Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.504
Filtrar
1.
Sci Rep ; 14(1): 10573, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719983

RESUMEN

Multiple sclerosis (MS) is a chronic neurological disease characterized by inflammatory demyelination that disrupts neuronal transmission resulting in neurodegeneration progressive disability. While current treatments focus on immunosuppression to limit inflammation and further myelin loss, no approved therapies effectively promote remyelination to mitigate the progressive disability associated with chronic demyelination. Lysophosphatidic acid (LPA) is a pro-inflammatory lipid that is upregulated in MS patient plasma and cerebrospinal fluid (CSF). LPA activates the LPA1 receptor, resulting in elevated CNS cytokine and chemokine levels, infiltration of immune cells, and microglial/astrocyte activation. This results in a neuroinflammatory response leading to demyelination and suppressed remyelination. A medicinal chemistry effort identified PIPE-791, an oral, brain-penetrant, LPA1 antagonist. PIPE-791 was characterized in vitro and in vivo and was found to be a potent, selective LPA1 antagonist with slow receptor off-rate kinetics. In vitro, PIPE-791 induced OPC differentiation and promoted remyelination following a demyelinating insult. PIPE-791 further mitigated the macrophage-mediated inhibition of OPC differentiation and inhibited microglial and fibroblast activation. In vivo, the compound readily crossed the blood-brain barrier and blocked LPA1 in the CNS after oral dosing. Direct dosing of PIPE-791 in vivo increased oligodendrocyte number, and in the mouse experimental autoimmune encephalomyelitis (EAE) model of MS, we observed that PIPE-791 promoted myelination, reduced neuroinflammation, and restored visual evoked potential latencies (VEP). These findings support targeting LPA1 for remyelination and encourage development of PIPE-791 for treating MS patients with advantages not seen with current immunosuppressive disease modifying therapies.


Asunto(s)
Esclerosis Múltiple , Receptores del Ácido Lisofosfatídico , Remielinización , Animales , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Receptores del Ácido Lisofosfatídico/metabolismo , Remielinización/efectos de los fármacos , Humanos , Ratones , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Diferenciación Celular/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Vaina de Mielina/efectos de los fármacos , Lisofosfolípidos/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos
2.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G631-G642, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38593468

RESUMEN

Lysophosphatidic acid (LPA) is a bioactive lipid molecule that regulates a wide array of cellular functions, including proliferation, differentiation, and survival, via activation of cognate receptors. The LPA5 receptor is highly expressed in the intestinal epithelium, but its function in restoring intestinal epithelial integrity following injury has not been examined. Here, we use a radiation-induced injury model to study the role of LPA5 in regulating intestinal epithelial regeneration. Control mice (Lpar5f/f) and mice with an inducible, epithelial cell-specific deletion of Lpar5 in the small intestine (Lpar5IECKO) were subjected to 10 Gy total body X-ray irradiation and analyzed during recovery. Repair of the intestinal mucosa was delayed in Lpar5IECKO mice with reduced epithelial proliferation and increased crypt cell apoptosis. These effects were accompanied by reduced numbers of OLFM4+ intestinal stem cells (ISCs). The effects of LPA5 on ISCs were corroborated by studies using organoids derived from Lgr5-lineage tracking reporter mice with deletion of Lpar5 in Lgr5+-stem cells (Lgr5Cont or Lgr5ΔLpar5). Irradiation of organoids resulted in fewer numbers of Lgr5ΔLpar5 organoids retaining Lgr5+-derived progenitor cells compared with Lgr5Cont organoids. Finally, we observed that impaired regeneration in Lpar5IECKO mice was associated with reduced numbers of Paneth cells and decreased expression of Yes-associated protein (YAP), a critical factor for intestinal epithelial repair. Our study highlights a novel role for LPA5 in regeneration of the intestinal epithelium following irradiation and its effect on the maintenance of Paneth cells that support the stem cell niche.NEW & NOTEWORTHY We used mice lacking expression of the lysophosphatidic acid receptor 5 (LPA5) in intestinal epithelial cells and intestinal organoids to show that the LPA5 receptor protects intestinal stem cells and progenitors from radiation-induced injury. We show that LPA5 induces YAP signaling and regulates Paneth cells.


Asunto(s)
Proliferación Celular , Mucosa Intestinal , Receptores del Ácido Lisofosfatídico , Regeneración , Transducción de Señal , Proteínas Señalizadoras YAP , Animales , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de la radiación , Ratones , Regeneración/efectos de la radiación , Proteínas Señalizadoras YAP/metabolismo , Proliferación Celular/efectos de la radiación , Células Madre/efectos de la radiación , Células Madre/metabolismo , Organoides/metabolismo , Organoides/efectos de la radiación , Ratones Noqueados , Apoptosis/efectos de la radiación , Lisofosfolípidos/metabolismo , Intestino Delgado/efectos de la radiación , Intestino Delgado/metabolismo , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología
3.
Biochem Biophys Res Commun ; 715: 149982, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38676998

RESUMEN

The tumor microenvironment is an extremely complex composed of cancer cells and various non-cancer cells, including lymphatic endothelial cells. Lysophosphatidic acid (LPA) receptors (LPA1 to LPA6) activate a variety of malignant properties in human malignancies. In the present study, we examined the roles of LPA receptor-mediated signaling in biological responses of lymphatic endothelial SVEC4-10 cells induced by hypoxia. Lpar1, Lpar2 and Lpar3 expressions were decreased in SVEC4-10 cells cultured at hypoxic conditions (1 % O2). LPA had no impact on the cell growth activity of SVEC4-10 cells in 21 % O2 culture conditions. Conversely, the cell growth activity of SVEC4-10 cells in 1 % O2 culture conditions was reduced by LPA. The cell motile activity of SVEC4-10 cells was elevated by 1 % O2 culture conditions. GRI-977143 (LPA2 agonist) and (2S)-OMPT (LPA3 agonist) stimulated SVEC4-10 cell motility as well as AM966 (LPA1 antagonist). In tube formation assay, the tube formation of SVEC4-10 cells in 1 % O2 culture conditions was markedly increased, in comparison with 21 % O2. GRI-977143 and (2S)-OMPT elevated the tube formation of SVEC4-10 cells. Furthermore, the tube formation of SVEC4-10 cells was increased by AM966. These results suggest that LPA receptor-mediated signaling contributes to the modulation of hypoxic-induced biological functions of lymphatic endothelial cells.


Asunto(s)
Hipoxia de la Célula , Movimiento Celular , Células Endoteliales , Lisofosfolípidos , Receptores del Ácido Lisofosfatídico , Transducción de Señal , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Lisofosfolípidos/metabolismo , Línea Celular , Animales , Proliferación Celular/efectos de los fármacos , Humanos , Ratones
4.
Pathol Res Pract ; 257: 155293, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615508

RESUMEN

Lysophosphatidic acid (LPA) binds to its specific G protein-coupled LPA receptors (LPA1 to LPA6), resulting in the activation of various cellular functions. LPA receptor-mediated signaling facilitates tumor progression in human malignancies. In the present study, we investigated whether LPA receptor-mediated signaling contributes to cellular responses to X-ray irradiation in osteosarcoma MG-63 cells. After X-ray irradiation (2, 4 and 8 Gy), LPAR2 and LPAR3 expression levels in MG-63 cells were significantly elevated in a dose-dependent manner, but no change of LPAR1 expression level was observed. The cell growth activities of MG-63 cells irradiated with X-rays (2, 4 and 8 Gy) were reduced by LPA. Conversely, LPA3 agonist (2 S)-OMPT enhanced the cell growth activities of X-ray irradiated MG-63 cells. The cell movement of MG-63 cells exposed to X-ray irradiation (8 Gy) was inhibited by (2 S)OMPT. In cell survival assay, (2 S)-OMPT suppressed the cell survival to cisplatin (CDDP) of MG-63 cells irradiated with X-rays (8 Gy). The cell survival to CDDP of X-ray irradiated cells was elevated by LPA3 knockdown. Moreover, we evaluated the effects of LPA2 on the cell survival to CDDP of MG-63 cells exposed to X-ray irradiation (8 Gy). The cell survival to CDDP of X-ray irradiated cells was increased by LPA2 agonist GRI-977143 and reduced by LPA2 knockdown. These results suggest that LPA receptor-signaling participates in the modulation of cellular functions induced by X-ray irradiation in osteosarcoma cells.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Receptores del Ácido Lisofosfatídico , Humanos , Receptores del Ácido Lisofosfatídico/metabolismo , Osteosarcoma/metabolismo , Osteosarcoma/patología , Osteosarcoma/radioterapia , Línea Celular Tumoral , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Movimiento Celular/efectos de los fármacos , Movimiento Celular/efectos de la radiación , Rayos X , Lisofosfolípidos/farmacología , Lisofosfolípidos/metabolismo
5.
Int J Biol Macromol ; 267(Pt 1): 131323, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574912

RESUMEN

Sphingolipids serve as essential components of biomembrane and possess significant bioactive properties. Sphingosine-1-phophate (S1P) plays a key role in plant resistance to stress, but its specific impact on plant growth and development remains to be fully elucidated. Cotton fiber cells are an ideal material for investigating the growth and maturation of plant cells. In this study, we examined the content and composition of sphingosine (Sph) and S1P throughout the progression of fiber cell development. The content of S1P elevated gradually during fiber elongation but declined during the transition stage. Exogenous application of S1P promoted fiber elongation while using of FTY720 (an antagonist of S1P), and DMS (an inhibitor of LCBK) hindered fiber elongation. Cotton Long Chain Base Kinase 1 (GhLCBK1) was notably expressed during the fiber elongation stage, containing all conserved domains of LCBK protein and localized in the endoplasmic reticulum. Overexpression GhLCBK1 increased the S1P content and promoted fiber elongation while retarded secondary cell wall (SCW) deposition. Conversely, downregulation of GhLCBK1 reduced the S1P levels, and suppressed fiber elongation, and accelerated SCW deposition. Transcriptome analysis revealed that upregulating GhLCBK1 or applying S1P induced the expression of GhEXPANSIN and auxin related genes. Furthermore, the levels of IAA were elevated and reduced in the fibers when up-regulating or down-regulating GhLCBK1, respectively. Our investigation demonstrated that GhLCBK1 and its product S1P facilitated the elongation of fiber cells by affecting auxin biosynthesis. This study contributes novel insights into the intricate regulatory pathways involved in fiber cell elongation, identifying GhLCBK1 as a potential target gene and laying the groundwork for enhancing fiber quality via genetic manipulation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Ácidos Indolacéticos , Lisofosfolípidos , Fosfotransferasas (Aceptor de Grupo Alcohol) , Esfingosina , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Gossypium/genética , Gossypium/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lisofosfolípidos/metabolismo , Fibra de Algodón , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pared Celular/metabolismo , Pared Celular/efectos de los fármacos
6.
Chem Rev ; 124(9): 5470-5504, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38607675

RESUMEN

Lysophosphatidylserine (lyso-PS) has emerged as yet another important signaling lysophospholipid in mammals, and deregulation in its metabolism has been directly linked to an array of human autoimmune and neurological disorders. It has an indispensable role in several biological processes in humans, and therefore, cellular concentrations of lyso-PS are tightly regulated to ensure optimal signaling and functioning in physiological settings. Given its biological importance, the past two decades have seen an explosion in the available literature toward our understanding of diverse aspects of lyso-PS metabolism and signaling and its association with human diseases. In this Review, we aim to comprehensively summarize different aspects of lyso-PS, such as its structure, biodistribution, chemical synthesis, and SAR studies with some synthetic analogs. From a biochemical perspective, we provide an exhaustive coverage of the diverse biological activities modulated by lyso-PSs, such as its metabolism and the receptors that respond to them in humans. We also briefly discuss the human diseases associated with aberrant lyso-PS metabolism and signaling and posit some future directions that may advance our understanding of lyso-PS-mediated mammalian physiology.


Asunto(s)
Lisofosfolípidos , Transducción de Señal , Humanos , Lisofosfolípidos/metabolismo , Lisofosfolípidos/química , Animales , Enfermedades Autoinmunes/metabolismo , Enfermedades del Sistema Nervioso/metabolismo
7.
Cells ; 13(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38607068

RESUMEN

Lysophosphatidic acid (LPA) is a phospholipid that displays potent signalling activities that are regulated in both an autocrine and paracrine manner. It can be found both extra- and intracellularly, where it interacts with different receptors to activate signalling pathways that regulate a plethora of cellular processes, including mitosis, proliferation and migration. LPA metabolism is complex, and its biosynthesis and catabolism are under tight control to ensure proper LPA levels in the body. In cancer patient specimens, LPA levels are frequently higher compared to those of healthy individuals and often correlate with poor responses and more aggressive disease. Accordingly, LPA, through promoting cancer cell migration and invasion, enhances the metastasis and dissemination of tumour cells. In this review, we summarise the role of LPA in the regulation of critical aspects of tumour biology and further discuss the available pre-clinical and clinical evidence regarding the feasibility and efficacy of targeting LPA metabolism for effective anticancer therapy.


Asunto(s)
Neoplasias , Humanos , Transducción de Señal/fisiología , Movimiento Celular , Lisofosfolípidos/metabolismo
8.
Pharmacol Res ; 203: 107172, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583685

RESUMEN

Although anti-TNF antibodies are extensively used to treat Crohn's disease (CD), a significant proportion of patients, up to 40%, exhibit an inadequate response to this therapy. Our objective was to identify potential targets that could improve the effectiveness of anti-TNF therapy in CD. Through the integration and analysis of transcriptomic data from various CD databases, we found that the expression of AQP9 was significantly increased in anti-TNF therapy-resistant specimens. The response to anti-TNF therapy in the CD mouse model was significantly enhanced by specifically inhibiting AQP9. Further experiments found that the blockade of AQP9, which is dominantly expressed in macrophages, decreased inflamed macrophage functions and cytokine expression. Mechanistic studies revealed that AQP9 transported glycerol into macrophages, where it was metabolized to LPA, which was further metabolized to LPA, resulting in the activation of the LPAR2 receptor and downstream hippo pathway, finally promoting the expression of cytokines, especially IL23 and IL1ß⊡ Taken together, the expansion of AQP9+ macrophages is associated with resistance to anti-TNF therapy in Crohn's disease. These findings indicated that AQP9 could be a potential target for enhancing anti-TNF therapy in Crohn's disease.


Asunto(s)
Acuaporinas , Enfermedad de Crohn , Lisofosfolípidos , Macrófagos , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/metabolismo , Animales , Humanos , Acuaporinas/metabolismo , Acuaporinas/genética , Acuaporinas/antagonistas & inhibidores , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Lisofosfolípidos/metabolismo , Ratones , Vía de Señalización Hippo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Inhibidores del Factor de Necrosis Tumoral/farmacología , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Receptores del Ácido Lisofosfatídico/metabolismo , Citocinas/metabolismo
9.
Cell Physiol Biochem ; 58(2): 156-171, 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38639213

RESUMEN

BACKGROUND/AIMS: The physiological phenotype of individuals can influence and shape real-life phenomena in that it can contribute to the development of specific characteristics that can affect the immune response to specific stimuli. In this study we aimed to understand whether the sphingosine/sphingosine-1-phoshate (S1P) axis can modulate the immunotype of circulating cells. METHODS: To pursue this goal, we performed bioinformatic analyses of public datasets. RESULTS: The transcriptomic profile of healthy subjects of GSE192829 dataset identified two clusters with different transcriptional repertoire. Cluster 1 expressed higher levels of enzymes for S1P formation than cluster 0 which was characterized by enzymes that lead to ceramide formation, which represent the opposite metabolic direction. Inference analysis showed that cluster 1 was higher populated by monocytes, CD4+ T and B cells than cluster 0. Of particular interest was the phenotype of the monocytes in cluster 1 which showed an immunosuppressive nature compared to those in cluster 0. The role of S1P signature in healthy PBMCs was confirmed with other dataset analyses, supporting that circulating monocytes positive to the ceramidase, unlike the negative ones, had an immunosuppressive phenotype characterized by hub immunosuppressive markers (i.e. TYROBP, FCER1G, SYK, SIRPA, CSF1R, AIF1, FCGR2A, CLEC7A, LYN, PLCG2, LILRs, HCK, GAB2). This hub genes well discriminated the immunotype of healthy subjects. CONCLUSION: In conclusion this study highlights that S1P-associated hub markers can be useful to discriminate subjects with pronounced immunosuppression.


Asunto(s)
Monocitos , Esfingosina , Esfingosina/análogos & derivados , Humanos , Esfingosina/metabolismo , Monocitos/metabolismo , Lisofosfolípidos/metabolismo , Inmunosupresores , Fenotipo
11.
J Phys Chem B ; 128(11): 2675-2683, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38466655

RESUMEN

Membrane fusion is a critical component of the viral lifecycle. For SARS-CoV-2, fusion is facilitated by the spike glycoprotein and can take place via either the plasma membrane or the endocytic pathway. The fusion domain (FD), which is found within the spike glycoprotein, is primarily responsible for the initiation of fusion as it embeds itself within the target cell's membrane. A preference for SARS-CoV-2 to fuse at low pH akin to the environment of the endocytic pathway has already been established; however, the impact of the target cell's lipid composition on the FD has yet to be explored. Here, we have shown that the SARS-CoV-2 FD preferentially initiates fusion at the late endosomal membrane over the plasma membrane, on the basis of lipid composition alone. A positive, fusogenic relationship with anionic lipids from the plasma membrane (POPS: 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine) and endosomal membrane (BMP: bis(monoacylglycero)phosphate) was established, with a large preference demonstrated for the latter. When comparing the binding affinity and secondary structure of the FD in the presence of different anionic lipids, little deviation was evident while the charge was maintained. However, it was discovered that BMP had a subtle, negative impact on lipid packing in comparison to that of POPS. Furthermore, an inverse relationship between lipid packing and the fusogenecity of the SARS-CoV-2 FD was witnessed. In conclusion, the SARS-CoV-2 FD preferentially initiates fusion at a membrane resembling that of the late endosomal compartment, predominately due to the presence of BMP and its impact on lipid packing.


Asunto(s)
COVID-19 , Fusión de Membrana , Monoglicéridos , Humanos , SARS-CoV-2/metabolismo , Lisofosfolípidos/metabolismo , Glicoproteínas
12.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38542186

RESUMEN

Over the past few decades, many current uses for cannabinoids have been described, ranging from controlling epilepsy to neuropathic pain and anxiety treatment. Medicines containing cannabinoids have been approved by both the FDA and the EMA for the control of specific diseases for which there are few alternatives. However, the molecular-level mechanism of action of cannabinoids is still poorly understood. Recently, cannabinoids have been shown to interact with autotaxin (ATX), a secreted lysophospholipase D enzyme responsible for catalyzing lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a pleiotropic growth factor that interacts with LPA receptors. In addition, a high-resolution structure of ATX in complex with THC has recently been published, accompanied by biochemical studies investigating this interaction. Due to their LPA-like structure, endocannabinoids have been shown to interact with ATX in a less potent manner. This finding opens new areas of research regarding cannabinoids and endocannabinoids, as it could establish the effect of these compounds at the molecular level, particularly in relation to inflammation, which cannot be explained by the interaction with CB1 and CB2 receptors alone. Further research is needed to elucidate the mechanism behind the interaction between cannabinoids and endocannabinoids in humans and to fully explore the therapeutic potential of such approaches.


Asunto(s)
Cannabinoides , Marihuana Medicinal , Humanos , Endocannabinoides , Hidrolasas Diéster Fosfóricas/metabolismo , Lisofosfolípidos/metabolismo , Cannabinoides/farmacología , Cannabinoides/uso terapéutico
13.
Bioorg Med Chem Lett ; 103: 129690, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447786

RESUMEN

Autotaxin is a secreted lysophospholipase D which is a member of the ectonucleotide pyrophosphatase/phosphodiesterase family converting extracellular lysophosphatidylcholine and other non-choline lysophospholipids, such as lysophosphatidylethanolamine and lysophosphatidylserine, to the lipid mediator lysophosphatidic acid. Autotaxin is implicated in various fibroproliferative diseases including interstitial lung diseases, such as idiopathic pulmonary fibrosis and hepatic fibrosis, as well as in cancer. In this study, we present an effort of identifying ATX inhibitors that bind to allosteric ATX binding sites using the Enalos Asclepios KNIME Node. All the available PDB crystal structures of ATX were collected, prepared, and aligned. Visual examination of these structures led to the identification of four crystal structures of human ATX co-crystallized with four known inhibitors. These inhibitors bind to five binding sites with five different binding modes. These five binding sites were thereafter used to virtually screen a compound library of 14,000 compounds to identify molecules that bind to allosteric sites. Based on the binding mode and interactions, the docking score, and the frequency that a compound comes up as a top-ranked among the five binding sites, 24 compounds were selected for in vitro testing. Finally, two compounds emerged with inhibitory activity against ATX in the low micromolar range, while their mode of inhibition and binding pattern were also studied. The two derivatives identified herein can serve as "hits" towards developing novel classes of ATX allosteric inhibitors.


Asunto(s)
Lisofosfolípidos , Neoplasias , Humanos , Lisofosfolípidos/química , Lisofosfolípidos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Neoplasias/metabolismo , Sitios de Unión , Sitio Alostérico
14.
Circ Res ; 134(8): 990-1005, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38456287

RESUMEN

BACKGROUND: Growing evidence correlated changes in bioactive sphingolipids, particularly S1P (sphingosine-1-phosphate) and ceramides, with coronary artery diseases. Furthermore, specific plasma ceramide species can predict major cardiovascular events. Dysfunction of the endothelium lining lesion-prone areas plays a pivotal role in atherosclerosis. Yet, how sphingolipid metabolism and signaling change and contribute to endothelial dysfunction and atherosclerosis remain poorly understood. METHODS: We used an established model of coronary atherosclerosis in mice, combined with sphingolipidomics, RNA-sequencing, flow cytometry, and immunostaining to investigate the contribution of sphingolipid metabolism and signaling to endothelial cell (EC) activation and dysfunction. RESULTS: We demonstrated that hemodynamic stress induced an early metabolic rewiring towards endothelial sphingolipid de novo biosynthesis, favoring S1P signaling over ceramides as a protective response. This finding is a paradigm shift from the current belief that ceramide accrual contributes to endothelial dysfunction. The enzyme SPT (serine palmitoyltransferase) commences de novo biosynthesis of sphingolipids and is inhibited by NOGO-B (reticulon-4B), an ER membrane protein. Here, we showed that NOGO-B is upregulated by hemodynamic stress in myocardial EC of ApoE-/- mice and is expressed in the endothelium lining coronary lesions in mice and humans. We demonstrated that mice lacking NOGO-B specifically in EC (Nogo-A/BECKOApoE-/-) were resistant to coronary atherosclerosis development and progression, and mortality. Fibrous cap thickness was significantly increased in Nogo-A/BECKOApoE-/- mice and correlated with reduced necrotic core and macrophage infiltration. Mechanistically, the deletion of NOGO-B in EC sustained the rewiring of sphingolipid metabolism towards S1P, imparting an atheroprotective endothelial transcriptional signature. CONCLUSIONS: These data demonstrated that hemodynamic stress induced a protective rewiring of sphingolipid metabolism, favoring S1P over ceramide. NOGO-B deletion sustained the rewiring of sphingolipid metabolism toward S1P protecting EC from activation under hemodynamic stress and refraining coronary atherosclerosis. These findings also set forth the foundation for sphingolipid-based therapeutics to limit atheroprogression.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Humanos , Animales , Ratones , Ceramidas/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/prevención & control , Proteínas Nogo , Esfingolípidos/metabolismo , Esfingosina/metabolismo , Lisofosfolípidos/metabolismo , Endotelio/metabolismo , Aterosclerosis/genética , Aterosclerosis/prevención & control , Apolipoproteínas E
15.
Cell Rep ; 43(4): 114020, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38554280

RESUMEN

Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.


Asunto(s)
Autofagia , Inhibidores de Puntos de Control Inmunológico , Ganglios Linfáticos , Esfingosina/análogos & derivados , Linfocitos T , Autofagia/efectos de los fármacos , Animales , Ganglios Linfáticos/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ratones Endogámicos C57BL , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Células Endoteliales/metabolismo , Esfingosina/farmacología , Esfingosina/metabolismo , Humanos , Lisofosfolípidos/metabolismo , Inmunoterapia/métodos , Movimiento Celular
16.
Front Immunol ; 15: 1362459, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482014

RESUMEN

Inflammation is an important immune response of the body. It is a physiological process of self-repair and defense against pathogens taken up by biological tissues when stimulated by damage factors such as trauma and infection. Inflammation is the main cause of high morbidity and mortality in most diseases and is the physiological basis of the disease. Targeted therapeutic strategies can achieve efficient toxicity clearance at the inflammatory site, reduce complications, and reduce mortality. Sphingosine-1-phosphate (S1P), a lipid signaling molecule, is involved in immune cell transport by binding to S1P receptors (S1PRs). It plays a key role in innate and adaptive immune responses and is closely related to inflammation. In homeostasis, lymphocytes follow an S1P concentration gradient from the tissues into circulation. One widely accepted mechanism is that during the inflammatory immune response, the S1P gradient is altered, and lymphocytes are blocked from entering the circulation and are, therefore, unable to reach the inflammatory site. However, the full mechanism of its involvement in inflammation is not fully understood. This review focuses on bacterial and viral infections, autoimmune diseases, and immunological aspects of the Sphks/S1P/S1PRs signaling pathway, highlighting their role in promoting intradial-adaptive immune interactions. How S1P signaling is regulated in inflammation and how S1P shapes immune responses through immune cells are explained in detail. We teased apart the immune cell composition of S1P signaling and the critical role of S1P pathway modulators in the host inflammatory immune system. By understanding the role of S1P in the pathogenesis of inflammatory diseases, we linked the genomic studies of S1P-targeted drugs in inflammatory diseases to provide a basis for targeted drug development.


Asunto(s)
Inflamación , Esfingosina , Esfingosina/análogos & derivados , Humanos , Esfingosina/metabolismo , Inflamación/metabolismo , Lisofosfolípidos/metabolismo , Transducción de Señal/fisiología
17.
JCI Insight ; 9(8)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451736

RESUMEN

Accumulation of sphingolipids, especially sphingosines, in the lysosomes is a key driver of several lysosomal storage diseases. The transport mechanism for sphingolipids from the lysosome remains unclear. Here, we identified SPNS1, which shares the highest homology to SPNS2, a sphingosine-1-phosphate (S1P) transporter, functions as a transporter for lysolipids from the lysosome. We generated Spns1-KO cells and mice and employed lipidomic and metabolomic approaches to reveal SPNS1 ligand identity. Global KO of Spns1 caused embryonic lethality between E12.5 and E13.5 and an accumulation of sphingosine, lysophosphatidylcholines (LPC), and lysophosphatidylethanolamines (LPE) in the fetal livers. Similarly, metabolomic analysis of livers from postnatal Spns1-KO mice presented an accumulation of sphingosines and lysoglycerophospholipids including LPC and LPE. Subsequently, biochemical assays showed that SPNS1 is required for LPC and sphingosine release from lysosomes. The accumulation of these lysolipids in the lysosomes of Spns1-KO mice affected liver functions and altered the PI3K/AKT signaling pathway. Furthermore, we identified 3 human siblings with a homozygous variant in the SPNS1 gene. These patients suffer from developmental delay, neurological impairment, intellectual disability, and cerebellar hypoplasia. These results reveal a critical role of SPNS1 as a promiscuous lysolipid transporter in the lysosomes and link its physiological functions with lysosomal storage diseases.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades por Almacenamiento Lisosomal , Lisosomas , Ratones Noqueados , Animales , Femenino , Humanos , Masculino , Ratones , Hígado/metabolismo , Lisofosfolípidos/metabolismo , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/patología , Lisosomas/metabolismo , Esfingolípidos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
18.
Sci Signal ; 17(824): eadg9256, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38377179

RESUMEN

High-density lipoprotein (HDL) nanoparticles promote endothelial cell (EC) function and suppress inflammation, but their utility in treating EC dysfunction has not been fully explored. Here, we describe a fusion protein named ApoA1-ApoM (A1M) consisting of apolipoprotein A1 (ApoA1), the principal structural protein of HDL that forms lipid nanoparticles, and ApoM, a chaperone for the bioactive lipid sphingosine 1-phosphate (S1P). A1M forms HDL-like particles, binds to S1P, and is signaling competent. Molecular dynamics simulations showed that the S1P-bound ApoM moiety in A1M efficiently activated EC surface receptors. Treatment of human umbilical vein ECs with A1M-S1P stimulated barrier function either alone or cooperatively with other barrier-enhancing molecules, including the stable prostacyclin analog iloprost, and suppressed cytokine-induced inflammation. A1M-S1P injection into mice during sterile inflammation suppressed neutrophil influx and inflammatory mediator secretion. Moreover, systemic A1M administration led to a sustained increase in circulating HDL-bound S1P and suppressed inflammation in a murine model of LPS-induced endotoxemia. We propose that A1M administration may enhance vascular endothelial barrier function, suppress cytokine storm, and promote resilience of the vascular endothelium.


Asunto(s)
Apolipoproteínas , Lipocalinas , Humanos , Ratones , Animales , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacología , Lipocalinas/metabolismo , Lipocalinas/farmacología , Receptores de Lisoesfingolípidos/metabolismo , Apolipoproteínas M , Inflamación , Lipoproteínas HDL/farmacología , Lipoproteínas HDL/metabolismo , Lisofosfolípidos/farmacología , Lisofosfolípidos/metabolismo , Esfingosina
19.
Arterioscler Thromb Vasc Biol ; 44(4): 883-897, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38328936

RESUMEN

BACKGROUND: Myeloid cells (MCs) reside in the aortic intima at regions predisposed to atherosclerosis. Systemic inflammation triggers reverse transendothelial migration (RTM) of intimal MCs into the arterial blood, which orchestrates a protective immune response that clears intracellular pathogens from the arterial intima. Molecular pathways that regulate RTM remain poorly understood. S1P (sphingosine-1-phosphate) is a lipid mediator that regulates immune cell trafficking by signaling via 5 G-protein-coupled receptors (S1PRs [S1P receptors]). We investigated the role of S1P in the RTM of aortic intimal MCs. METHODS: Intravenous injection of lipopolysaccharide was used to model a systemic inflammatory stimulus that triggers RTM. CD11c+ intimal MCs in the lesser curvature of the ascending aortic arch were enumerated by en face confocal microscopy. Local gene expression was evaluated by transcriptomic analysis of microdissected intimal cells. RESULTS: In wild-type C57BL/6 mice, lipopolysaccharide induced intimal cell expression of S1pr1, S1pr3, and Sphk1 (a kinase responsible for S1P production). Pharmacological modulation of multiple S1PRs blocked lipopolysaccharide-induced RTM and modulation of S1PR1 and S1PR3 reduced RTM in an additive manner. Cre-mediated deletion of S1pr1 in MCs blocked lipopolysaccharide-induced RTM, confirming a role for myeloid-specific S1PR1 signaling. Global or hematopoietic deficiency of Sphk1 reduced plasma S1P levels, the abundance of CD11c+ MCs in the aortic intima, and blunted lipopolysaccharide-induced RTM. In contrast, plasma S1P levels, the abundance of intimal MCs, and lipopolysaccharide-induced RTM were rescued in Sphk1-/- mice transplanted with Sphk1+/+ or mixed Sphk1+/+ and Sphk1-/- bone marrow. Stimulation with lipopolysaccharide increased endothelial permeability and intimal MC exposure to circulating factors such as S1P. CONCLUSIONS: Functional and expression studies support a novel role for S1P signaling in the regulation of lipopolysaccharide-induced RTM and the homeostatic maintenance of aortic intimal MCs. Our data provide insight into how circulating plasma mediators help orchestrate intimal MC dynamics.


Asunto(s)
Receptores de Lisoesfingolípidos , Migración Transendotelial y Transepitelial , Ratones , Animales , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/metabolismo , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Esfingosina/metabolismo , Células Mieloides/metabolismo , Lisofosfolípidos/metabolismo , Túnica Íntima/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
20.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L589-L595, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38375568

RESUMEN

Cold-stored (CS) platelets are once again being reintroduced for clinical use. Transfused CS platelets offer benefits over room temperature-stored (RTS) platelets such as increased hemostatic effects and prolongation of shelf-life. Despite these advantages little is known about their association with transfusion-related acute lung injury (TRALI). TRALI is associated with prolonged storage of RTS platelets and has a mortality of >15%. Determining the safety of CS platelets is important considering their proposed use in TRALI-vulnerable populations with inflammation such as surgical patients or patients with trauma. Donor platelet-derived ceramide causes TRALI, whereas donor platelet sphingosine-1-phosphate (S1P) is barrier protective. Females have higher plasma levels of S1P than males. Cold temperatures increase S1P levels in cells. Therefore, we hypothesized that female (donors or recipients) and/or CS platelets would decrease TRALI. To test this, we compared how male and female donor and recipient allogeneic platelet transfusions of CS (4°C) versus RTS (23°C) platelets stored for 5 days influence murine TRALI. Transfusion of CS platelets significantly reduced recipient lung tissue wet-to-dry ratios, bronchoalveolar lavage total protein, lung tissue myeloperoxidase enzyme activity, histological lung injury scores, and increased plasma sphingosine-1-phosphate (S1P) levels compared with RTS platelet transfusions. Female as opposed to male recipients had less TRALI and higher plasma S1P levels. Female donor mouse platelets had higher S1P levels than males. Mouse and human CS platelets had increased S1P levels compared with RTS platelets. Higher recipient plasma S1P levels appear protective considering females, and males receiving platelets from females or male CS platelets had less TRALI.NEW & NOTEWORTHY Transfusion-related acute lung injury (TRALI) though relatively rare represents a severe lung injury. The sphingolipid sphingosine-1-phosphate (S1P) regulates the severity of platelet-mediated TRALI. Female platelet transfusion recipient plasmas or stored platelets from female donors have higher S1P levels than males, which reduces TRALI. Cold storage of murine platelets preserves platelet-S1P, which reduces TRALI in platelet-transfused recipients.


Asunto(s)
Conservación de la Sangre , Lisofosfolípidos , Esfingosina , Esfingosina/análogos & derivados , Lesión Pulmonar Aguda Postransfusional , Lisofosfolípidos/sangre , Lisofosfolípidos/metabolismo , Esfingosina/sangre , Animales , Femenino , Masculino , Ratones , Conservación de la Sangre/métodos , Lesión Pulmonar Aguda Postransfusional/sangre , Transfusión de Plaquetas , Ratones Endogámicos C57BL , Plaquetas/metabolismo , Humanos , Lesión Pulmonar Aguda/sangre , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA