Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.660
Filtrar
1.
J Colloid Interface Sci ; 668: 252-263, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38678881

RESUMEN

Protein body (PB) formation in wheat seeds is a critical process influencing seed content and nutritional quality. In this study, we investigate the potential mechanisms governing PB formation through an in vitro approach, focusing on γ-gliadin, a key wheat storage protein. We used a microfluidic technique to encapsulate γ-gliadin within giant unilamellar vesicles (GUVs) and tune the physicochemical conditions in a controlled and rapid way. We examined the influence of pH and protein concentration on LLPS and protein-membrane interactions using various microscopy and spectroscopy techniques. We showed that γ-gliadin encapsulated in GUVs can undergo a pH-triggered liquid-liquid phase separation (LLPS) by two distinct mechanisms depending on the γ-gliadin concentration. At low protein concentrations, γ-gliadins phase separate by a nucleation and growth-like process, while, at higher protein concentration and pH above 6.0, γ-gliadin formed a bi-continuous phase suggesting a spinodal decomposition-like mechanism. Fluorescence and microscopy data suggested that γ-gliadin dense phase exhibited affinity for the GUV membrane, forming a layer at the interface and affecting the reversibility of the phase separation.


Asunto(s)
Gliadina , Triticum , Liposomas Unilamelares , Gliadina/química , Gliadina/aislamiento & purificación , Triticum/química , Concentración de Iones de Hidrógeno , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo , Agua/química , Lípidos de la Membrana/química , Separación de Fases
2.
J Vis Exp ; (206)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682922

RESUMEN

We present a method to incorporate into vesicles complex protein networks, involving integral membrane proteins, enzymes, and fluorescence-based sensors, using purified components. This method is relevant for the design and construction of bioreactors and the study of complex out-of-equilibrium metabolic reaction networks. We start by reconstituting (multiple) membrane proteins into large unilamellar vesicles (LUVs) according to a previously developed protocol. We then encapsulate a mixture of purified enzymes, metabolites, and fluorescence-based sensors (fluorescent proteins or dyes) via freeze-thaw-extrusion and remove non-incorporated components by centrifugation and/or size-exclusion chromatography. The performance of the metabolic networks is measured in real time by monitoring the ATP/ADP ratio, metabolite concentration, internal pH, or other parameters by fluorescence readout. Our membrane protein-containing vesicles of 100-400 nm diameter can be converted into giant-unilamellar vesicles (GUVs), using existing but optimized procedures. The approach enables the inclusion of soluble components (enzymes, metabolites, sensors) into micrometer-size vesicles, thus upscaling the volume of the bioreactors by orders of magnitude. The metabolic network containing GUVs are trapped in microfluidic devices for analysis by optical microscopy.


Asunto(s)
Liposomas Unilamelares , Liposomas Unilamelares/metabolismo , Liposomas Unilamelares/química , Redes y Vías Metabólicas , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química
3.
Biomed Pharmacother ; 174: 116581, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636394

RESUMEN

Naringenin is a flavonoid found in many fruits and herbs, most notably in grapefruits. In recent years, this compound and its derivatives have been of great interest due to their high biological activity, including fungicidal and bactericidal effects, also in relation to multidrug-resistant bacteria. Membrane interactions of naringenin oxime (NO) and its 7-O-alkyl (7-alkoxy) derivatives, such as methyl (7MENO), ethyl (7ETNO), isopropyl (7IPNO), n-butyl (7BUNO) and n-pentyl (7PENO) were studied. Thermotropic properties of model membranes were investigated via differential scanning calorimetry (DSC), the influence on lipid raft mimicking giant unilamellar vesicles (GUVs) via fluorescence microscopy, and membrane permeability via measuring calcein leakage from liposomes. Molecular calculations supplemented the study. The influence of naringenin oximes on two strains of multidrug resistant bacteria: Staphylococcus aureus KJ and Enterococcus faecalis 37VRE was also investigated. In DSC studies all compounds reduced the temperature and enthalpy of main phase transition and caused disappearing of the pretransition. NO was the least active. The reduction in the area of surface domains in GUVs was observed for NO. Compounds NO and 7BUNO resulted in very low secretion of calcein from liposomes (permeability < 3 %). The highest results were observed for 7MENO (88.4 %) and 7IPNO (78.5 %). When bacterial membrane permeability was investigated all compounds caused significant release of propidium iodide from S. aureus (31.6-87.0 % for concentration 128 µg/mL). In the case of E. faecalis, 7ETNO (75.7 %) and NO (28.8 %) were the most active. The rest of the tested compounds showed less activity (permeability < 13.9 %). The strong evidence was observed that antibacterial activity of the tested compounds may be associated with their interaction with bacterial membrane.


