Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Brain ; 135(Pt 2): 469-82, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22323514

RESUMEN

Cobblestone lissencephaly represents a peculiar brain malformation with characteristic radiological anomalies, defined as cortical dysplasia combined with dysmyelination, dysplastic cerebellum with cysts and brainstem hypoplasia. Cortical dysplasia results from neuroglial overmigration into the arachnoid space, forming an extracortical layer, responsible for agyria and/or 'cobblestone' brain surface and ventricular enlargement. The underlying mechanism is a disruption of the glia limitans, the outermost layer of the brain. Cobblestone lissencephaly is pathognomonic of a continuum of autosomal recessive diseases with cerebral, ocular and muscular deficits, Walker-Warburg syndrome, muscle-eye-brain and Fukuyama muscular dystrophy. Mutations in POMT1, POMT2, POMGNT1, LARGE, FKTN and FKRP genes attributed these diseases to α-dystroglycanopathies. However, studies have not been able to identify causal mutations in the majority of patients and to establish a clear phenotype/genotype correlation. Therefore, we decided to perform a detailed neuropathological survey and molecular screenings in 65 foetal cases selected on the basis of histopathological criteria. After sequencing the six genes of α-dystroglycanopathies, a causal mutation was observed in 66% of cases. On the basis of a ratio of severity, three subtypes clearly emerged. The most severe, which we called cobblestone lissencephaly A, was linked to mutations in POMT1 (34%), POMT2 (8%) and FKRP (1.5%). The least severe, cobblestone lissencephaly C, was linked to POMGNT1 mutations (18%). An intermediary type, cobblestone lissencephaly B, was linked to LARGE mutations (4.5%) identified for the first time in foetuses. We conclude that cobblestone lissencephaly encompasses three distinct subtypes of cortical malformations with different degrees of neuroglial ectopia into the arachnoid space and cortical plate disorganization regardless of gestational age. In the cerebellum, histopathological changes support the novel hypothesis that abnormal lamination arises from a deficiency in granule cells. Our studies demonstrate the positive impact of histoneuropathology on the identification of α-dystroglycanopathies found in 66% of cases, while with neuroimaging criteria and biological values, mutations are found in 32-50% of patients. Interestingly, our morphological classification was central in the orientation of genetic screening of POMT1, POMT2, POMGNT1, LARGE and FKRP. Despite intensive research, one-third of our cases remained unexplained; suggesting that other genes and/or pathways may be involved. This material offers a rich resource for studies on the affected neurodevelopmental processes of cobblestone lissencephaly and on the identification of other responsible gene(s)/pathway(s).


Asunto(s)
Encéfalo/patología , Lisencefalia de Cobblestone/genética , Lisencefalia de Cobblestone/patología , Distroglicanos/genética , Encéfalo/metabolismo , Lisencefalia de Cobblestone/metabolismo , Distroglicanos/metabolismo , Femenino , Feto , Humanos , Recién Nacido , Masculino , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Pentosiltransferasa , Proteínas/genética , Proteínas/metabolismo
2.
Proc Natl Acad Sci U S A ; 108(31): 12925-30, 2011 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-21768377

RESUMEN

GPR56, an orphan G protein-coupled receptor (GPCR) from the family of adhesion GPCRs, plays an indispensable role in cortical development and lamination. Mutations in the GPR56 gene cause a malformed cerebral cortex in both humans and mice that resembles cobblestone lissencephaly, which is characterized by overmigration of neurons beyond the pial basement membrane. However, the molecular mechanisms through which GPR56 regulates cortical development remain elusive due to the unknown status of its ligand. Here we identify collagen, type III, alpha-1 (gene symbol Col3a1) as the ligand of GPR56 through an in vitro biotinylation/proteomics approach. Further studies demonstrated that Col3a1 null mutant mice exhibit overmigration of neurons beyond the pial basement membrane and a cobblestone-like cortical malformation similar to the phenotype seen in Gpr56 null mutant mice. Functional studies suggest that the interaction of collagen III with its receptor GPR56 inhibits neural migration in vitro. As for intracellular signaling, GPR56 couples to the Gα(12/13) family of G proteins and activates RhoA pathway upon ligand binding. Thus, collagen III regulates the proper lamination of the cerebral cortex by acting as the major ligand of GPR56 in the developing brain.


Asunto(s)
Membrana Basal/metabolismo , Corteza Cerebral/metabolismo , Colágeno Tipo III/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Membrana Basal/embriología , Membrana Basal/ultraestructura , Encéfalo/embriología , Encéfalo/metabolismo , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/embriología , Lisencefalia de Cobblestone/genética , Lisencefalia de Cobblestone/metabolismo , Colágeno Tipo III/genética , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Humanos , Immunoblotting , Inmunohistoquímica , Inmunoprecipitación , Ratones , Ratones Noqueados , Microscopía Inmunoelectrónica , Células 3T3 NIH , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Unión Proteica , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes/farmacología , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
3.
Stem Cells ; 28(3): 399-406, 2010 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-20049903

RESUMEN

Alzheimer's disease amyloid precursor protein (APP) has been implicated in many neurobiologic processes, but supporting evidence remains indirect. Studies are confounded by the existence of two partially redundant APP homologues, APLP1 and APLP2. APP/APLP1/APLP2 triple knockout (APP tKO) mice display cobblestone lissencephaly and are perinatally lethal. To circumvent this problem, we generated APP triple knockout embryonic stem (ES) cells and differentiated these to APP triple knockout neurons in vitro and in vivo. In comparison with wild-type (WT) ES cell-derived neurons, APP tKO neurons formed equally pure neuronal cultures, had unaltered in vitro migratory capacities, had a similar acquisition of polarity, and were capable of extending long neurites and forming active excitatory synapses. These data were confirmed in vivo in chimeric mice with APP tKO neurons expressing the enhanced green fluorescent protein (eGFP) present in a WT background brain. The results suggest that the loss of the APP family of proteins has no major effect on these critical neuronal processes and that the apparent multitude of functions in which APP has been implicated might be characterized by molecular redundancy. Our stem cell culture provides an excellent tool to circumvent the problem of lack of viability of APP/APLP triple knockout mice and will help to explore the function of this intriguing protein further in vitro and in vivo.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Encéfalo/embriología , Encéfalo/metabolismo , Diferenciación Celular/fisiología , Células Madre Embrionarias/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Animales , Encéfalo/citología , Técnicas de Cultivo de Célula , Movimiento Celular/genética , Polaridad Celular/genética , Células Cultivadas , Quimera , Lisencefalia de Cobblestone/genética , Lisencefalia de Cobblestone/metabolismo , Lisencefalia de Cobblestone/fisiopatología , Células Madre Embrionarias/citología , Femenino , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones , Ratones Noqueados , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/fisiopatología , Vías Nerviosas/citología , Vías Nerviosas/embriología , Vías Nerviosas/metabolismo , Neuritas/metabolismo , Neuritas/ultraestructura , Neuronas/citología
4.
Neuropathology ; 28(3): 333-40, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18069971

RESUMEN

Walker-Warburg syndrome (WWS) is an autosomal recessive disorder with alterations affecting the CNS that are characteristic of type-II lissencephaly and dysplasia/hypoplasia of the cerebellum. Other than these features, WWS is typically also accompanied by muscular dystrophy and abnormalities affecting the eyes. There is at present little information on the state of microglial and mononuclear phagocytic cell responses within the brain in WWS. In this case report, we present evidence for focal and differential activation of mononuclear phagocytes specifically confined to the dysplastic cerebellum of an infant at 5 months of age, diagnosed with WWS.


Asunto(s)
Cerebelo/inmunología , Lisencefalia de Cobblestone/inmunología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Cerebelo/metabolismo , Cerebelo/patología , Quimiocina CCL2/metabolismo , Lisencefalia de Cobblestone/metabolismo , Lisencefalia de Cobblestone/patología , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Lactante , Lectinas/metabolismo , Activación de Macrófagos/fisiología , Macrófagos/metabolismo , Masculino , Microglía/inmunología , Microglía/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...