Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.567
Filtrar
1.
Food Res Int ; 183: 114175, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760120

RESUMEN

Lactose hydrolysed concentrated milk was prepared using ß-galactosidase enzyme (4.76U/mL) with a reaction period of 12 h at 4 °C. Addition of polysaccharides (5 % maltodextrin/ß-cyclodextrin) to concentrated milk either before or after lactose hydrolysis did not result in significant differences (p > 0.05) in degree of hydrolysis (% DH) of lactose and residual lactose content (%). Three different inlet temperatures (165 °C, 175 °C and 185 °C) were used for the preparation of powders which were later characterised based on physico-chemical and maillard browning characteristics. Moisture content, solubility and available lysine content of the powders decreased significantly, whereas, browning parameters i.e., browning index, 5-hydroxymethylfurfural, furosine content increased significantly (p < 0.05) with an increase in inlet air temperature. The powder was finally prepared with 5 % polysaccharide and an inlet air temperature of 185 °C which reduced maillard browning. Protein-polysaccharide interactions were identified using Fourier Transform infrared spectroscopy, fluorescence spectroscopy and determination of free amino groups in the powder samples. Maltodextrin and ß-cyclodextrin containing powder samples exhibited lower free amino groups and higher degree of graft value as compared to control sample which indicated protein-polysaccharide interactions. Results obtained from Fourier Transform infrared spectroscopy also confirmed strong protein-polysaccharide interactions, moreover a significant decrease in fluorescence intensity was also observed in the powder samples. These interactions between the proteins and polysaccharides reduced the maillard browning in powders.


Asunto(s)
Furaldehído , Lactosa , Reacción de Maillard , Leche , Polisacáridos , Polvos , Lactosa/química , Polisacáridos/química , Leche/química , Animales , Espectroscopía Infrarroja por Transformada de Fourier , Furaldehído/análogos & derivados , Furaldehído/química , beta-Galactosidasa/metabolismo , beta-Ciclodextrinas/química , Hidrólisis , Secado por Pulverización , Temperatura , Lisina/química , Lisina/análogos & derivados , Solubilidad , Espectrometría de Fluorescencia , Proteínas de la Leche/química , Manipulación de Alimentos/métodos
2.
Zhonghua Xin Xue Guan Bing Za Zhi ; 52(4): 405-412, 2024 Apr 24.
Artículo en Chino | MEDLINE | ID: mdl-38644256

RESUMEN

Objective: To evaluate the predictive value of combined serum levels of trimethylamine N-oxide (TMAO) and trimethyllysine (TML) for poor prognosis in patients with heart failure. Methods: This single-center prospective cohort study included hospitalized patients with heart failure and complete baseline data from the Department of Cardiology at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine from June 2017 to December 2020. Patients were categorized into four groups based on median serum levels of TMAO and TML after admission: TMAO low level TML low level group (TMAO<9.7 µmol/L, TML<0.73 µmol/L), TMAO low level TML high level group (TMAO<9.7 µmol/L, TML≥0.73 µmol/L), TMAO high level TML low level group (TMAO≥9.7 µmol/L, TML<0.73 µmol/L) and TMAO high level TML high level group (TMAO≥9.7 µmol/L, TML≥0.73 µmol/L). The primary endpoint was a composite endpoint of cardiovascular death and readmission for heart failure. Multiple factor Cox regression analysis was conducted to evaluate the correlation between serum TMAO and TML levels and poor prognosis in patients with heart failure. Results: A total of 471 patients with heart failure were included, with an mean age of (62.5±12.0) years and a median follow-up time of 1.61 (1.06, 2.90) years. Multivariate Cox regression analysis showed that after adjusting for age, gender, and traditional risk factors, the TMAO high level TML high level group had a higher incidence of primary endpoint events compared to the TMAO low level TML low level group (HR=1.71, 95%CI 1.05-2.77, P=0.03). Conclusion: Elevated serum levels of both TMAO and TML can effectively predict the occurrence of long-term adverse events in patients with heart failure.


Asunto(s)
Insuficiencia Cardíaca , Lisina/análogos & derivados , Metilaminas , Humanos , Insuficiencia Cardíaca/sangre , Metilaminas/sangre , Pronóstico , Estudios Prospectivos , Femenino , Masculino , Valor Predictivo de las Pruebas , Factores de Riesgo , Persona de Mediana Edad
3.
Breast Cancer Res ; 26(1): 70, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654332

RESUMEN

BACKGROUND: Basal-like breast cancer (BLBC) is the most aggressive subtype of breast cancer due to its aggressive characteristics and lack of effective therapeutics. However, the mechanism underlying its aggressiveness remains largely unclear. S-adenosylmethionine decarboxylase proenzyme (AMD1) overexpression occurs specifically in BLBC. Here, we explored the potential molecular mechanisms and functions of AMD1 promoting the aggressiveness of BLBC. METHODS: The potential effects of AMD1 on breast cancer cells were tested by western blotting, colony formation, cell proliferation assay, migration and invasion assay. The spermidine level was determined by high performance liquid chromatography. The methylation status of CpG sites within the AMD1 promoter was evaluated by bisulfite sequencing PCR. We elucidated the relationship between AMD1 and Sox10 by ChIP assays and quantitative real-time PCR. The effect of AMD1 expression on breast cancer cells was evaluated by in vitro and in vivo tumorigenesis model. RESULTS: In this study, we showed that AMD1 expression was remarkably elevated in BLBC. AMD1 copy number amplification, hypomethylation of AMD1 promoter and transcription activity of Sox10 contributed to the overexpression of AMD1 in BLBC. AMD1 overexpression enhanced spermidine production, which enhanced eIF5A hypusination, activating translation of TCF4 with multiple conserved Pro-Pro motifs. Our studies showed that AMD1-mediated metabolic system of polyamine in BLBC cells promoted tumor cell proliferation and tumor growth. Clinically, elevated expression of AMD1 was correlated with high grade, metastasis and poor survival, indicating poor prognosis of breast cancer patients. CONCLUSION: Our work reveals the critical association of AMD1-mediated spermidine-eIF5A hypusination-TCF4 axis with BLBC aggressiveness, indicating potential prognostic indicators and therapeutic targets for BLBC.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Factor 5A Eucariótico de Iniciación de Traducción , Regulación Neoplásica de la Expresión Génica , Lisina/análogos & derivados , Factores de Iniciación de Péptidos , Proteínas de Unión al ARN , Espermidina , Factor de Transcripción 4 , Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/genética , Ratones , Animales , Espermidina/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Factor de Transcripción 4/metabolismo , Factor de Transcripción 4/genética , Línea Celular Tumoral , Regiones Promotoras Genéticas , Adenosilmetionina Descarboxilasa/metabolismo , Adenosilmetionina Descarboxilasa/genética , Movimiento Celular/genética , Metilación de ADN , Pronóstico , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción SOXE/genética
4.
Phys Med ; 121: 103366, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657425

RESUMEN

The purpose of this investigation is to quantify the spatial heterogeneity of prostate-specific membrane antigen (PSMA) positron emission tomography (PET) uptake within parotid glands. We aim to quantify patterns in well-defined regions to facilitate further investigations. Furthermore, we investigate whether uptake is correlated with computed tomography (CT) texture features. METHODS: Parotid glands from [18F]DCFPyL PSMA PET/CT images of 30 prostate cancer patients were analyzed. Uptake patterns were assessed with various segmentation schemes. Spearman's rank correlation coefficient was calculated between PSMA PET uptake and feature values of a Grey Level Run Length Matrix using a long and short run length emphasis (GLRLML and GLRLMS) in subregions of the parotid gland. RESULTS: PSMA PET uptake was significantly higher (p < 0.001) in lateral/posterior regions of the glands than anterior/medial regions. Maximum uptake was found in the lateral half of parotid glands in 50 out of 60 glands. The difference in SUVmean between parotid halves is greatest when parotids are divided by a plane separating the anterior/medial and posterior/lateral halves symmetrically (out of 120 bisections tested). PSMA PET uptake was significantly correlated with CT GLRLML (p < 0.001), and anti-correlated with CT GLRLMS (p < 0.001). CONCLUSION: Uptake of PSMA PET is heterogeneous within parotid glands, with uptake biased towards lateral/posterior regions. Uptake within parotid glands was strongly correlated with CT texture feature maps.


Asunto(s)
Glutamato Carboxipeptidasa II , Lisina/análogos & derivados , Glándula Parótida , Tomografía Computarizada por Tomografía de Emisión de Positrones , Urea/análogos & derivados , Humanos , Glándula Parótida/diagnóstico por imagen , Glándula Parótida/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Masculino , Ligandos , Antígenos de Superficie/metabolismo , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Transporte Biológico , Anciano , Persona de Mediana Edad
5.
Sci Rep ; 14(1): 9091, 2024 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643270

RESUMEN

N-acetyl-L-cysteine (L-NAC) is a proposed therapeutic for opioid use disorder. This study determined whether co-injections of L-NAC (500 µmol/kg, IV) or its highly cell-penetrant analogue, L-NAC methyl ester (L-NACme, 500 µmol/kg, IV), prevent acquisition of acute physical dependence induced by twice-daily injections of fentanyl (125 µg/kg, IV), and overcome acquired dependence to these injections in freely-moving male Sprague Dawley rats. The injection of the opioid receptor antagonist, naloxone HCl (NLX; 1.5 mg/kg, IV), elicited a series of withdrawal phenomena (i.e. behavioral and cardiorespiratory responses, hypothermia and body weight loss) in rats that received 5 or 10 injections of fentanyl and similar numbers of vehicle co-injections. With respect to the development of dependence, the NLX-precipitated withdrawal phenomena were reduced in rats that received had co-injections of L-NAC, and more greatly reduced in rats that received co-injections of L-NACme. In regard to overcoming established dependence, the NLX-precipitated withdrawal phenomena in rats that had received 10 injections of fentanyl (125 µg/kg, IV) were reduced in rats that had received co-injections of L-NAC, and more greatly reduced in rats that received co-injections of L-NACme beginning with injection 6 of fentanyl. This study provides compelling evidence that co-injections of L-NAC and L-NACme prevent the acquisition of physical dependence and overcome acquired dependence to fentanyl in male rats. The higher efficacy of L-NACme is likely due to its greater cell penetrability in brain regions mediating dependence to fentanyl and interaction with intracellular signaling cascades, including redox-dependent processes, responsible for the acquisition of physical dependence to fentanyl.


Asunto(s)
Acetilcisteína/análogos & derivados , Lisina/análogos & derivados , Dependencia de Morfina , Síndrome de Abstinencia a Sustancias , Ratas , Masculino , Animales , Fentanilo/farmacología , Ratas Sprague-Dawley , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología
6.
Epigenetics ; 19(1): 2343593, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38643489

RESUMEN

Previous studies have indicated that histone methylations act as mediators in the relationship between oestrogen receptor (ER) and breast cancer prognosis, yet the mediating role has never been assessed. Therefore, we investigated seven histone methylations (H3K4me2, H3K4me3, H3K9me1, H3K9me2, H3K9me3, H3K27me3 and H4K20me3) to determine whether they mediate the prognostic impact of ER on breast cancer. Tissue microarrays were constructed from 1045 primary invasive breast tumours, and the expressions of histone methylations were examined by immunohistochemistry. Multifactorial logistic regression was used to analyse the associations between ER and histone methylations. Cox proportional hazard model was performed to assess the relationship between histone methylations and breast cancer prognosis. The mediation effects of histone methylations were evaluated by model-based causal mediation analysis. High expressions of H3K9me1, H3K9me2, H3K4me2, H3K27me3, H4K20me3 were associated with ER positivity, while high expression of H3K9me3 was associated ER negativity. Higher H3K9me2, H3K4me2 and H4K20me3 levels were associated with better prognosis. The association between ER and breast cancer prognosis was most strongly mediated by H4K20me3 (29.07% for OS; 22.42% for PFS), followed by H3K4me2 (11.5% for OS; 10.82% for PFS) and least by H3K9me2 (9.35% for OS; 7.34% for PFS). H4K20me3, H3K4me2 and H3K9me2 mediated the relationship between ER and breast cancer prognosis, which would help to further elucidate the impact of ER on breast cancer prognosis from an epigenetic perspective and provide new ideas for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Histonas , Lisina/análogos & derivados , Receptores de Estrógenos , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Histonas/metabolismo , Histonas/genética , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Persona de Mediana Edad , Pronóstico , Metilación , Anciano , Adulto
7.
Angew Chem Int Ed Engl ; 63(22): e202403098, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38545954

RESUMEN

Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N-terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug-binding LmrR and nucleotide-binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D-proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1-benzyl-1,4-dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro-R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR-based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts.


Asunto(s)
Aminas , Código Genético , Tetrahidrofolato Deshidrogenasa , Aminas/química , Aminas/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Biocatálisis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Ingeniería de Proteínas , Lisina/química , Lisina/metabolismo , Lisina/análogos & derivados
8.
Nat Struct Mol Biol ; 31(5): 810-816, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38538914

RESUMEN

The frequency of errors upon decoding of messenger RNA by the bacterial ribosome is low, with one misreading event per 1 × 104 codons. In the universal genetic code, the AUN codon box specifies two amino acids, isoleucine and methionine. In bacteria and archaea, decoding specificity of the AUA and AUG codons relies on the wobble avoidance strategy that requires modification of C34 in the anticodon loop of isoleucine transfer RNAIleCAU (tRNAIleCAU). Bacterial tRNAIleCAU with 2-lysylcytidine (lysidine) at the wobble position deciphers AUA while avoiding AUG. Here we report cryo-electron microscopy structures of the Escherichia coli 70S ribosome complexed with elongation factor thermo unstable (EF-Tu) and isoleucine-tRNAIleLAU in the process of decoding AUA and AUG. Lysidine in tRNAIleLAU excludes AUG by promoting the formation of an unusual Hoogsteen purine-pyrimidine nucleobase geometry at the third position of the codon, weakening the interactions with the mRNA and destabilizing the EF-Tu ternary complex. Our findings elucidate the molecular mechanism by which tRNAIleLAU specifically decodes AUA over AUG.


Asunto(s)
Microscopía por Crioelectrón , Escherichia coli , Modelos Moleculares , Factor Tu de Elongación Peptídica , ARN de Transferencia de Isoleucina , Ribosomas , Factor Tu de Elongación Peptídica/metabolismo , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Ribosomas/metabolismo , Ribosomas/ultraestructura , Ribosomas/química , ARN de Transferencia de Isoleucina/metabolismo , ARN de Transferencia de Isoleucina/química , ARN de Transferencia de Isoleucina/genética , Codón/metabolismo , Codón/genética , Anticodón/química , Anticodón/metabolismo , Conformación de Ácido Nucleico , Isoleucina/metabolismo , Isoleucina/química , ARN Mensajero/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , Lisina/análogos & derivados , Nucleósidos de Pirimidina
9.
Nat Struct Mol Biol ; 31(5): 817-825, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38538915

RESUMEN

The anticodon modifications of transfer RNAs (tRNAs) finetune the codon recognition on the ribosome for accurate translation. Bacteria and archaea utilize the modified cytidines, lysidine (L) and agmatidine (agm2C), respectively, in the anticodon of tRNAIle to decipher AUA codon. L and agm2C contain long side chains with polar termini, but their functions remain elusive. Here we report the cryogenic electron microscopy structures of tRNAsIle recognizing the AUA codon on the ribosome. Both modifications interact with the third adenine of the codon via a unique C-A geometry. The side chains extend toward 3' direction of the mRNA, and the polar termini form hydrogen bonds with 2'-OH of the residue 3'-adjacent to the AUA codon. Biochemical analyses demonstrated that AUA decoding is facilitated by the additional interaction between the polar termini of the modified cytidines and 2'-OH of the fourth mRNA residue. We also visualized cyclic N6-threonylcarbamoyladenosine (ct6A), another tRNA modification, and revealed a molecular basis how ct6A contributes to efficient decoding.


Asunto(s)
Anticodón , Microscopía por Crioelectrón , ARN de Transferencia de Isoleucina , ARN de Transferencia de Isoleucina/química , ARN de Transferencia de Isoleucina/metabolismo , ARN de Transferencia de Isoleucina/genética , Anticodón/química , Anticodón/metabolismo , Ribosomas/metabolismo , Ribosomas/química , Conformación de Ácido Nucleico , Modelos Moleculares , Codón/genética , Lisina/metabolismo , Lisina/química , Lisina/análogos & derivados , Citidina/análogos & derivados , Citidina/química , Citidina/metabolismo , ARN de Transferencia/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , Biosíntesis de Proteínas , Nucleósidos de Pirimidina
10.
Mol Cell ; 84(9): 1742-1752.e5, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38513661

RESUMEN

Histone H3 lysine 4 mono-methylation (H3K4me1) marks poised or active enhancers. KMT2C (MLL3) and KMT2D (MLL4) catalyze H3K4me1, but their histone methyltransferase activities are largely dispensable for transcription during early embryogenesis in mammals. To better understand the role of H3K4me1 in enhancer function, we analyze dynamic enhancer-promoter (E-P) interactions and gene expression during neural differentiation of the mouse embryonic stem cells. We found that KMT2C/D catalytic activities were only required for H3K4me1 and E-P contacts at a subset of candidate enhancers, induced upon neural differentiation. By contrast, a majority of enhancers retained H3K4me1 in KMT2C/D catalytic mutant cells. Surprisingly, H3K4me1 signals at these KMT2C/D-independent sites were reduced after acute depletion of KMT2B, resulting in aggravated transcriptional defects. Our observations therefore implicate KMT2B in the catalysis of H3K4me1 at enhancers and provide additional support for an active role of H3K4me1 in enhancer-promoter interactions and transcription in mammalian cells.


Asunto(s)
Diferenciación Celular , Elementos de Facilitación Genéticos , N-Metiltransferasa de Histona-Lisina , Histonas , Lisina/análogos & derivados , Células Madre Embrionarias de Ratones , Regiones Promotoras Genéticas , Animales , Ratones , Histonas/metabolismo , Histonas/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Activación Transcripcional , Metilación , Regulación del Desarrollo de la Expresión Génica , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
11.
J Am Chem Soc ; 146(10): 6544-6556, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38426740

RESUMEN

Pyrrolysine, the 22nd amino acid encoded by the natural genetic code, is essential for methanogenic archaea to catabolize methylamines into methane. The structure of pyrrolysine consists of a methylated pyrroline carboxylate that is linked to the ε-amino group of the l-lysine via an amide bond. The biosynthesis of pyrrolysine requires three enzymes: PylB, PylC, and PylD. PylB is a radical S-adenosyl-l-methionine (SAM) enzyme and catalyzes the first biosynthetic step, the isomerization of l-lysine into methylornithine. PylC catalyzes an ATP-dependent ligation of methylornithine and a second l-lysine to form l-lysine-Nε-methylornithine. The last biosynthetic step is catalyzed by PylD via oxidation of the PylC product to form pyrrolysine. While enzymatic reactions of PylC and PylD have been well characterized by X-ray crystallography and in vitro studies, mechanistic understanding of PylB is still relatively limited. Here, we report the first in vitro activity of PylB to form methylornithine via the isomerization of l-lysine. We also identify a lysyl C4 radical intermediate that is trapped, with its electronic structure and geometric structure well characterized by EPR and ENDOR spectroscopy. In addition, we demonstrate that SAM functions as a catalytic cofactor in PylB catalysis rather than canonically as a cosubstrate. This work provides detailed mechanistic evidence for elucidating the carbon backbone rearrangement reaction catalyzed by PylB during the biosynthesis of pyrrolysine.


Asunto(s)
Lisina , Lisina/análogos & derivados , S-Adenosilmetionina , Lisina/química , Código Genético , Amidas/metabolismo
12.
J Agric Food Chem ; 72(9): 5014-5025, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38388339

RESUMEN

Nε-carboxymethyllysine (CML) is produced by a nonenzymatic reaction between reducing sugar and ε-amino group of lysine in food and exists as free and bound forms with varying digestibility and absorption properties in vivo, causing diverse interactions with gut microbiota. The effects of different forms of dietary CML on the gut microbiota and intestinal barrier of mice were explored. Mice were exposed to free and bound CML for 12 weeks, and colonic morphology, gut microbiota, fecal short-chain fatty acids (SCFAs), intestinal barrier, and receptor for AGE (RAGE) signaling cascades were measured. The results indicated that dietary-free CML increased the relative abundance of SCFA-producing genera including Blautia, Faecalibacterium, Agathobacter, and Roseburia. In contrast, dietary-bound CML mainly increased the relative abundance of Akkermansia. Moreover, dietary-free and -bound CML promoted the gene and protein expression of zonula occludens-1 and claudin-1. Additionally, the intake of free and bound CML caused an upregulation of RAGE expression but did not activate downstream inflammatory pathways due to the upregulation of oligosaccharyl transferase complex protein 48 (AGER1) expression, indicating a delicate balance between protective and proinflammatory effects in vivo. Dietary-free and -bound CML could modulate the gut microbiota community and increase tight-junction expression, and dietary-free CML might exert a higher potential benefit on gut microbiota and SCFAs than dietary-bound CML.


Asunto(s)
Microbioma Gastrointestinal , Lisina , Lisina/análogos & derivados , Animales , Ratones , Lisina/metabolismo , Intestinos , Dieta
13.
J Am Chem Soc ; 146(5): 3086-3093, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38266163

RESUMEN

In the last 40 years, cation-π interactions have become part of the lexicon of noncovalent forces that drive protein binding. Indeed, tetraalkylammoniums are universally bound by aromatic cages in proteins, suggesting that cation-π interactions are a privileged mechanism for binding these ligands. A prominent example is the recognition of histone trimethyllysine (Kme3) by the conserved aromatic cage of reader proteins, dictating gene expression. However, two proteins have recently been suggested as possible exceptions to the conventional understanding of tetraalkylammonium recognition. To broadly interrogate the role of cation-π interactions in protein binding interactions, we report the first large-scale comparative evaluation of reader proteins for a neutral Kme3 isostere, experimental and computational mechanistic studies, and structural analysis. We find unexpected widespread binding of readers to a neutral isostere with the first examples of readers that bind the neutral isostere more tightly than Kme3. We find that no single factor dictates the charge selectivity, demonstrating the challenge of predicting such interactions. Further, readers that bind both cationic and neutral ligands differ in mechanism: binding Kme3 via cation-π interactions and the neutral isostere through the hydrophobic effect in the same aromatic cage. This discovery explains apparently contradictory results in previous studies, challenges traditional understanding of molecular recognition of tetraalkylammoniums by aromatic cages in myriad protein-ligand interactions, and establishes a new framework for selective inhibitor design by exploiting differences in charge dependence.


Asunto(s)
Histonas , Lisina/análogos & derivados , Ligandos , Modelos Moleculares , Histonas/química , Cationes/química
14.
Nature ; 622(7981): 173-179, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37731000

RESUMEN

Lysine residues in histones and other proteins can be modified by post-translational modifications that encode regulatory information1. Lysine acetylation and methylation are especially important for regulating chromatin and gene expression2-4. Pathways involving these post-translational modifications are targets for clinically approved therapeutics to treat human diseases. Lysine methylation and acetylation are generally assumed to be mutually exclusive at the same residue. Here we report cellular lysine residues that are both methylated and acetylated on the same side chain to form Nε-acetyl-Nε-methyllysine (Kacme). We show that Kacme is found on histone H4 (H4Kacme) across a range of species and across mammalian tissues. Kacme is associated with marks of active chromatin, increased transcriptional initiation and is regulated in response to biological signals. H4Kacme can be installed by enzymatic acetylation of monomethyllysine peptides and is resistant to deacetylation by some HDACs in vitro. Kacme can be bound by chromatin proteins that recognize modified lysine residues, as we demonstrate with the crystal structure of acetyllysine-binding protein BRD2 bound to a histone H4Kacme peptide. These results establish Kacme as a cellular post-translational modification with the potential to encode information distinct from methylation and acetylation alone and demonstrate that Kacme has all the hallmarks of a post-translational modification with fundamental importance to chromatin biology.


Asunto(s)
Acetilación , Cromatina , Lisina , Metilación , Procesamiento Proteico-Postraduccional , Sitio de Iniciación de la Transcripción , Animales , Humanos , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Péptidos/química , Péptidos/metabolismo , Histona Desacetilasas/metabolismo
15.
Food Res Int ; 161: 111787, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36192938

RESUMEN

Nɛ-Carboxymethyl-lysine (CML) is a primary advanced glycation end product that exists in the body and food as free and bound forms with different bioavailability and physiological effects. To compare the uptake, tissue distribution, and fecal excretion of dietary free and bound CML, free or bound CML were administered to healthy mice at 10 mg CML kg-1 body weight per day for 12 weeks. The results demonstrated that free CML was significantly absorbed in serum and accumulated in the colon, ileum, lung, kidneys, heart, spleen, brain, and liver after intake of free and bound CML, whereas no statistical increase was found in the accumulation of bound CML in the serum, lung, spleen, kidneys, and liver. The colon was the main tissue for the accumulation of free and total CML. Moreover, the accumulation of free CML in tissues and organs was significantly correlated with free CML levels in serum. In conclusion, consumption of bound CML caused a higher uptake, accumulation, and fecal excretion of CML in the body than intake of free CML.


Asunto(s)
Productos Finales de Glicación Avanzada , Lisina , Administración Oral , Animales , Productos Finales de Glicación Avanzada/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Ratones , Proteínas/metabolismo , Distribución Tisular
16.
J Biol Chem ; 298(11): 102521, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36152750

RESUMEN

The pyrrolysyl-tRNA synthetase (PylRS) facilitates the cotranslational installation of the 22nd amino acid pyrrolysine. Owing to its tolerance for diverse amino acid substrates, and its orthogonality in multiple organisms, PylRS has emerged as a major route to install noncanonical amino acids into proteins in living cells. Recently, a novel class of PylRS enzymes was identified in a subset of methanogenic archaea. Enzymes within this class (ΔPylSn) lack the N-terminal tRNA-binding domain that is widely conserved amongst PylRS enzymes, yet remain active and orthogonal in bacteria and eukaryotes. In this study, we use biochemical and in vivo UAG-readthrough assays to characterize the aminoacylation efficiency and substrate spectrum of a ΔPylSn class PylRS from the archaeon Candidatus Methanomethylophilus alvus. We show that, compared with the full-length enzyme from Methanosarcina mazei, the Ca. M. alvus PylRS displays reduced aminoacylation efficiency but an expanded amino acid substrate spectrum. To gain insight into the evolution of ΔPylSn enzymes, we performed molecular phylogeny using 156 PylRS and 105 pyrrolysine tRNA (tRNAPyl) sequences from diverse archaea and bacteria. This analysis suggests that the PylRS•tRNAPyl pair diverged before the evolution of the three domains of life, placing an early limit on the evolution of the Pyl-decoding trait. Furthermore, our results document the coevolutionary history of PylRS and tRNAPyl and reveal the emergence of tRNAPyl sequences with unique A73 and U73 discriminator bases. The orthogonality of these tRNAPyl species with the more common G73-containing tRNAPyl will enable future efforts to engineer PylRS systems for further genetic code expansion.


Asunto(s)
Aminoacil-ARNt Sintetasas , Archaea , Código Genético , Lisina , Aminoacil-ARNt Sintetasas/metabolismo , Archaea/enzimología , Archaea/genética , Lisina/análogos & derivados , Lisina/genética , Methanosarcina , ARN de Transferencia/genética
17.
Int J Mol Sci ; 23(17)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36077532

RESUMEN

Background: Hyperinflammation is frequently associated with the chronic pain of autoimmune disease and the acute death of coronavirus disease (COVID-19) via a severe cytokine cascade. CIGB-258 (Jusvinza®), an altered peptide ligand with 3 kDa from heat shock protein 60 (HSP60), inhibits the systemic inflammation and cytokine storm, but the precise mechanism is still unknown. Objective: The protective effect of CIGB-258 against inflammatory stress of N-ε-carboxymethyllysine (CML) was tested to provide mechanistic insight. Methods: CIGB-258 was treated to high-density lipoproteins (HDL) and injected into zebrafish and its embryo to test a putative anti-inflammatory activity under presence of CML. Results: Treatment of CML (final 200 µM) caused remarkable glycation of HDL with severe aggregation of HDL particles to produce dysfunctional HDL, which is associated with a decrease in apolipoprotein A-I stability and lowered paraoxonase activity. Degradation of HDL3 by ferrous ions was attenuated by a co-treatment with CIGB-258 with a red-shift of the Trp fluorescence in HDL. A microinjection of CML (500 ng) into zebrafish embryos resulted in the highest embryo death rate, only 18% of survivability with developmental defects. However, co-injection of CIGB-258 (final 1 ng) caused the remarkable elevation of survivability around 58%, as well as normal developmental speed. An intraperitoneal injection of CML (final 250 µg) into adult zebrafish resulted acute paralysis, sudden death, and laying down on the bottom of the cage with no swimming ability via neurotoxicity and inflammation. However, a co-injection of CIGB-258 (1 µg) resulted in faster recovery of the swimming ability and higher survivability than CML alone injection. The CML alone group showed 49% survivability, while the CIGB-258 group showed 97% survivability (p < 0.001) with a remarkable decrease in hepatic inflammation up to 50%. A comparison of efficacy with CIGB-258, Infliximab (Remsima®), and Tocilizumab (Actemra®) showed that the CIGB-258 group exhibited faster recovery and swimming ability with higher survivability than those of the Infliximab group. The CIGB-258 group and Tocilizumab group showed the highest survivability, the lowest plasma total cholesterol and triglyceride level, and the infiltration of inflammatory cells, such as neutrophils in hepatic tissue. Conclusion: CIGB-258 ameliorated the acute neurotoxicity, paralysis, hyperinflammation, and death induced by CML, resulting in higher survivability in zebrafish and its embryos by enhancing the HDL structure and functionality.


Asunto(s)
COVID-19 , Lipoproteínas HDL , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Infliximab , Lisina/análogos & derivados , Parálisis , Pez Cebra/metabolismo
18.
J Agric Food Chem ; 70(37): 11759-11768, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36069406

RESUMEN

The advanced glycation endproduct carboxymethyllysine and its precursor fructoselysine are present in heated, processed food products and are considered potentially hazardous for human health. Upon dietary exposure, they can be degraded by human colonic gut microbiota, reducing internal exposure. Pronounced interindividual and intraindividual differences in these metabolic degradations were found in anaerobic incubations with human fecal slurries in vitro. The average capacity to degrade fructoselysine was 27.7-fold higher than that for carboxymethyllysine, and degradation capacities for these two compounds were not correlated (R2 = 0.08). Analysis of the bacterial composition revealed that interindividual differences outweighed intraindividual differences, and multiple genera were correlated with the individuals' carboxymethyllysine and fructoselysine degradation capacities (e.g., Akkermansia, Alistipes).


Asunto(s)
Microbioma Gastrointestinal , Heces/microbiología , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , ARN Ribosómico 16S
19.
Clin Nutr ; 41(9): 1889-1895, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35944295

RESUMEN

BACKGROUND & AIMS: Carnitine biosynthesis has been related to fatty acid oxidation, a process probably exerting neuroprotective effects. However, the role of carnitine biosynthesis in the development of ischemic stroke (IS) remains unclear. We aimed to examine the associations between plasma markers of carnitine biosynthesis and the IS risk. METHODS: We performed a case-control study nested in a community-based cohort (2013-2018, n = 16457). The study included 321 incident cases of IS and 321 controls matched by age and gender. Carnitine, lysine, trimethyllysine (TML), glycine, and their ratios were measured/calculated in the baseline plasma samples using ultra-high performance liquid chromatography-tandem mass-spectrometry (UHPLC-MS/MS). Conditional logistic regression analyses were used to calculate odds ratios (ORs) and their 95% confidence intervals (CIs). RESULTS: Plasma carnitine, lysine, TML, and glycine were not significantly associated with the IS risk, although a gradually reduced risk was observed across the increasing tertiles of glycine. Notably, the ratios of glycine/carnitine, glycine/lysine, and glycine/TML were all inversely associated with the IS risk. Compared to the lowest tertiles, the corresponding odds ratios for the highest tertiles were 0.60 (95% CI: 0.40-0.91), 0.63 (95% CI: 0.42-0.94), and 0.63 (95% CI: 0.42-0.95), respectively, after adjustment for body mass index, smoking, hypertension, family history of stroke, estimated glomerular filtration rate and total cholesterol. Repeating the analyses by excluding the first two years of follow-up did not materially alter the risk associations for the ratios of glycine/lysine and glycine/carnitine. CONCLUSIONS: Increased ratios of plasma glycine to carnitine, lysine, and TML were associated with a lower risk of incident IS. Our observational findings suggest that the homeostasis of circulating carnitine, lysine, TML, and glycine may involve in the pathogenesis of IS.


Asunto(s)
Fabaceae , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Carnitina , Estudios de Casos y Controles , Glicina , Humanos , Lisina/análogos & derivados , Accidente Cerebrovascular/epidemiología , Espectrometría de Masas en Tándem
20.
Am J Hum Genet ; 109(8): 1549-1558, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35858628

RESUMEN

Deoxyhypusine hydroxylase (DOHH) is the enzyme catalyzing the second step in the post-translational synthesis of hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] in the eukaryotic initiation factor 5A (eIF5A). Hypusine is formed exclusively in eIF5A by two sequential enzymatic steps catalyzed by deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). Hypusinated eIF5A is essential for translation and cell proliferation in eukaryotes, and all three genes encoding eIF5A, DHPS, and DOHH are highly conserved throughout eukaryotes. Pathogenic variants affecting either DHPS or EIF5A have been previously associated with neurodevelopmental disorders. Using trio exome sequencing, we identified rare bi-allelic pathogenic missense and truncating DOHH variants segregating with disease in five affected individuals from four unrelated families. The DOHH variants are associated with a neurodevelopmental phenotype that is similar to phenotypes caused by DHPS or EIF5A variants and includes global developmental delay, intellectual disability, facial dysmorphism, and microcephaly. A two-dimensional gel analyses revealed the accumulation of deoxyhypusine-containing eIF5A [eIF5A(Dhp)] and a reduction in the hypusinated eIF5A in fibroblasts derived from affected individuals, providing biochemical evidence for deficiency of DOHH activity in cells carrying the bi-allelic DOHH variants. Our data suggest that rare bi-allelic variants in DOHH result in reduced enzyme activity, limit the hypusination of eIF5A, and thereby lead to a neurodevelopmental disorder.


Asunto(s)
Lisina , Oxigenasas de Función Mixta , Trastornos del Neurodesarrollo , Alelos , Expresión Génica , Humanos , Lisina/análogos & derivados , Oxigenasas de Función Mixta/genética , Trastornos del Neurodesarrollo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA