farmacología , Pirimidinas/química , Pirimidinas/farmacocinética , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Nanopartículas/química , Polietilenglicoles/química , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Liberación de Fármacos , Química Farmacéutica/métodos
15.
Nat Commun ; 15(1): 3804, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714648

RESUMEN

Messenger RNA (mRNA) therapeutics delivered via lipid nanoparticles hold the potential to treat metabolic diseases caused by protein deficiency, including propionic acidemia (PA), methylmalonic acidemia (MMA), and phenylketonuria (PKU). Herein we report results from multiple independent preclinical studies of mRNA-3927 (an investigational treatment for PA), mRNA-3705 (an investigational treatment for MMA), and mRNA-3210 (an investigational treatment for PKU) in murine models of each disease. All 3 mRNA therapeutics exhibited pharmacokinetic/pharmacodynamic (PK/PD) responses in their respective murine model by driving mRNA, protein, and/or protein activity responses, as well as by decreasing levels of the relevant biomarker(s) when compared to control-treated animals. These preclinical data were then used to develop translational PK/PD models, which were scaled allometrically to humans to predict starting doses for first-in-human clinical studies for each disease. The predicted first-in-human doses for mRNA-3927, mRNA-3705, and mRNA-3210 were determined to be 0.3, 0.1, and 0.4 mg/kg, respectively.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Modelos Animales de Enfermedad , Fenilcetonurias , Acidemia Propiónica , ARN Mensajero , Acidemia Propiónica/genética , Acidemia Propiónica/terapia , Acidemia Propiónica/tratamiento farmacológico , Animales , Fenilcetonurias/genética , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/terapia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Ratones , Humanos , Masculino , Femenino , Nanopartículas/química , Ratones Endogámicos C57BL , Liposomas
16.
Sci Rep ; 14(1): 10073, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698123

RESUMEN

Cutaneous leishmaniasis is the most prevalent form of leishmaniasis worldwide. Although various anti-leishmanial regimens have been considered, due to the lack of efficacy or occurrence of adverse reactions, design and development of novel topical delivery systems would be essential. This study aimed to prepare artemether (ART)-loaded niosomes and evaluate their anti-leishmanial effects against Leishmania major. ART-loaded niosomes were prepared through the thin-film hydration technique and characterized in terms of particle size, zeta potential, morphology, differential scanning calorimetry, drug loading, and drug release. Furthermore, anti-leishmanial effect of the preparation was assessed in vitro and in vivo. The prepared ART-loaded niosomes were spherical with an average diameter of about 100 and 300 nm with high encapsulation efficiencies of > 99%. The results of in vitro cytotoxicity revealed that ART-loaded niosomes had significantly higher anti-leishmanial activity, lower general toxicity, and higher selectivity index (SI). Half-maximal inhibitory concentration (IC50) values of ART, ART-loaded niosomes, and liposomal amphotericin B were 39.09, 15.12, and 20 µg/mL, respectively. Also, according to the in vivo study results, ART-loaded niosomes with an average size of 300 nm showed the highest anti-leishmanial effects in animal studies. ART-loaded niosomes would be promising topical drug delivery system for the management of cutaneous leishmaniasis.


Asunto(s)
Arteméter , Leishmania major , Leishmaniasis Cutánea , Liposomas , Liposomas/química , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Arteméter/química , Leishmania major/efectos de los fármacos , Animales , Ratones , Tamaño de la Partícula , Antiprotozoarios/farmacología , Antiprotozoarios/administración & dosificación , Antiprotozoarios/química , Ratones Endogámicos BALB C , Liberación de Fármacos , Humanos
17.
Sci Rep ; 14(1): 10196, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702355

RESUMEN

Urinary tract infections (UTIs) are the most common bacterial infections and uropathogenic Escherichia coli (UPEC) is the main etiological agent of UTIs. UPEC can persist in bladder cells protected by immunological defenses and antibiotics and intracellular behavior leads to difficulty in eradicating the infection. The aim of this paper is to design, prepare and characterize surfactant-based nanocarriers (niosomes) able to entrap antimicrobial drug and potentially to delivery and release antibiotics into UPEC-infected cells. In order to validate the proposed drug delivery system, gentamicin, was chosen as "active model drug" due to its poor cellular penetration. The niosomes physical-chemical characterization was performed combining different techniques: Dynamic Light Scattering Fluorescence Spectroscopy, Transmission Electron Microscopy. Empty and loaded niosomes were characterized in terms of size, ζ-potential, bilayer features and stability. Moreover, Gentamicin entrapped amount was evaluated, and the release study was also carried out. In addition, the effect of empty and loaded niosomes was studied on the invasion ability of UPEC strains in T24 bladder cell monolayers by Gentamicin Protection Assay and Confocal Microscopy. The observed decrease in UPEC invasion rate leads us to hypothesize a release of antibiotic from niosomes inside the cells. The optimization of the proposed drug delivery system could represent a promising strategy to significatively enhance the internalization of antimicrobial drugs.


Asunto(s)
Antibacterianos , Gentamicinas , Liposomas , Escherichia coli Uropatógena , Gentamicinas/farmacología , Escherichia coli Uropatógena/efectos de los fármacos , Humanos , Antibacterianos/farmacología , Portadores de Fármacos/química , Infecciones Urinarias/microbiología , Infecciones Urinarias/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Pruebas de Sensibilidad Microbiana
18.
Anesthesiol Clin ; 42(2): 303-315, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705678

RESUMEN

Local anesthetics have played a vital role in the multimodal analgesia approach to patient care by decreasing the use of perioperative opioids, enhancing patient satisfaction, decreasing the incidence of postoperative nausea and vomiting, decreasing the length of hospital stay, and reducing the risk of chronic postsurgical pain. The opioid-reduced anesthetic management for perioperative analgesia has been largely successful with the use of local anesthetics during procedures such as peripheral nerve blocks and neuraxial analgesia. It is important that practitioners who use local anesthetics are aware of the risk factors, presentation, and management of local anesthetic systemic toxicity (LAST).


Asunto(s)
Anestésicos Locales , Bupivacaína , Liposomas , Humanos , Anestésicos Locales/efectos adversos , Bupivacaína/efectos adversos , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/prevención & control
19.
J Nanobiotechnology ; 22(1): 216, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698399

RESUMEN

The enhanced permeability and retention (EPR) effect has become the guiding principle for nanomedicine against cancer for a long time. However, several biological barriers severely resist therapeutic agents' penetration and retention into the deep tumor tissues, resulting in poor EPR effect and high tumor mortality. Inspired by lava, we proposed a proteolytic enzyme therapy to improve the tumor distribution and penetration of nanomedicine. A trypsin-crosslinked hydrogel (Trypsin@PSA Gel) was developed to maintain trypsin's activity. The hydrogel postponed trypsin's self-degradation and sustained the release. Trypsin promoted the cellular uptake of nanoformulations in breast cancer cells, enhanced the penetration through endothelial cells, and degraded total and membrane proteins. Proteomic analysis reveals that trypsin affected ECM components and down-regulated multiple pathways associated with cancer progression. Intratumoral injection of Trypsin@PSA Gel significantly increased the distribution of liposomes in tumors and reduced tumor vasculature. Combination treatment with intravenous injection of gambogic acid-loaded liposomes and intratumoral injection of Trypsin@PSA Gel inhibited tumor growth. The current study provides one of the first investigations into the enhanced tumor distribution of liposomes induced by a novel proteolytic enzyme therapy.


Asunto(s)
Hidrogeles , Liposomas , Polietilenglicoles , Tripsina , Xantonas , Liposomas/química , Animales , Polietilenglicoles/química , Hidrogeles/química , Humanos , Tripsina/metabolismo , Tripsina/química , Femenino , Ratones , Línea Celular Tumoral , Ratones Endogámicos BALB C , Neoplasias de la Mama/tratamiento farmacológico , Proteolisis
20.
Nat Commun ; 15(1): 3729, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702330

RESUMEN

The unique virus-cell interaction in Epstein-Barr virus (EBV)-associated malignancies implies targeting the viral latent-lytic switch is a promising therapeutic strategy. However, the lack of specific and efficient therapeutic agents to induce lytic cycle in these cancers is a major challenge facing clinical implementation. We develop a synthetic transcriptional activator that specifically activates endogenous BZLF1 and efficiently induces lytic reactivation in EBV-positive cancer cells. A lipid nanoparticle encapsulating nucleoside-modified mRNA which encodes a BZLF1-specific transcriptional activator (mTZ3-LNP) is synthesized for EBV-targeted therapy. Compared with conventional chemical inducers, mTZ3-LNP more efficiently activates EBV lytic gene expression in EBV-associated epithelial cancers. Here we show the potency and safety of treatment with mTZ3-LNP to suppress tumor growth in EBV-positive cancer models. The combination of mTZ3-LNP and ganciclovir yields highly selective cytotoxic effects of mRNA-based lytic induction therapy against EBV-positive tumor cells, indicating the potential of mRNA nanomedicine in the treatment of EBV-associated epithelial cancers.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Liposomas , Nanopartículas , Transactivadores , Humanos , Herpesvirus Humano 4/genética , Transactivadores/metabolismo , Transactivadores/genética , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Animales , Nanopartículas/química , Línea Celular Tumoral , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Activación Viral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Viral de la Expresión Génica/efectos de los fármacos , Ratones Desnudos , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA