Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34112718

RESUMEN

Plants synthesize many diverse small molecules that affect function of the mammalian central nervous system, making them crucial sources of therapeutics for neurological disorders. A notable portion of neuroactive phytochemicals are lysine-derived alkaloids, but the mechanisms by which plants produce these compounds have remained largely unexplored. To better understand how plants synthesize these metabolites, we focused on biosynthesis of the Lycopodium alkaloids that are produced by club mosses, a clade of plants used traditionally as herbal medicines. Hundreds of Lycopodium alkaloids have been described, including huperzine A (HupA), an acetylcholine esterase inhibitor that has generated interest as a treatment for the symptoms of Alzheimer's disease. Through combined metabolomic profiling and transcriptomics, we have identified a developmentally controlled set of biosynthetic genes, or potential regulon, for the Lycopodium alkaloids. The discovery of this putative regulon facilitated the biosynthetic reconstitution and functional characterization of six enzymes that act in the initiation and conclusion of HupA biosynthesis. This includes a type III polyketide synthase that catalyzes a crucial imine-polyketide condensation, as well as three Fe(II)/2-oxoglutarate-dependent dioxygenase (2OGD) enzymes that catalyze transformations (pyridone ring-forming desaturation, piperidine ring cleavage, and redox-neutral isomerization) within downstream HupA biosynthesis. Our results expand the diversity of known chemical transformations catalyzed by 2OGDs and provide mechanistic insight into the function of noncanonical type III PKS enzymes that generate plant alkaloid scaffolds. These data offer insight into the chemical logic of Lys-derived alkaloid biosynthesis and demonstrate the tightly coordinated coexpression of secondary metabolic genes for the biosynthesis of medicinal alkaloids.


Asunto(s)
Alcaloides/biosíntesis , Lycopodium/enzimología , Lycopodium/metabolismo , Regulón/genética , Alcaloides/química , Vías Biosintéticas , Metabolómica , Oxigenasas de Función Mixta/metabolismo , Oxidación-Reducción , Piperidinas/metabolismo , Sesquiterpenos/química , Transcriptoma/genética
2.
Plant Physiol ; 176(2): 1469-1484, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29203557

RESUMEN

8,14-seco-Triterpenoids are characterized by their unusual open C-ring. Their distribution in nature is rare and scattered in taxonomically unrelated plants. The 8,14-seco-triterpenoid α-onocerin is only known from the evolutionarily distant clubmoss genus Lycopodium and the leguminous genus Ononis, which makes the biosynthesis of this seco-triterpenoid intriguing from an evolutionary standpoint. In our experiments with Ononis spinosa, α-onocerin was detected only in the roots. Through transcriptome analysis of the roots, an oxidosqualene cyclase, OsONS1, was identified that produces α-onocerin from squalene-2,3;22,23-dioxide when transiently expressed in Nicotiana bethamiana In contrast, in Lycopodium clavatum, two sequential cyclases, LcLCC and LcLCD, are required to produce α-onocerin in the N. benthamiana transient expression system. Expression of OsONS1 in the lanosterol synthase knockout yeast strain GIL77, which accumulates squalene-2,3;22,23-dioxide, verified the α-onocerin production. A phylogenetic analysis predicts that OsONS1 branches off from specific lupeol synthases and does not group with the known L. clavatum α-onocerin cyclases. Both the biochemical and phylogenetic analyses of OsONS1 suggest convergent evolution of the α-onocerin pathways. When OsONS1 was coexpressed in N. benthamiana leaves with either of the two O. spinosa squalene epoxidases, OsSQE1 or OsSQE2, α-onocerin production was boosted, most likely because the epoxidases produce higher amounts of squalene-2,3;22,23-dioxide. Fluorescence lifetime imaging microscopy analysis demonstrated specific protein-protein interactions between OsONS1 and both O. spinosa squalene epoxidases. Coexpression of OsONS1 with the two OsSQEs suggests that OsSQE2 is the preferred partner of OsONS1 in planta. Our results provide an example of the convergent evolution of plant specialized metabolism.


Asunto(s)
Transferasas Intramoleculares/metabolismo , Lycopodium/enzimología , Ononis/enzimología , Triterpenos/metabolismo , Transferasas Intramoleculares/genética , Lycopodium/química , Lycopodium/genética , Ononis/química , Ononis/genética , Hojas de la Planta/química , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Nicotiana/química , Nicotiana/enzimología , Nicotiana/genética
3.
Plant Physiol ; 171(4): 2432-44, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27303024

RESUMEN

Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer's disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase.


Asunto(s)
Alcaloides/metabolismo , Carboxiliasas/metabolismo , Evolución Molecular , Huperzia/enzimología , Lycopodium/enzimología , Ornitina Descarboxilasa/metabolismo , Alcaloides/química , Arabidopsis/genética , Arabidopsis/metabolismo , Vías Biosintéticas , Carboxiliasas/genética , Descarboxilación , Huperzia/química , Huperzia/genética , Lycopodium/química , Lycopodium/genética , Lisina/metabolismo , Mutagénesis Sitio-Dirigida , Cebollas/genética , Cebollas/metabolismo , Ornitina Descarboxilasa/genética , Filogenia , Hojas de la Planta/química , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Proteínas Recombinantes , Nicotiana/genética , Nicotiana/metabolismo
4.
Chembiochem ; 17(4): 288-90, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26663356

RESUMEN

Onocerin is known for its unusual structure among triterpenoids, with a symmetrical structure that is formed by cyclizations at the both termini of dioxidosqualene. The nature of the enzyme catalyzing these unusual cyclizations has remained elusive for decades. Here, we report the cloning of genes responsible for these reactions; they exhibited unprecedented substrate specificities among oxidosqualene cyclase family members. Two genes, LCC and LCD, were identified from the fern Lycopodium clavatum. Expression in yeast revealed that both were required to produce α-onocerin. LCC, the first dioxidosqualene cyclase, catalyzed the production of a novel intermediate pre-α-onocerin from only dioxidosqualene as a substrate; LCD catalyzed the second half of the cyclization, exclusively from pre-α-onocerin. These results demonstrated that these two most unusual oxidosqualene cyclases were involved in onocerin biosynthesis.


Asunto(s)
Transferasas Intramoleculares/metabolismo , Lycopodium/enzimología , Triterpenos/metabolismo , Vías Biosintéticas , Ciclización , Genes de Plantas , Transferasas Intramoleculares/genética , Lycopodium/química , Lycopodium/genética , Lycopodium/metabolismo , Especificidad por Sustrato , Triterpenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...