Asunto(s)
Membrana Celular , Flavanonas , Oximas , Staphylococcus aureus , Flavanonas/farmacología , Flavanonas/química , Oximas/farmacología , Oximas/química , Staphylococcus aureus/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Enterococcus faecalis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Liposomas Unilamelares/metabolismo , Liposomas Unilamelares/química , Rastreo Diferencial de Calorimetría , Permeabilidad de la Membrana Celular/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
4.
Colloids Surf B Biointerfaces ; 238: 113922, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678790

RESUMEN

The phytoalexin resveratrol has received increasing attention for its potential to prevent oxidative damages in human organism. To shed further light on molecular mechanisms of its interaction with lipid membranes we study resveratrol influence on the organisation and mechanical properties of biomimetic lipid systems composed of synthetic phosphatidylcholines with mixed aliphatic chains and different degree of unsaturation at sn-2 position (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, and 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine, PDPC). High-sensitivity isothermal titration calorimetric measurements reveal stronger spontaneous resveratrol association to polyunsaturated phosphatidylcholine bilayers compared to the monounsaturated ones resulting from hydrophobic interactions, conformational changes of the interacting species and desolvation of molecular surfaces. The latter is supported by the results from Laurdan spectroscopy of large unilamellar vesicles providing data on hydration at the glycerol backbones of glycerophospholipides. Higher degree of lipid order is reported for POPC membranes compared to PDPC. While resveratrol mostly enhances the hydration of PDPC membranes, increasing POPC dehydration is reported upon treatment with the polyphenol. Dehydration of the polyunsaturated lipid bilayers is measured only at the highest phytoalexin content studied (resveratrol/lipid 0.5 mol/mol) and is less pronounced than the effect reported for POPC membranes. The polyphenol effect on membrane mechanics is probed by thermal shape fluctuation analysis of quasispherical giant unilamellar vesicles. Markedly different trend of the bending elasticity with increasing resveratrol concentration is reported for the two types of phospholipid bilayers studied. POPC membranes become more rigid in the presence of resveratrol, whereas PDPC-containing bilayers exhibit softening at lower concentrations of the polyphenol followed by a slight growth without bilayer stiffening even at the highest resveratrol content explored. The new data on the structural organization and membrane properties of resveratrol-treated phosphatidylcholine membranes may underpin the development of future liposomal applications of the polyphenol in medicinal chemistry.


Asunto(s)
Membrana Dobles de Lípidos , Resveratrol , Resveratrol/química , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Glicerofosfolípidos/química , Glicerofosfolípidos/metabolismo , Estilbenos/química , Materiales Biomiméticos/química , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo
5.
J Phys Chem B ; 128(11): 2684-2696, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38450565

RESUMEN

Most antimicrobial peptides (AMPs) induce pore formation and a burst of lipid bilayers and plasma membranes. This causes severe leakage of the internal contents and cell death. The AMP PGLa forms nanopores in giant unilamellar vesicles (GUVs) comprising dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylglycerol (DOPG). We here elucidated the effect of the line tension of a prepore rim on PGLa-induced nanopore formation by investigating the interaction of PGLa with single GUVs comprising dioleoylphosphatidylethanolamine (DOPE)/DOPG (6:4) in buffer using the single GUV method. We found that PGLa forms nanopores in the GUV membrane, which evolved into a local burst and burst of GUVs. The rate of pore formation in DOPE/DOPG-GUVs was smaller than that in DOPC/DOPG-GUVs. PGLa is located only in the outer leaflet of a GUV bilayer just before a fluorescent probe AF647 leakage from the inside, indicating that this asymmetric distribution induces nanopore formation. PGLa-induced local burst and burst of GUVs were observed at 10 ms-time resolution. After nanopore formation started, dense particles and small vesicles appeared in the GUVs, followed by a decrease in the GUV diameter. The GUV was finally converted into smaller GUV or lipid membrane aggregates. We discuss the mechanisms of PGLa-induced nanopore formation and its direct evolution to a GUV burst.


Asunto(s)
Péptidos Antimicrobianos , Fosfatidiletanolaminas , Membrana Dobles de Lípidos/química , Liposomas Unilamelares/química , Colorantes Fluorescentes
6.
Biophys J ; 123(7): 901-908, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38449310

RESUMEN

A cell-penetrating peptide (CPP) is a short amino-acid sequence capable of efficiently translocating across the cellular membrane of mammalian cells. However, the potential of CPPs as a delivery vector is hampered by the strong reduction of its translocation efficiency when it bears an attached molecular cargo. To overcome this problem, we used previously developed diblock copolymers of elastin-like polypeptides (ELPBCs), which we end functionalized with TAT (transactivator of transcription), an archetypal CPP built from a positively charged amino acid sequence of the HIV-1 virus. These ELPBCs self-assemble into micelles at a specific temperature and present the TAT peptide on their corona. These micelles can recover the lost membrane affinity of TAT and can trigger interactions with the membrane despite the presence of a molecular cargo. Herein, we study the influence of membrane surface charge on the adsorption of TAT-functionalized ELP micelles onto giant unilamellar vesicles (GUVs). We show that the TAT-ELPBC micelles show an increased binding constant toward negatively charged membranes compared to neutral membranes, but no translocation is observed. The affinity of the TAT-ELPBC micelles for the GUVs displays a stepwise dependence on the lipid charge of the GUV, which, to our knowledge, has not been reported previously for interactions between peptides and lipid membranes. By unveiling the key steps controlling the interaction of an archetypal CPP with lipid membranes, through regulation of the charge of the lipid bilayer, our results pave the way for a better design of delivery vectors based on CPPs.


Asunto(s)
Péptidos de Penetración Celular , Micelas , Animales , Polipéptidos Similares a Elastina , Adsorción , Membrana Dobles de Lípidos/química , Péptidos/química , Liposomas Unilamelares/química , Péptidos de Penetración Celular/química , Mamíferos/metabolismo
7.
Colloids Surf B Biointerfaces ; 237: 113840, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508085

RESUMEN

Giant vesicles (GVs) are used to study the structures and functions of cells and cell membranes. Electroformation is the most commonly used method for GV preparation. However, the electroformation of GVs is hindered in highly concentrated ionic solutions, limiting their application as cell models for research under physiological conditions. In this study, giant multilayer vesicles were successfully generated in physiological saline using a modified electroformation device by adding an insulating layer between the two electrode plates. The influence of the electric frequency and strength on the electroformation of GVs in physiological saline was explored, and a possible mechanism for this improvement was assessed. It has been shown that an insulating layer between the two electrodes can improve the electroformation of GVs in physiological saline by increasing the electrical impedance, which is weakened by the saline solution, thereby restoring the reduced effective electric field strength. Furthermore, macromolecular plasmid DNA (pDNA) was successfully encapsulated in the electroformed GVs of the modified device. This modified electroformation method may be useful for generating eukaryotic cell models under physiological conditions.


Asunto(s)
ADN , Solución Salina , Solución Salina/análisis , Membrana Celular/química , Iones/análisis , ADN/análisis , Plásmidos , Liposomas Unilamelares/química
8.
Langmuir ; 40(9): 4719-4731, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38373285

RESUMEN

Transmembrane asymmetry is ubiquitous in cells, particularly with respect to lipids, where charged lipids are mainly restricted to one monolayer. We investigate the influence of anionic lipid asymmetry on the stability of giant unilamellar vesicles (GUVs), minimal plasma membrane models. To quantify asymmetry, we apply the fluorescence quenching assay, which is often difficult to reproduce, and caution in handling the quencher is generally underestimated. We first optimize this assay and then apply it to GUVs prepared with the inverted emulsion transfer protocol by using increasing fractions of anionic lipids restricted to one leaflet. This protocol is found to produce highly asymmetric bilayers but with ∼20% interleaflet mixing. To probe the stability of asymmetric versus symmetric membranes, we expose the GUVs to porating electric pulses and monitor the fraction of destabilized vesicles. The pulses open macropores, and the GUVs either completely recover or exhibit leakage or bursting/collapse. Residual oil destabilizes porated membranes, and destabilization is even more pronounced in asymmetrically charged membranes. This is corroborated by the measured pore edge tension, which is also found to decrease with increasing charge asymmetry. Using GUVs with imposed transmembrane pH asymmetry, we confirm that poration-triggered destabilization does not depend on the approach used to generate membrane asymmetry.


Asunto(s)
Lípidos , Liposomas Unilamelares , Membrana Celular/metabolismo , Liposomas Unilamelares/química , Membranas/metabolismo , Membrana Dobles de Lípidos/química
9.
Chem Phys Lipids ; 259: 105374, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38176612

RESUMEN

Soluble alpha-amylases play an important role in the catabolism of polysaccharides. In this work, we show that the malt α -amylase can interact with the lipid membrane and further alter its mechanical properties. Vesicle fluctuation spectroscopy is used for quantitative measurement of the membrane bending rigidity of phosphatidylcholines lipid vesicles from the shape fluctuation based on the whole contour of Giant Unilamellar Vesicles (GUVs). The bending rigidity of the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipid vesicles in water increases significantly with the presence of 0.14 micromolar alpha-amylase (AA) in the exterior solution. It appears that the enzyme present in the external solution interacts with the outer layer of the bilayer membrane, leading to an asymmetry of the solution on either side of the bilayer membrane and altering its elasticity. At AA concentration of 1.5 micromolars and above, changes in the morphology of the GUV membrane are observed. The interaction between AA in the external solution and the external leaflet causes the bilayer membrane to curve spontaneously, leading to the formation of outbuds, giving a positive spontaneous curvature of C0 ≤ 0.05 µm-1 at ≈ 1 mg / ml of the AA concentration. We validate and characterize its concentration-dependent role in stabilizing the membrane curvature. Our findings indicate that the involvement of the enzyme, depending on the concentration, can have a considerable effect on the mechanical characteristics of the membrane.


Asunto(s)
Membrana Dobles de Lípidos , alfa-Amilasas , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Liposomas Unilamelares/química
10.
Biophys Chem ; 307: 107181, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38232601

RESUMEN

The potentially toxic effects of emerging pollutant mixtures often deviate from the individual compound effects, presenting additive, synergistic, or agonistic interactions. This study delves into the complex world of emerging pollutants' mixtures, with a particular focus on their potential impact on unsaturated lipid DOPC (1,2-dioleoyl-sn-glycerol-3-phosphocholine) structured as both monolayers and bilayers, which are valuable tools for mimicking cell membranes. Specifically, we examine the effects of two common types of pollutants: antibiotics (amoxicillin) and dyes (methylene blue). Utilizing Langmuir monolayers, our research reveals a synergistic effect within the pollutant mixture, as evidenced by pressure-area isotherms and polarization-modulated infrared reflection absorption spectroscopy. We identify the specific chemical interactions contributing to this synergistic effect. Furthermore, through contrast phase microscopy experiments on giant unilamellar vesicles (bilayer system), we find that the individual pollutants and the mixture exhibit similar molecular effects on the bilayer, revealing that the molecular size is a key factor in the bilayer-mixture of pollutant interaction. This highlights the importance of considering molecular size in the interactions with bilayer systems. In summary, our research dissects the critical factors of chemical interactions and molecular size concerning the effects of pollutants on DOPC, serving as simplified models of cell membranes. This study underscores the significance of comprehending the molecular effects of emerging pollutants on human health and the development of models for exploring their intricate interactions with cell membranes.


Asunto(s)
Contaminantes Ambientales , Liposomas Unilamelares , Humanos , Liposomas Unilamelares/química , Azul de Metileno , Fosfatidilcolinas/química , Amoxicilina , Membrana Dobles de Lípidos/química
11.
Nat Chem ; 16(4): 564-574, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38049652

RESUMEN

Artificial cells are biomimetic microstructures that mimic functions of natural cells, can be applied as building blocks for molecular systems engineering, and host synthetic biology pathways. Here we report enzymatically synthesized polymer-based artificial cells with the ability to express proteins. Artificial cells were synthesized using biocatalytic atom transfer radical polymerization-induced self-assembly, in which myoglobin synthesizes amphiphilic block co-polymers that self-assemble into structures such as micelles, worm-like micelles, polymersomes and giant unilamellar vesicles (GUVs). The GUVs encapsulate cargo during the polymerization, including enzymes, nanoparticles, microparticles, plasmids and cell lysate. The resulting artificial cells act as microreactors for enzymatic reactions and for osteoblast-inspired biomineralization. Moreover, they can express proteins such as a fluorescent protein and actin when fed with amino acids. Actin polymerizes in the vesicles and alters the artificial cells' internal structure by creating internal compartments. Thus, biocatalytic atom transfer radical polymerization-induced self-assembly-derived GUVs can mimic bacteria as they are composed of a microscopic reaction compartment that contains genetic information for protein expression upon induction.


Asunto(s)
Células Artificiales , Polimerizacion , Micelas , Actinas , Polímeros/química , Liposomas Unilamelares/química
12.
Biochim Biophys Acta Biomembr ; 1866(2): 184256, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37989398

RESUMEN

Vesicular trafficking facilitates material transport between membrane-bound organelles. Membrane protein cargos are trafficked for relocation, recycling, and degradation during various physiological processes. In vitro fusion studies utilized synthetic lipid membranes to study the molecular mechanisms of vesicular trafficking and to develop synthetic materials mimicking the biological membrane trafficking. Various fusogenic conditions which can induce vesicular fusion have been used to establish synthetic systems that can mimic biological systems. Despite these efforts, the mechanisms underlying vesicular trafficking of membrane proteins remain limited and robust in vitro methods that can construct synthetic trafficking systems for membrane proteins between large membranes (>1 µm2) are unavailable. Here, we provide data to show the spontaneous transfer of small membrane-bound peptides (∼4 kD) between a supported lipid bilayer (SLB) and giant unilamellar vesicles (GUVs). We found that the contact between the SLB and GUVs led to the occasional but notable transfer of membrane-bound peptides in a physiological saline buffer condition (pH 7.4, 150 mM NaCl). Quantitative and dynamic time-lapse analyses suggested that the observed exchange occurred through the formation of hemi-fusion stalks between the SLB and GUVs. Larger protein cargos with a size of ∼77 kD could not be transferred between the SLB and GUVs, suggesting that the larger-sized cargos limited diffusion across the hemi-fusion stalk, which was predicted to have a highly curved structure. Compositional study showed Ni-chelated lipid head group was the essential component catalyzing the process. Our system serves as an example synthetic platform that enables the investigation of small-peptide trafficking between synthetic membranes and reveals hemi-fused lipid bridge formation as a mechanism of peptide transfer.


Asunto(s)
Membrana Dobles de Lípidos , Liposomas Unilamelares , Liposomas Unilamelares/química , Membrana Dobles de Lípidos/química , Péptidos , Proteínas de la Membrana
13.
Langmuir ; 40(1): 657-667, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38100549

RESUMEN

Vesicles formed by phospholipids are promising candidates for drug delivery. It is known that the lipid composition affects properties such as the rigidity-fluidity of the membrane and that it influences the bilayer permeability, but sometimes sophisticated techniques are selected to monitor them. In this work, we study the bilayer of different unilamellar vesicles composed of different lipids (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC, and lecithin) and diverse techniques such as extruder and electrospun templates and using 6-propionyl-2-(N,N-dimethyl) aminonaphthalene (PRODAN) and its photophysics. Moreover, we were able to monitor the influence of cholesterol on the bilayers. We demonstrate that the bilayer properties can be evaluated using the emission feature of the molecular probe PRODAN. This fluorescent probe gives relevant information on the polarity and fluidity of the microenvironment for unilamellar vesicles formed by two different methods. The PRODAN emission at 434 nm suggests that the bilayer properties significantly change if DOPC or lecithin is used in the vesicle preparation especially in their fluidity. Moreover, cholesterol induces alterations in the bilayer's structural and microenvironmental properties to a greater or lesser degree in both vesicles. Thus, we propose an easy and elegant way to evaluate physicochemical properties, which is fundamental for manufacturing vesicles as a drug delivery system, simply by monitoring the molecular probe emission band centered at 434 nm, which corresponds to the PRODAN species deep inside the bilayer.


Asunto(s)
Fosfolípidos , Liposomas Unilamelares , Fosfolípidos/química , Liposomas Unilamelares/química , Lecitinas , Membrana Dobles de Lípidos/química , Sondas Moleculares , Colesterol/química , Fosfatidilcolinas/química
14.
J Am Chem Soc ; 145(50): 27521-27530, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38056605

RESUMEN

Giant unilamellar vesicles (GUVs) are a widely used model system to interrogate lipid phase behavior, study biomembrane mechanics, reconstitute membrane proteins, and provide a chassis for synthetic cells. It is generally assumed that the composition of individual GUVs is the same as the nominal stock composition; however, there may be significant compositional variability between individual GUVs. Although this compositional heterogeneity likely impacts phase behavior, the function and incorporation of membrane proteins, and the encapsulation of biochemical reactions, it has yet to be directly quantified. To assess heterogeneity, we use secondary ion mass spectrometry (SIMS) to probe the composition of individual GUVs using non-perturbing isotopic labels. Both 13C- and 2H-labeled lipids are incorporated into a ternary mixture, which is then used to produce GUVs via gentle hydration or electroformation. Simultaneous detection of seven different ion species via SIMS allows for the concentration of 13C- and 2H-labeled lipids in single GUVs to be quantified using calibration curves, which correlate ion intensity to composition. Additionally, the relative concentration of 13C- and 2H-labeled lipids is assessed for each GUV via the ion ratio 2H-/13C-, which is highly sensitive to compositional differences between individual GUVs and circumvents the need for calibration by using standards. Both quantification methods suggest that gentle hydration produces GUVs with greater compositional variability than those formed by electroformation. However, both gentle hydration and electroformation display standard deviations in composition (n = 30 GUVs) on the order of 1-4 mol %, consistent with variability seen in previous indirect measurements.


Asunto(s)
Células Artificiales , Liposomas Unilamelares , Liposomas Unilamelares/química , Lípidos/química , Espectrometría de Masa de Ion Secundario , Proteínas de la Membrana
15.
Langmuir ; 39(43): 15189-15199, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37729012

RESUMEN

Although lateral and inter-leaflet lipid-lipid interactions in cell membranes play roles in maintaining asymmetric lipid bilayers, the molecular basis of these interactions is largely unknown. Here, we established a method to determine the distribution ratio of phospholipids between the outer and inner leaflets of asymmetric large unilamellar vesicles (aLUVs). The trimethylammonium group, (CH3)3N+, in the choline headgroup of N-palmitoyl-sphingomyelin (PSM) and 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) gave rise to a relatively sharp signal in magic-angle spinning solid-state 1H NMR (MAS-ss-1H NMR). PSM and DOPC have the same headgroup structure, but one phospholipid was selectively observed by deuterating the trimethylammonium group of the other phospholipid. The addition of Pr3+ to the medium surrounding aLUVs selectively shifted the chemical shift of the (CH3)3N+ group in the outer leaflet from that in the inner leaflet, which allowed estimation of the inter-leaflet distribution ratio of the unlabeled lipid in aLUVs. Using this method, we evaluated the translocation of PSM and DOPC between the outer and inner leaflets of the cholesterol-containing aLUVs, with PSM and DOPC mostly distributed in the outer and inner leaflets, respectively, immediately after aLUV preparation; their flip and flop rates were approximately 2.7 and 6.4 × 10-6 s-1, respectively. During the passive symmetrization of aLUVs, the lipid translocation rate was decreased due to changes in the membrane order, probably through the formation of the registered liquid-ordered domains. Comparison of the result with that of symmetric LUVs revealed that lipid asymmetry may not significantly affect the lipid translocation rates, while the lateral lipid-lipid interaction may be a dominant factor in lipid translocation under these conditions. These findings highlight the importance of considering the effects of lateral lipid interactions within the same leaflet on lipid flip-flop rates when evaluating the asymmetry of phospholipids in the cell membrane.


Asunto(s)
Fosfolípidos , Esfingomielinas , Fosfolípidos/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Membrana Dobles de Lípidos/química , Lecitinas , Liposomas Unilamelares/química
16.
Methods ; 219: 16-21, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37683900

RESUMEN

Use of cationic lipid vesicles (liposomes) can yield large amounts of nucleic acid entrapped inside the vesicles and/or bound to the external surface of the vesicles. To show a method to prepare asymmetric lipid vesicles (liposomes) with high amounts of entrapped nucleic acid is possible, symmetric and asymmetric lipid vesicles composed of mixtures of neutral (zwitterionic), anionic, and/or cationic phospholipids were formed in the presence of oligo DNA. For symmetric large unilamellar vesicles nucleic acid association with vesicles was roughly 100 times greater for vesicles with a net cationic charge than for vesicles having a net neutral or anionic net charge. A high degree of association between nucleic acid and lipid was also achieved using asymmetric large unilamellar vesicles with a net cationic charge in their inner leaflet, even when they had an anionic charge in their outer leaflet. In contrast, asymmetric vesicles in which only the outer leaflet had a net cationic charge had only low amounts of vesicle-associated nucleic acid, similar in amount to the amount of nucleic acid associated with asymmetric vesicles with an outer leaflet having a net anionic charge. These results indicate that in asymmetric vesicles with cationic lipid enriched inner leaflets nucleic acid is largely entrapped inside the vesicle lumen rather than bound to their external surface, and that asymmetric vesicles can be used to trap high amounts of nucleic acid even when using a lipid composition in the outer leaflet of a lipid vesicle that does not associate with nucleic acids. Such asymmetrically charged vesicles should have applications in studies of membrane protein-nucleic acid interactions as well as in studies of how membrane charge asymmetry can influence membrane protein structure, orientation, and function.


Asunto(s)
Liposomas , Ácidos Nucleicos , Liposomas/química , Liposomas Unilamelares/química , Fosfolípidos/química , Proteínas de la Membrana , Membrana Dobles de Lípidos
17.
Langmuir ; 39(32): 11337-11344, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37530182

RESUMEN

We have observed ultrasmall unilamellar vesicles, with diameters of less than 20 nm, in mixtures of the tricyclic antidepressant drug amitriptyline hydrochloride (AMT) and the unsaturated zwitterionic phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) in physiological saline solution. The size and shape of spontaneously formed self-assembled aggregates have been characterized using complementary techniques, i.e., small-angle neutron and X-ray scattering (SANS and SAXS) and cryo-transmission electron microscopy (cryo-TEM). We observe rodlike mixed micelles in more concentrated samples that grow considerably in length upon dilution, and a transition from micelles to vesicles is observed as the concentration approaches the critical micelle concentration of AMT. Unlike the micelles, the spontaneously formed vesicles decrease in size with each step of dilution, and ultrasmall unilamellar vesicles, with diameters as small as about 15 nm, were observed at the lowest concentrations. The spontaneously formed ultrasmall unilamellar vesicles maintain their size for as long we have investigated them (i.e., several months). To the best of our knowledge, such small vesicles have never before been reported to form spontaneously in a biocompatible phospholipid-based system. Most interestingly, the size of the vesicles was observed to be strongly dependent on the chemical structure of the phospholipid, and in mixtures of AMT and the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), the vesicles were observed to be considerably larger in size. The self-assembly behavior in the phospholipid-drug surfactant system in many ways resembles the formation of equilibrium micelles and vesicles in mixed anionic/cationic surfactant systems.


Asunto(s)
Fosfolípidos , Liposomas Unilamelares , Fosfolípidos/química , Liposomas Unilamelares/química , Micelas , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Tensoactivos/química
18.
Langmuir ; 39(32): 11231-11237, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37526639

RESUMEN

We have studied the kinetics of pore formation in giant unilamellar vesicles (GUV) with the antimicrobial peptide nisin. The role of charged lipid composition in the rate of pore formation by nisin in the vesicle membrane is investigated using fluorescence microscopy. We propose a model and obtain an analytical expression for the variation in the fluorescence intensity of a GUV as a function of time. We find that the analytical equation fits well to the experimental data, and the membrane surface potential can be estimated from the fit parameters. We further show that the formation of multiple pores on the vesicle membrane is affected by the charged lipid composition of the membrane.


Asunto(s)
Nisina , Liposomas Unilamelares , Liposomas Unilamelares/química , Nisina/farmacología , Cinética , Membrana Celular/metabolismo , Lípidos
19.
Biophys J ; 122(20): 4011-4022, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37649254

RESUMEN

Lysolipids such as lauroyl, myristoyl, and palmitoyl lysophosphatidylcholine (LPC) insert into the outer leaflet of liposomes but do not flip to the inner leaflet over many hours. This way, they create asymmetry stress between the intrinsic areas of the two leaflets. We have studied how this stress is relaxed with particular emphasis on the budding and fission of small (diameter 20-30 nm) daughter vesicles (DVs). Asymmetric flow field-flow fractionation was utilized to quantify the extent of budding from large unilamellar vesicles after exposure to LPC. Budding starts at a low threshold of the order of 2 mol% LPC in the outer (and ≈0 mol% LPC in the inner) leaflet. We see reason to assume that the fractional fluorescence intensity from DVs is a good approximation for the fraction of membrane lipid, POPC, transferred into DVs. Accordingly, budding starts with a "budding power" of ≈6 POPC molecules budding off per LPC added, corresponding to a more than 10-fold accumulation of LPC in the outer leaflet of DVs to ≈24 mol%. As long as budding is possible, little strain is built up in the membranes, a claim supported by the lack of changes in limiting fluorescence anisotropy, rotational correlation time, and fluorescence lifetime of symmetrically and asymmetrically inserted TMA-DPH. At physiological osmolarity, budding is typically limited to 20-30% of budded fraction with some batch-to-batch variation, but independent of the LPC species. We hypothesize that the budding limit is determined by the excess area of the liposomes upon preparation, which is then used up upon budding given the larger area-to-volume ratio of smaller liposomes. As the mother vesicles approach ideal spheres, budding must stop. This is qualitatively supported by increased and decreased budding limits of osmotically predeflated and preinflated vesicles, respectively.


Asunto(s)
Liposomas , Liposomas Unilamelares , Liposomas Unilamelares/química , Lípidos de la Membrana , Polarización de Fluorescencia , Fosfatidilcolinas/química , Membrana Dobles de Lípidos/química
20.
Biointerphases ; 18(3)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37289033

RESUMEN

Cell-sized giant unilamellar vesicles (GUVs) are an ideal tool for understanding lipid membrane structure and properties. Label-free spatiotemporal images of their membrane potential and structure would greatly aid the quantitative understanding of membrane properties. In principle, second harmonic imaging is a great tool to do so, but the low degree of spatial anisotropy that arises from a single membrane limits its application. Here, we advance the use of wide-field high throughput SH imaging by SH imaging with the use of ultrashort laser pulses. We achieve a throughput improvement of 78% of the maximum theoretical value and demonstrate subsecond image acquisition times. We show how the interfacial water intensity can be converted into a quantitative membrane potential map. Finally, for GUV imaging, we compare this type of nonresonant SH imaging to resonant SH imaging and two photon imaging using fluorophores.


Asunto(s)
Microscopía de Generación del Segundo Armónico , Liposomas Unilamelares , Liposomas Unilamelares/química , Agua/química , Colorantes Fluorescentes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA