Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Gut Microbes ; 16(1): 2382766, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39068523

RESUMEN

CagA, a virulence factor of Helicobacter pylori (H. pylori), is known to drive inflammation in gastric epithelial cells and is typically degraded through autophagy. However, the molecular mechanism by which CagA evades autophagy-mediated degradation remains elusive. This study found that H. pylori inhibits autophagic flux by upregulating the expression of AU-rich element RNA-binding factor 1 (AUF1). We confirmed that AUF1 does not affect autophagy initiation but instead hampers lysosomal clearance, as evidenced by treatments with 3-MA, CQ and BafA1. Upregulated AUF1 stabilizes CagA protein levels by inhibiting the autolysosomal degradation of intracellular CagA in H. pylori-infected gastric epithelial cells. Knocking down AUF1 promotes CagA degradation, an effect that can be reversed by the lysosome inhibitor BafA1 and CQ. Transcriptome analysis of AUF1-knockdown gastric epithelial cells infected with H. pylori indicated that AUF1 regulates the expression of lysosomal-associated hydrolase genes, specifically CTSD, to inhibit autolysosomal degradation. Moreover, we observed that knockdown of AUF1 enhanced the stability of CTSD mRNA and identified AUF1 binding to the 3'UTR region of CTSD mRNA. AUF1-mediated downregulation of CTSD expression contributes to CagA stability, and AUF1 overexpression leads to an increase in CagA levels in exosomes, thus promoting extracellular inflammation. In clinical gastric mucosa, the expression of AUF1 and its cytoplasmic translocation are associated with H. pylori-associated gastritis, with CagA being necessary for the translocation of AUF1 into the cytoplasm. Our findings suggest that AUF1 is a novel host-positive regulator of CagA, and dysregulation of AUF1 expression increases the risk of H. pylori-associated gastritis.


Asunto(s)
Antígenos Bacterianos , Autofagia , Proteínas Bacterianas , Células Epiteliales , Mucosa Gástrica , Infecciones por Helicobacter , Helicobacter pylori , Ribonucleoproteína Nuclear Heterogénea D0 , Ribonucleoproteína Heterogénea-Nuclear Grupo D , Lisosomas , Antígenos Bacterianos/metabolismo , Antígenos Bacterianos/genética , Ribonucleoproteína Nuclear Heterogénea D0/metabolismo , Helicobacter pylori/metabolismo , Helicobacter pylori/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Humanos , Lisosomas/metabolismo , Lisosomas/microbiología , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/patología , Ribonucleoproteína Heterogénea-Nuclear Grupo D/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo D/genética , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Mucosa Gástrica/microbiología , Mucosa Gástrica/metabolismo , Inflamación/metabolismo , Inflamación/microbiología , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Línea Celular
2.
Microbiol Spectr ; 12(8): e0016724, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38916320

RESUMEN

Mycobacterium tuberculosis (Mtb) as well as nontuberculous mycobacteria are intracellular pathogens whose treatment is extensive and increasingly impaired due to the rise of mycobacterial drug resistance. The loss of antibiotic efficacy has raised interest in the identification of host-directed therapeutics (HDT) to develop novel treatment strategies for mycobacterial infections. In this study, we identified amiodarone as a potential HDT candidate that inhibited both intracellular Mtb and Mycobacterium avium in primary human macrophages without directly impairing bacterial growth, thereby confirming that amiodarone acts in a host-mediated manner. Moreover, amiodarone induced the formation of (auto)phagosomes and enhanced autophagic targeting of mycobacteria in macrophages. The induction of autophagy by amiodarone is likely due to enhanced transcriptional regulation, as the nuclear intensity of the transcription factor EB, the master regulator of autophagy and lysosomal biogenesis, was strongly increased. Furthermore, blocking lysosomal degradation with bafilomycin impaired the host-beneficial effect of amiodarone. Finally, amiodarone induced autophagy and reduced bacterial burden in a zebrafish embryo model of tuberculosis, thereby confirming the HDT activity of amiodarone in vivo. In conclusion, we have identified amiodarone as an autophagy-inducing antimycobacterial HDT that improves host control of mycobacterial infections. IMPORTANCE: Due to the global rise in antibiotic resistance, there is a strong need for alternative treatment strategies against intracellular bacterial infections, including Mycobacterium tuberculosis (Mtb) and non-tuberculous mycobacteria. Stimulating host defense mechanisms by host-directed therapy (HDT) is a promising approach for treating mycobacterial infections. This study identified amiodarone, an antiarrhythmic agent, as a potential HDT candidate that inhibits the survival of Mtb and Mycobacterium avium in primary human macrophages. The antimycobacterial effect of amiodarone was confirmed in an in vivo tuberculosis model based on Mycobacterium marinum infection of zebrafish embryos. Furthermore, amiodarone induced autophagy and inhibition of the autophagic flux effectively impaired the host-protective effect of amiodarone, supporting that activation of the host (auto)phagolysosomal pathway is essential for the mechanism of action of amiodarone. In conclusion, we have identified amiodarone as an autophagy-inducing HDT that improves host control of a wide range of mycobacteria.


Asunto(s)
Amiodarona , Autofagia , Macrófagos , Mycobacterium tuberculosis , Tuberculosis , Pez Cebra , Amiodarona/farmacología , Autofagia/efectos de los fármacos , Animales , Pez Cebra/microbiología , Humanos , Macrófagos/microbiología , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Modelos Animales de Enfermedad , Mycobacterium avium/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/microbiología
3.
J Cell Biol ; 223(7)2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38748249

RESUMEN

Bacteria, omnipresent in our environment and coexisting within our body, exert dual beneficial and pathogenic influences. These microorganisms engage in intricate interactions with the human body, impacting both human health and disease. Simultaneously, certain organelles within our cells share an evolutionary relationship with bacteria, particularly mitochondria, best known for their energy production role and their dynamic interaction with each other and other organelles. In recent years, communication between bacteria and mitochondria has emerged as a new mechanism for regulating the host's physiology and pathology. In this review, we delve into the dynamic communications between bacteria and host mitochondria, shedding light on their collaborative regulation of host immune response, metabolism, aging, and longevity. Additionally, we discuss bacterial interactions with other organelles, including chloroplasts, lysosomes, and the endoplasmic reticulum (ER).


Asunto(s)
Bacterias , Interacciones Huésped-Patógeno , Mitocondrias , Animales , Humanos , Bacterias/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/microbiología , Lisosomas/metabolismo , Lisosomas/microbiología , Mitocondrias/metabolismo , Orgánulos/metabolismo
4.
Infect Immun ; 92(6): e0014124, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38722166

RESUMEN

The human-specific bacterial pathogen group A Streptococcus (GAS) is a significant cause of morbidity and mortality. Macrophages are important to control GAS infection, but previous data indicate that GAS can persist in macrophages. In this study, we detail the molecular mechanisms by which GAS survives in THP-1 macrophages. Our fluorescence microscopy studies demonstrate that GAS is readily phagocytosed by macrophages, but persists within phagolysosomes. These phagolysosomes are not acidified, which is in agreement with our findings that GAS cannot survive in low pH environments. We find that the secreted pore-forming toxin Streptolysin O (SLO) perforates the phagolysosomal membrane, allowing leakage of not only protons but also large proteins including the lysosomal protease cathepsin B. Additionally, GAS recruits CD63/LAMP-3, which may contribute to lysosomal permeabilization, especially in the absence of SLO. Thus, although GAS does not inhibit fusion of the lysosome with the phagosome, it has multiple mechanisms to prevent proper phagolysosome function, allowing for persistence of the bacteria within the macrophage. This has important implications for not only the initial response but also the overall functionality of the macrophages, which may lead to the resulting pathologies in GAS infection. Our data suggest that therapies aimed at improving macrophage function may positively impact patient outcomes in GAS infection.


Asunto(s)
Proteínas Bacterianas , Lisosomas , Macrófagos , Streptococcus pyogenes , Estreptolisinas , Streptococcus pyogenes/inmunología , Humanos , Macrófagos/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Lisosomas/metabolismo , Lisosomas/microbiología , Estreptolisinas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Fagosomas/microbiología , Fagosomas/metabolismo , Células THP-1 , Fagocitosis , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/metabolismo , Catepsina B/metabolismo , Concentración de Iones de Hidrógeno
5.
Virulence ; 15(1): 2350893, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38725096

RESUMEN

Coxiella burnetii (C. burnetii) is the causative agent of Q fever, a zoonotic disease. Intracellular replication of C. burnetii requires the maturation of a phagolysosome-like compartment known as the replication permissive Coxiella-containing vacuole (CCV). Effector proteins secreted by the Dot/Icm secretion system are indispensable for maturation of a single large CCV by facilitating the fusion of promiscuous vesicles. However, the mechanisms of CCV maintenance and evasion of host cell clearance remain to be defined. Here, we show that C. burnetii secreted Coxiella vacuolar protein E (CvpE) contributes to CCV biogenesis by inducing lysosome-like vacuole (LLV) enlargement. LLV fission by tubulation and autolysosome degradation is impaired in CvpE-expressing cells. Subsequently, we found that CvpE suppresses lysosomal Ca2+ channel transient receptor potential channel mucolipin 1 (TRPML1) activity in an indirect manner, in which CvpE binds phosphatidylinositol 3-phosphate [PI(3)P] and perturbs PIKfyve activity in lysosomes. Finally, the agonist of TRPML1, ML-SA5, inhibits CCV biogenesis and C. burnetii replication. These results provide insight into the mechanisms of CCV maintenance by CvpE and suggest that the agonist of TRPML1 can be a novel potential treatment that does not rely on antibiotics for Q fever by enhancing Coxiella-containing vacuoles (CCVs) fission.


Asunto(s)
Proteínas Bacterianas , Coxiella burnetii , Lisosomas , Fosfatidilinositol 3-Quinasas , Fosfatos de Fosfatidilinositol , Canales de Potencial de Receptor Transitorio , Vacuolas , Animales , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Coxiella burnetii/metabolismo , Coxiella burnetii/crecimiento & desarrollo , Coxiella burnetii/genética , Células HeLa , Interacciones Huésped-Patógeno , Lisosomas/metabolismo , Lisosomas/microbiología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fiebre Q/microbiología , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/genética , Vacuolas/microbiología , Vacuolas/metabolismo
6.
PLoS Pathog ; 20(5): e1011783, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739652

RESUMEN

Legionella pneumophila strains harboring wild-type rpsL such as Lp02rpsLWT cannot replicate in mouse bone marrow-derived macrophages (BMDMs) due to induction of extensive lysosome damage and apoptosis. The bacterial factor directly responsible for inducing such cell death and the host factor involved in initiating the signaling cascade that leads to lysosome damage remain unknown. Similarly, host factors that may alleviate cell death induced by these bacterial strains have not yet been investigated. Using a genome-wide CRISPR/Cas9 screening, we identified Hmg20a and Nol9 as host factors important for restricting strain Lp02rpsLWT in BMDMs. Depletion of Hmg20a protects macrophages from infection-induced lysosomal damage and apoptosis, allowing productive bacterial replication. The restriction imposed by Hmg20a was mediated by repressing the expression of several endo-lysosomal proteins, including the small GTPase Rab7. We found that SUMOylated Rab7 is recruited to the bacterial phagosome via SulF, a Dot/Icm effector that harbors a SUMO-interacting motif (SIM). Moreover, overexpression of Rab7 rescues intracellular growth of strain Lp02rpsLWT in BMDMs. Our results establish that L. pneumophila exploits the lysosomal network for the biogenesis of its phagosome in BMDMs.


Asunto(s)
Legionella pneumophila , Lisosomas , Macrófagos , Fagosomas , Proteínas de Unión al GTP rab , Proteínas de Unión a GTP rab7 , Legionella pneumophila/metabolismo , Legionella pneumophila/genética , Animales , Proteínas de Unión al GTP rab/metabolismo , Ratones , Fagosomas/metabolismo , Fagosomas/microbiología , Lisosomas/metabolismo , Lisosomas/microbiología , Macrófagos/microbiología , Macrófagos/metabolismo , Enfermedad de los Legionarios/metabolismo , Enfermedad de los Legionarios/microbiología , Sumoilación , Ratones Endogámicos C57BL , Endosomas/metabolismo , Endosomas/microbiología
7.
PLoS Pathog ; 20(5): e1012205, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38701094

RESUMEN

Mycobacterium tuberculosis (Mtb) infects lung myeloid cells, but the specific Mtb-permissive cells and host mechanisms supporting Mtb persistence during chronic infection are incompletely characterized. We report that after the development of T cell responses, CD11clo monocyte-derived cells harbor more live Mtb than alveolar macrophages (AM), neutrophils, and CD11chi monocyte-derived cells. Transcriptomic and functional studies revealed that the lysosome pathway is underexpressed in this highly permissive subset, characterized by less lysosome content, acidification, and proteolytic activity than AM, along with less nuclear TFEB, a regulator of lysosome biogenesis. Mtb infection does not drive lysosome deficiency in CD11clo monocyte-derived cells but promotes recruitment of monocytes that develop into permissive lung cells, mediated by the Mtb ESX-1 secretion system. The c-Abl tyrosine kinase inhibitor nilotinib activates TFEB and enhances lysosome functions of macrophages in vitro and in vivo, improving control of Mtb infection. Our results suggest that Mtb exploits lysosome-poor lung cells for persistence and targeting lysosome biogenesis is a potential host-directed therapy for tuberculosis.


Asunto(s)
Lisosomas , Macrófagos Alveolares , Monocitos , Mycobacterium tuberculosis , Lisosomas/metabolismo , Lisosomas/microbiología , Animales , Monocitos/metabolismo , Monocitos/microbiología , Ratones , Macrófagos Alveolares/microbiología , Macrófagos Alveolares/metabolismo , Pulmón/microbiología , Pulmón/metabolismo , Ratones Endogámicos C57BL , Enfermedad Crónica , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/metabolismo , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/patología , Humanos , Tuberculosis/microbiología , Tuberculosis/inmunología , Tuberculosis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo
8.
Vet Microbiol ; 293: 110091, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626624

RESUMEN

Mastitis in dairy cows is mainly caused by bacteria, in which Staphylococcus aureus appears frequently. Epithelial cells, as a major physical barrier of mammary gland, play an important role in preventing mastitis in dairy cows. Our previous study reported that Rab11fip4 (an effector of Rab11) was significantly changed in response to stimulation by S. aureus. So, in this study, the role of Rab11A in phagocytosis of bovine mammary epithelial cells (MAC-T) against S. aureus was evaluated. First, changes of Rab11A and Rab11fip4 were analyzed in response to S. aureus by immunofluorescence and western blotting. Subsequently, the effects of Rab11A and Rab11fip4 on proliferation of S. aureus, as well as formation and function of late endosomes (LEs) and lysosomes (LYSs) were investigated. The results showed that, after infection, Rab11A and Rab11fip4 were recruited to phagosomes containing S. aureus. Rab11A promoted bacterial clearance and rescues the destruction of LEs and LYSs by S. aureus, whereas Rab11fip4 did the opposite. These findings provide new insights into phagocytosis and control of S. aureus in host cells, thus lay the foundation to elucidate the pathogenesis of S. aureus in bovine mastitis.


Asunto(s)
Células Epiteliales , Mastitis Bovina , Fagocitosis , Infecciones Estafilocócicas , Staphylococcus aureus , Proteínas de Unión al GTP rab , Animales , Bovinos , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Staphylococcus aureus/fisiología , Femenino , Células Epiteliales/microbiología , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/microbiología , Mastitis Bovina/microbiología , Glándulas Mamarias Animales/microbiología , Endosomas/metabolismo , Endosomas/microbiología , Lisosomas/metabolismo , Lisosomas/microbiología , Línea Celular , Fagosomas/microbiología
9.
Nature ; 623(7989): 1062-1069, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968398

RESUMEN

Endomembrane damage represents a form of stress that is detrimental for eukaryotic cells1,2. To cope with this threat, cells possess mechanisms that repair the damage and restore cellular homeostasis3-7. Endomembrane damage also results in organelle instability and the mechanisms by which cells stabilize damaged endomembranes to enable membrane repair remains unknown. Here, by combining in vitro and in cellulo studies with computational modelling we uncover a biological function for stress granules whereby these biomolecular condensates form rapidly at endomembrane damage sites and act as a plug that stabilizes the ruptured membrane. Functionally, we demonstrate that stress granule formation and membrane stabilization enable efficient repair of damaged endolysosomes, through both ESCRT (endosomal sorting complex required for transport)-dependent and independent mechanisms. We also show that blocking stress granule formation in human macrophages creates a permissive environment for Mycobacterium tuberculosis, a human pathogen that exploits endomembrane damage to survive within the host.


Asunto(s)
Endosomas , Membranas Intracelulares , Lisosomas , Macrófagos , Gránulos de Estrés , Humanos , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Endosomas/microbiología , Endosomas/patología , Membranas Intracelulares/metabolismo , Membranas Intracelulares/microbiología , Membranas Intracelulares/patología , Lisosomas/metabolismo , Lisosomas/microbiología , Lisosomas/patología , Mycobacterium tuberculosis/metabolismo , Gránulos de Estrés/metabolismo , Técnicas In Vitro , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología
10.
Microbiol Res ; 277: 127503, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37748260

RESUMEN

Many pathogenic organisms need to reach either an intracellular compartment or the cytoplasm of a target cell for their survival, replication or immune system evasion. Intracellular pathogens frequently penetrate into the cell through the endocytic and phagocytic pathways (clathrin-mediated endocytosis, phagocytosis and macropinocytosis) that culminates in fusion with lysosomes. However, several mechanisms are triggered by pathogenic microorganisms - protozoan, bacteria, virus and fungus - to avoid destruction by lysosome fusion, such as rupture of the phagosome and thereby release into the cytoplasm, avoidance of autophagy, delaying in both phagolysosome biogenesis and phagosomal maturation and survival/replication inside the phagolysosome. Here we reviewed the main data dealing with phagosome maturation and evasion from lysosomal killing by different bacteria, protozoa, fungi and virus.


Asunto(s)
Lisosomas , Fagocitosis , Lisosomas/microbiología , Fagosomas/metabolismo , Fagosomas/microbiología , Endocitosis , Evasión Inmune
11.
Pathog Dis ; 80(1)2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35038342

RESUMEN

Mycobacterium tuberculosis utilizes several mechanisms to block phagosome-lysosome fusion to evade host cell restriction. However, induction of host cell autophagy by starvation was shown to overcome this block, resulting in enhanced lysosomal delivery to mycobacterial phagosomes and the killing of the M. tuberculosis reference strain H37Rv. Nevertheless, our previous studies found that strains belonging to the M. tuberculosis Beijing genotype can resist starvation-induced autophagic elimination, though the mycobacterial factors involved remain unclear. In this study, we showed that KatG expression is upregulated in the autophagy-resistant M. tuberculosis Beijing strain (BJN) during autophagy induction by the starvation of host macrophages, while such increase was not observed in the H37Rv. KatG depletion using the CRISPR-dCas9 interference system in the BJN resulted in increased lysosomal delivery to its phagosome and decreased its survival upon autophagy induction by starvation. As KatG functions by catabolizing ROS, we determined the source of ROS contributing to the starvation-induced autophagic elimination of mycobacteria. Using siRNA-mediated knockdown, we found that Superoxide dismutase 2, which generates mitochondrial ROS but not NADPH oxidase 2, is important for the starvation-induced lysosomal delivery to mycobacterial phagosomes. Taken together, these findings showed that KatG is vital for the BJN to evade starvation-induced autophagic restriction.


Asunto(s)
Mycobacterium tuberculosis , Autofagia/genética , Beijing , Lisosomas/microbiología , Mycobacterium tuberculosis/genética , Fagosomas/metabolismo
12.
Microbiol Spectr ; 9(3): e0039921, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34878295

RESUMEN

Escherichia coli K1 causes bacteremia and meningitis in human neonates. The K1 capsule, an α2,8-linked polysialic acid (PSA) homopolymer, is its essential virulence factor. PSA is usually partially modified by O-acetyl groups. It is known that O-acetylation alters the antigenicity of PSA, but its impact on the interactions between E. coli K1 and host cells is unclear. In this study, a phase variant was obtained by passage of E. coli K1 parent strain, which expressed a capsule with 44% O-acetylation whereas the capsule of the parent strain has only 3%. The variant strain showed significantly reduced adherence and invasion to macrophage-like cells in comparison to the parent strain. Furthermore, we found that O-acetylation of PSA enhanced the modulation of trafficking of E. coli-containing vacuoles (ECV), enabling them to avoid fusing with lysosomes in these cells. Intriguingly, by using quartz crystal microbalance, we demonstrated that the PSA purified from the parent strain interacted with human sialic acid-binding immunoglobulin-like lectins (Siglecs), including Siglec-5, Siglec-7, Siglec-11, and Siglec-14. However, O-acetylated PSA from the variant interacted much less and also suppressed the production of Siglec-mediated proinflammatory cytokines. The adherence of the parent strain to human macrophage-like cells was significantly blocked by monoclonal antibodies against Siglec-11 and Siglec-14. Furthermore, the variant strain caused increased bacteremia and higher lethality in neonatal mice compared to the parent strain. These data elucidate that O-acetylation of K1 capsule enables E. coli to escape from Siglec-mediated innate immunity and lysosomal degradation; therefore, it is a strategy used by E. coli K1 to regulate its virulence. IMPORTANCE Escherichia coli K1 is a leading cause of neonatal meningitis. The mortality and morbidity of this disease remain significantly high despite antibiotic therapy. One major limitation on advances in prevention and therapy for meningitis is an incomplete understanding of its pathogenesis. E. coli K1 is surrounded by PSA, which is observed to have high-frequency variation of O-acetyl modification. Here, we present an in-depth study of the function of O-acetylation in PSA at each stage of host-pathogen interaction. We found that a high level of O-acetylation significantly interfered with Siglec-mediated bacterial adherence to macrophage-like cells, and blunted the proinflammatory response. Furthermore, the O-acetylation of PSA modulated the trafficking of ECVs to prevent them from fusing with lysosomes, enabling them to escape degradation by lysozymes within these cells. Elucidating how subtle modification of the capsule enhances bacterial defenses against host innate immunity will enable the future development of effective drugs or vaccines against infection by E. coli K1.


Asunto(s)
Cápsulas Bacterianas/inmunología , Infecciones por Escherichia coli/inmunología , Escherichia coli/inmunología , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/inmunología , Ácidos Siálicos/inmunología , Acetilación , Animales , Escherichia coli/genética , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Interacciones Huésped-Patógeno , Humanos , Evasión Inmune , Inmunidad Innata , Lisosomas/inmunología , Lisosomas/microbiología , Masculino , Ratones , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Vacuolas/inmunología , Vacuolas/microbiología
13.
Pathog Dis ; 79(9)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34755855

RESUMEN

Mammals have evolved sophisticated host cell death signaling pathways as an important immune mechanism to recognize and eliminate cell intruders before they establish their replicative niche. However, intracellular bacterial pathogens that have co-evolved with their host have developed a multitude of tactics to counteract this defense strategy to facilitate their survival and replication. This requires manipulation of pro-death and pro-survival host signaling pathways during infection. Obligate intracellular bacterial pathogens are organisms that absolutely require an eukaryotic host to survive and replicate, and therefore they have developed virulence factors to prevent diverse forms of host cell death and conserve their replicative niche. This review encapsulates our current understanding of these host-pathogen interactions by exploring the most relevant findings of Anaplasma spp., Chlamydia spp., Rickettsia spp. and Coxiella burnetii modulating host cell death pathways. A detailed comprehension of the molecular mechanisms through which these obligate intracellular pathogens manipulate regulated host cell death will not only increase the current understanding of these difficult-to-study pathogens but also provide insights into new tools to study regulated cell death and the development of new therapeutic approaches to control infection.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno , Animales , Biomarcadores , Muerte Celular/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Espacio Intracelular/inmunología , Espacio Intracelular/metabolismo , Espacio Intracelular/microbiología , Lisosomas/inmunología , Lisosomas/metabolismo , Lisosomas/microbiología , Viabilidad Microbiana/inmunología , Estrés Oxidativo , Fagocitosis , Especificidad de la Especie , Factores de Virulencia
14.
J Cell Biol ; 220(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34180943

RESUMEN

Phagocytes engulf unwanted particles into phagosomes that then fuse with lysosomes to degrade the enclosed particles. Ultimately, phagosomes must be recycled to help recover membrane resources that were consumed during phagocytosis and phagosome maturation, a process referred to as "phagosome resolution." Little is known about phagosome resolution, which may proceed through exocytosis or membrane fission. Here, we show that bacteria-containing phagolysosomes in macrophages undergo fragmentation through vesicle budding, tubulation, and constriction. Phagosome fragmentation requires cargo degradation, the actin and microtubule cytoskeletons, and clathrin. We provide evidence that lysosome reformation occurs during phagosome resolution since the majority of phagosome-derived vesicles displayed lysosomal properties. Importantly, we show that clathrin-dependent phagosome resolution is important to maintain the degradative capacity of macrophages challenged with two waves of phagocytosis. Overall, our work suggests that phagosome resolution contributes to lysosome recovery and to maintaining the degradative power of macrophages to handle multiple waves of phagocytosis.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Lisosomas/metabolismo , Microtúbulos/metabolismo , Fagocitosis/fisiología , Fagosomas/metabolismo , Citoesqueleto de Actina/microbiología , Citoesqueleto de Actina/ultraestructura , Actinas/genética , Actinas/metabolismo , Animales , Clatrina/genética , Clatrina/metabolismo , Escherichia coli/química , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Lisosomas/microbiología , Lisosomas/ultraestructura , Fusión de Membrana , Ratones , Microtúbulos/microbiología , Microtúbulos/ultraestructura , Fagosomas/microbiología , Fagosomas/ultraestructura , Proteolisis , Células RAW 264.7
15.
Virulence ; 12(1): 1362-1376, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34009097

RESUMEN

Recent studies indicate that the Bacillus species is distributed in deep-sea environments. However, no specific studies on deep-sea Bacillus cereus have been documented. In the present work, we isolated a B. cereus strain, H2, from the deep-sea cold seep in South China Sea. We characterized the pathogenic potential of H2 and investigated H2-induced death of different types of cells. We found that H2 was capable of tissue dissemination and causing acute mortality in mice and fish following intraperitoneal/intramuscular injection. In vitro studies revealed that H2 infection of macrophages induced pyroptosis and activation of the NLRP3 inflammasome pathway that contributed partly to cell death. H2 infection activated p38, JNK, and ERK, but only JNK proved to participate in H2-triggered cell death. Reactive oxygen species (ROS) and intracellular Ca2+ were essential to H2-induced activation of JNK and NLRP3 inflammasome. In contrast, lysosomal rupture and cathepsins were required for H2-induced NLRP3 inflammasome activation but not for JNK activation. This study revealed for the first time the virulence characteristics of deep-sea B. cereus and provided new insights into the mechanism of B. cereus infection.


Asunto(s)
Bacillus cereus/patogenicidad , Inflamasomas , Lisosomas/microbiología , Sistema de Señalización de MAP Quinasas , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Animales , Inflamasomas/metabolismo , MAP Quinasa Quinasa 4 , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno
16.
Cell Rep ; 35(2): 109000, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852860

RESUMEN

Chemotaxis and lysosomal function are closely intertwined processes essential for the inflammatory response and clearance of intracellular bacteria. We used the zebrafish model to examine the link between chemotactic signaling and lysosome physiology in macrophages during mycobacterial infection and wound-induced inflammation in vivo. Macrophages from zebrafish larvae carrying a mutation in a chemokine receptor of the Cxcr3 family display upregulated expression of vesicle trafficking and lysosomal genes and possess enlarged lysosomes that enhance intracellular bacterial clearance. This increased microbicidal capacity is phenocopied by inhibiting the lysosomal transcription factor EC, while its overexpression counteracts the protective effect of chemokine receptor mutation. Tracking macrophage migration in zebrafish revealed that lysosomes of chemokine receptor mutants accumulate in the front half of cells, preventing macrophage polarization during chemotaxis and reaching sites of inflammation. Our work shows that chemotactic signaling affects the bactericidal properties and localization during chemotaxis, key aspects of the inflammatory response.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Lisosomas/inmunología , Macrófagos/inmunología , Infecciones por Mycobacterium/genética , Receptores CXCR3/genética , Transducción de Señal/inmunología , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/inmunología , Rastreo Celular , Quimiotaxis/genética , Quimiotaxis/inmunología , Embrión no Mamífero , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genes Reporteros , Larva/inmunología , Larva/microbiología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/inmunología , Lisosomas/metabolismo , Lisosomas/microbiología , Lisosomas/ultraestructura , Activación de Macrófagos , Macrófagos/microbiología , Macrófagos/ultraestructura , Mutación , Infecciones por Mycobacterium/inmunología , Infecciones por Mycobacterium/microbiología , Mycobacterium marinum/inmunología , Mycobacterium marinum/patogenicidad , Receptores CXCR3/inmunología , Análisis de Secuencia de ARN , Transducción de Señal/genética , Pez Cebra/inmunología , Pez Cebra/microbiología , Proteínas de Pez Cebra/inmunología , Proteína Fluorescente Roja
17.
Toxins (Basel) ; 13(4)2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918753

RESUMEN

Clostridium botulinum C2 toxin is a clostridial binary toxin consisting of actin ADP-ribosyltransferase (C2I) and C2II binding components. Activated C2II (C2IIa) binds to cellular receptors and forms oligomer in membrane rafts. C2IIa oligomer assembles with C2I and contributes to the transport of C2I into the cytoplasm of host cells. C2IIa induces Ca2+-induced lysosomal exocytosis, extracellular release of the acid sphingomyelinase (ASMase), and membrane invagination and endocytosis through generating ceramides in the membrane by ASMase. Here, we reveal that C2 toxin requires the lysosomal enzyme cathepsin B (CTSB) during endocytosis. Lysosomes are a rich source of proteases, containing cysteine protease CTSB and cathepsin L (CTSL), and aspartyl protease cathepsin D (CTSD). Cysteine protease inhibitor E64 blocked C2 toxin-induced cell rounding, but aspartyl protease inhibitor pepstatin-A did not. E64 inhibited the C2IIa-promoted extracellular ASMase activity, indicating that the protease contributes to the activation of ASMase. C2IIa induced the extracellular release of CTSB and CTSL, but not CTSD. CTSB knockdown by siRNA suppressed C2 toxin-caused cytotoxicity, but not siCTSL. These findings demonstrate that CTSB is important for effective cellular entry of C2 toxin into cells through increasing ASMase activity.


Asunto(s)
Toxinas Botulínicas/metabolismo , Catepsina B/metabolismo , Membrana Celular/enzimología , Clostridium botulinum/metabolismo , Endocitosis , Lisosomas/enzimología , Animales , Catepsina B/genética , Membrana Celular/microbiología , Clostridium botulinum/patogenicidad , Perros , Exocitosis , Interacciones Huésped-Patógeno , Lisosomas/genética , Lisosomas/microbiología , Células de Riñón Canino Madin Darby , Esfingomielina Fosfodiesterasa/metabolismo
18.
Virchows Arch ; 479(2): 265-275, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33559740

RESUMEN

Tuberculosis (TB) is the most prevalent bacterial infectious disease in the world, caused by the pathogen Mycobacterium tuberculosis (Mtb). In this study, we have used Mycobacterium marinum (Mm) infection in zebrafish larvae as an animal model for this disease to study the role of the myeloid differentiation factor 88 (Myd88), the key adapter protein of Toll-like receptors. Previously, Myd88 has been shown to enhance innate immune responses against bacterial infections, and in the present study, we have investigated the effect of Myd88 deficiency on the granuloma morphology and the intracellular distribution of bacteria during Mm infection. Our results show that granulomas formed in the tail fin from myd88 mutant larvae have a more compact structure and contain a reduced number of leukocytes compared to the granulomas observed in wild-type larvae. These morphological differences were associated with an increased bacterial burden in the myd88 mutant. Electron microscopy analysis showed that the majority of Mm in the myd88 mutant are located extracellularly, whereas in the wild type, most bacteria were intracellular. In the myd88 mutant, intracellular bacteria were mainly present in compartments that were not electron-dense, suggesting that these compartments had not undergone fusion with a lysosome. In contrast, approximately half of the intracellular bacteria in wild-type larvae were found in electron-dense compartments. These observations in a zebrafish model for tuberculosis suggest a role for Myd88-dependent signalling in two important phenomena that limit mycobacterial growth in the infected tissue. It reduces the number of leukocytes at the site of infection and the acidification of bacteria-containing compartments inside these cells.


Asunto(s)
Granuloma/microbiología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum/crecimiento & desarrollo , Factor 88 de Diferenciación Mieloide/metabolismo , Tuberculosis/microbiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/microbiología , Animales , Animales Modificados Genéticamente , Carga Bacteriana , Modelos Animales de Enfermedad , Granuloma/genética , Granuloma/metabolismo , Granuloma/patología , Concentración de Iones de Hidrógeno , Leucocitos/metabolismo , Leucocitos/microbiología , Leucocitos/ultraestructura , Lisosomas/metabolismo , Lisosomas/microbiología , Lisosomas/ultraestructura , Microscopía Electrónica de Transmisión , Infecciones por Mycobacterium no Tuberculosas/genética , Infecciones por Mycobacterium no Tuberculosas/metabolismo , Infecciones por Mycobacterium no Tuberculosas/patología , Mycobacterium marinum/ultraestructura , Factor 88 de Diferenciación Mieloide/genética , Transducción de Señal , Tuberculosis/genética , Tuberculosis/metabolismo , Tuberculosis/patología , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
19.
Sci Rep ; 11(1): 4342, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619301

RESUMEN

Induction of host cell autophagy by starvation was shown to enhance lysosomal delivery to mycobacterial phagosomes, resulting in the restriction of Mycobacterium tuberculosis reference strain H37Rv. Our previous study showed that strains belonging to M. tuberculosis Beijing genotype resisted starvation-induced autophagic elimination but the factors involved remained unclear. Here, we conducted RNA-Seq of macrophages infected with the autophagy-resistant Beijing strain (BJN) compared to macrophages infected with H37Rv upon autophagy induction by starvation. Results identified several genes uniquely upregulated in BJN-infected macrophages but not in H37Rv-infected cells, including those encoding Kxd1 and Plekhm2, which function in lysosome positioning towards the cell periphery. Unlike H37Rv, BJN suppressed enhanced lysosome positioning towards the perinuclear region and lysosomal delivery to its phagosome upon autophagy induction by starvation, while depletion of Kxd1 and Plekhm2 reverted such effects, resulting in restriction of BJN intracellular survival upon autophagy induction by starvation. Taken together, these data indicated that Kxd1 and Plekhm2 are important for the BJN strain to suppress lysosome positioning towards the perinuclear region and lysosomal delivery into its phagosome during autophagy induction by starvation to evade starvation-induced autophagic restriction.


Asunto(s)
Autofagia , Interacciones Huésped-Patógeno , Lisosomas/metabolismo , Lisosomas/microbiología , Mycobacterium tuberculosis/fisiología , Tuberculosis/metabolismo , Tuberculosis/microbiología , Autofagia/genética , Proteínas Portadoras/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Anotación de Secuencia Molecular , Transcriptoma , Tuberculosis/genética , Tuberculosis/inmunología
20.
Artículo en Inglés | MEDLINE | ID: mdl-33609809

RESUMEN

MiR-150 is a microRNA (miRNA) present in a number of teleost species, but its target and regulation mechanism are unknown. Similarly, lysosome membrane protein 2-like (LMP2L) is a gene identified in fish but with unknown function. In this study, we examined the regulation mechanism and function of flounder miR-150 (named pol-miR-150) and its target gene LMP2L (named PoLMP2L) in association with bacterial and viral infection. We found that pol-miR-150 expression was not only modulated by the bacterial pathogen Streptococcus iniae but also by the viral pathogen megalocytivirus. Pol-miR-150 targeted PoLMP2L by binding to the 3'-untranslated region (3'-UTR) of PoLMP2L and inhibited PoLMP2L expression in vitro and in vivo. PoLMP2L is a member of the CD36 superfamily of scavenger receptors and homologous to but phylogenetically distinct from lysosomal integral membrane protein type 2 (LIMP2). PoLMP2L was localized mainly in the lysosomes and expressed in multiple organs of flounder. In vivo knockdown and overexpression of PoLMP2L enhanced and suppressed, respectively, S. iniae dissemination in flounder tissues, whereas in vivo knockdown and overexpression of pol-miR-150 produced the opposite effects on S. iniae dissemination. In addition, pol-miR-150 knockdown also significantly inhibited the replication of megalocytivirus. The results of this study revealed the regulation mechanism and immune functions of fish miR-150 and LMP2L, and indicated that LMP2L and miR-150 play an important role in the antimicrobial immunity of fish.


Asunto(s)
Infecciones por Virus ADN , Enfermedades de los Peces , Proteínas de Peces/inmunología , Lenguado , Iridoviridae/inmunología , Lisosomas , MicroARNs/inmunología , Infecciones Estreptocócicas , Streptococcus iniae/inmunología , Animales , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/microbiología , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/virología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/virología , Lenguado/inmunología , Lenguado/microbiología , Lenguado/virología , Lisosomas/inmunología , Lisosomas/microbiología , Lisosomas/virología , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...