Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros













Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38013046

RESUMEN

A novel food followed by sickness, causes a taste-specific conditioned aversion, known as the 'Garcia effect'. We recently found that both a heat shock stressor (30 °C for 1 h - HS) and the bacterial lipopolysaccharide (LPS) can be used as 'sickness-inducing' stimuli to induce a Garcia effect in the pond snail Lymnaea stagnalis. Additionally, if snails are exposed to acetylsalicylic acid (ASA) present in aspirin tablets before the LPS injection, the formation of the Garcia effect is prevented. Here, we hypothesized that exposing snails to crushed aspirin before the HS (ASA-HS) would prevent the HS-induced 'sickness state' and - therefore -the Garcia effect. Unexpectantly, the ASA-HS procedure induced a generalized and long-lasting feeding suppression. We thus investigate the molecular effects underlying this phenomenon. While the exposure to the HS alone resulted in a significant upregulation of the mRNA levels of the Heat Shock Protein 70 (HSP 70) in snails' central ring ganglia, the ASA-HS procedure induced an even greater upregulation of HSP70, suggesting that the ASA-HS combination causes a severe stress response that inhibits feeding. Additionally, we found that the ASA-HS procedure induced a significant downregulation of the mRNA levels of genes involved with the serotoninergic system which regulates feeding in snails. Finally, the ASA-HS procedure prevented HS-induced upregulation of the mRNA levels of key neuroplasticity genes. Our study indicates that two sickness-inducing stimuli can have different physiological responses even if behavioral outcomes are similar under some learning contexts.


Asunto(s)
Aspirina , Lipopolisacáridos , Animales , Aspirina/farmacología , Lipopolisacáridos/farmacología , Respuesta al Choque Térmico , Proteínas HSP70 de Choque Térmico/genética , ARN Mensajero , Lymnaea/genética
2.
J Mol Evol ; 91(5): 721-729, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37747557

RESUMEN

Bilateria exhibit whole-body handedness in internal structure. This left-right polarity is evolutionarily conserved with virtually no reversed extant lineage, except in molluscan Gastropoda. Phylogenetically independent snail groups contain both clockwise-coiled (dextral) and counterclockwise-coiled (sinistral) taxa that are reversed from each other in bilateral handedness as well as in coiling direction. Within freshwater Hygrophila, Lymnaea with derived dextrality have diaphanous related formin (diaph) gene duplicates, while basal sinistral groups possess one diaph gene. In terrestrial Stylommatophora, dextral Bradybaena also have diaph duplicates. Defective maternal expression of one of those duplicates gives rise to sinistral hatchlings in Lymnaea and handedness-mixed broods in Bradybaena, through polarity change in spiral cleavage of embryos. These findings led to the hypothesis that diaph duplication was crucial for the evolution of dextrality by reversal. The present study discovered that diaph duplication independently occurred four times and its duplicate became lost twice in gastropods. The dextrality of Bradybaena represents the ancestral handedness conserved across gastropods, unlike the derived dextrality of Lymnaea. Sinistral lineages recurrently evolved by reversal regardless of whether diaph had been duplicated. Amongst the seven formin gene subfamilies, diaph has most thoroughly been conserved across eukaryotes of the 14 metazoan phyla and choanoflagellate. Severe embryonic mortalities resulting from insufficient expression of the duplicate in both of Bradybaena and Lymnaea also support that diaph duplicates bare general roles for cytoskeletal dynamics other than controlling spiralian handedness. Our study rules out the possibility that diaph duplication or loss played a primary role for reversal evolution.


Asunto(s)
Duplicación de Gen , Caracoles , Animales , Forminas/genética , Forminas/metabolismo , Caracoles/genética , Lymnaea/genética , Lymnaea/metabolismo , Eucariontes
3.
Artículo en Inglés | MEDLINE | ID: mdl-36265756

RESUMEN

The Great Pond snail Lymnaea stagnalis (Gastropoda, Hygrophila) is a wide-spread freshwater gastropod, being considered as a model organism for research in many fields of biology, including ecotoxicology. The aim of the present study was to explore the Cd sensitivity of L. stagnalis through the measurement of a biomarker battery for oxidative, toxic and cellular stress. The interpretation of biomarker parameters occurred against the background of a truncated metallothionein protein with a limited Cd-binding capacity. Individuals of L. stagnalis were exposed through 14 days to uncontaminated water (controls) or to low (30 µg · L-1) or high (50 µg · L-1) Cd concentrations. The digestive gland of control and low-Cd exposed snails was processed for transcriptional analysis of the Metallothionein (MT) gene expression, and for determination of biomarkers for oxidative stress, toxicity and cellular stress. Digestive gland supernatants of high-Cd exposed snails were subjected to chromatography and subsequent analysis by spectrophotometry. It was shown that the MT system of L. stagnalis is functionally deficient, with a poor Cd responsiveness at both, the transcriptional and the protein expression levels. Instead, L. stagnalis appears to rely on alternative detoxification mechanisms such as Cd binding by phytochelatins and metal inactivation by compartmentalization within the lysosomal system. In spite of this, however, traces of Cd apparently leak out of the pre-determined detoxification pathways, leading to adverse effects, which is clearly indicated by biomarkers of oxidative and cellular stress.


Asunto(s)
Lymnaea , Metalotioneína , Humanos , Animales , Lymnaea/genética , Lymnaea/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Agua Dulce/química , Estrés Oxidativo , Biomarcadores/metabolismo
4.
Mol Ecol Resour ; 23(1): 81-91, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35899418

RESUMEN

Environmental DNA (eDNA) approaches contributing to species identifications are quickly becoming the new norm in biomonitoring and ecosystem assessments. Yet, information such as age and health state of the population, which is vital to species biomonitoring, has not been accessible from eDNA. DNA methylation has the potential to provide such information on the state of a population. Here, we measured the methylation of eDNA along with tissue DNA (tDNA) of Lymnaea stagnalis at four life stages. We demonstrate that eDNA methylation varies with age and allows distinguishing among age classes. Moreover, eDNA was globally hypermethylated in comparison to tDNA. This difference was age-specific and connected to a limited number of eDNA sites. This differential methylation pattern suggests that eDNA release with age is partially regulated through DNA methylation. Our findings help to understand mechanisms involved in eDNA release and shows the potential of eDNA methylation analysis to assess age classes. Such age class assessments will encourage future eDNA studies to assess fundamental processes of population dynamics and functioning in ecology, biodiversity conservation and impact assessments.


Asunto(s)
ADN Ambiental , Animales , Ecosistema , Lymnaea/genética , Código de Barras del ADN Taxonómico , Metilación de ADN , Biodiversidad , ADN/genética , Monitoreo del Ambiente
5.
FASEB J ; 36(11): e22593, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36251357

RESUMEN

In eukaryotes, CREB-binding protein (CBP), a coactivator of CREB, functions both as a platform for recruiting other components of the transcriptional machinery and as a histone acetyltransferase (HAT) that alters chromatin structure. We previously showed that the transcriptional activity of cAMP-responsive element binding protein (CREB) plays a crucial role in neuronal plasticity in the pond snail Lymnaea stagnalis. However, there is no information on the molecular structure and HAT activity of CBP in the Lymnaea central nervous system (CNS), hindering an investigation of its postulated role in long-term memory (LTM). Here, we characterize the Lymnaea CBP (LymCBP) gene and identify a conserved domain of LymCBP as a functional HAT. Like CBPs of other species, LymCBP possesses functional domains, such as the KIX domain, which is essential for interaction with CREB and was shown to regulate LTM. In-situ hybridization showed that the staining patterns of LymCBP mRNA in CNS are very similar to those of Lymnaea CREB1. A particularly strong LymCBP mRNA signal was observed in the cerebral giant cell (CGC), an identified extrinsic modulatory interneuron of the feeding circuit, the key to both appetitive and aversive LTM for taste. Biochemical experiments using the recombinant protein of the LymCBP HAT domain showed that its enzymatic activity was blocked by classical HAT inhibitors. Preincubation of the CNS with such inhibitors blocked cAMP-induced synaptic facilitation between the CGC and an identified follower motoneuron of the feeding system. Taken together, our findings suggest a role for the HAT activity of LymCBP in synaptic plasticity in the feeding circuitry.


Asunto(s)
Proteína de Unión a CREB , Lymnaea , Animales , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Sistema Nervioso Central/metabolismo , Cromatina/metabolismo , Lymnaea/genética , Lymnaea/metabolismo , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo
6.
J Exp Biol ; 225(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35403696

RESUMEN

Applications of key technologies in biomedical research, such as qRT-PCR or LC-MS-based proteomics, are generating large biological (-omics) datasets which are useful for the identification and quantification of biomarkers in any research area of interest. Genome, transcriptome and proteome databases are already available for a number of model organisms including vertebrates and invertebrates. However, there is insufficient information available for protein sequences of certain invertebrates, such as the great pond snail Lymnaea stagnalis, a model organism that has been used highly successfully in elucidating evolutionarily conserved mechanisms of memory function and dysfunction. Here, we used a bioinformatics approach to designing and benchmarking a comprehensive central nervous system (CNS) proteomics database (LymCNS-PDB) for the identification of proteins from the CNS of Lymnaea by LC-MS-based proteomics. LymCNS-PDB was created by using the Trinity TransDecoder bioinformatics tool to translate amino acid sequences from mRNA transcript assemblies obtained from a published Lymnaea transcriptomics database. The blast-style MMSeq2 software was used to match all translated sequences to UniProtKB sequences for molluscan proteins, including those from Lymnaea and other molluscs. LymCNS-PDB contains 9628 identified matched proteins that were benchmarked by performing LC-MS-based proteomics analysis with proteins isolated from the Lymnaea CNS. MS/MS analysis using the LymCNS-PDB database led to the identification of 3810 proteins. Only 982 proteins were identified by using a non-specific molluscan database. LymCNS-PDB provides a valuable tool that will enable us to perform quantitative proteomics analysis of protein interactomes involved in several CNS functions in Lymnaea, including learning and memory and age-related memory decline.


Asunto(s)
Biología Computacional , Lymnaea , Animales , Benchmarking , Sistema Nervioso Central , Cromatografía Liquida , Lymnaea/genética , Proteínas/metabolismo , Espectrometría de Masas en Tándem
7.
Dev Comp Immunol ; 127: 104297, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34662684

RESUMEN

One of the major evolutionarily conserved pathways in innate immunity of invertebrates is the toll-like receptor (TLR) pathway. However, little is known of the TLR protein family in gastropod molluscs despite their role in the transmission of human diseases, especially the common lymnaeid freshwater snail species Radix auricularia and Lymnaea stagnalis, key intermediate hosts of zoonotic trematodes. Using comparative genomics and gene prediction approaches utilising the freshwater snail Biomphalaria glabrata genome as a reference ten putative TLR proteins were identified in both R. auricularia and L. stagnalis. Phylogenetic analyses revealed that unlike other molluscs the lymnaeid species also possessed class 1 TLRs, previously thought to be unique to B. glabrata. Gene duplication events were also seen across the TLR classes in the lymnaeids with several of the genes appearing to exist as potential tandem elements in R. auricularia. Each predicted TLR was shown to possess the typical the leucine-rich repeat extracellular and TIR intracellular domains and both single cysteine clusters and multiple cysteine clusters TLRs were identified in both lymnaeid species. Principle component analyses of 3D models of the predicted TLRs showed that class 1 and 5 proteins did not cluster based on similarity of structure, suggested to be potential adaptation to a range of pathogens. This study provides the first detailed account of TLRs in lymnaeids and affords a platform for further research into the role of these proteins into susceptibility and compatibility of these snails with trematodes and their role in transmission.


Asunto(s)
Lymnaea , Trematodos , Animales , Auricularia , Agua Dulce , Humanos , Lymnaea/genética , Filogenia , Caracoles , Receptores Toll-Like/genética
8.
BMC Genomics ; 22(1): 637, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34479505

RESUMEN

BACKGROUND: The pond snail, Lymnaea stagnalis (L. stagnalis), has served as a valuable model organism for neurobiology studies due to its simple and easily accessible central nervous system (CNS). L. stagnalis has been widely used to study neuronal networks and recently gained popularity for study of aging and neurodegenerative diseases. However, previous transcriptome studies of L. stagnalis CNS have been exclusively carried out on adult L. stagnalis only. As part of our ongoing effort studying L. stagnalis neuronal growth and connectivity at various developmental stages, we provide the first age-specific transcriptome analysis and gene annotation of young (3 months), adult (6 months), and old (18 months) L. stagnalis CNS. RESULTS: Using the above three age cohorts, our study generated 55-69 millions of 150 bp paired-end RNA sequencing reads using the Illumina NovaSeq 6000 platform. Of these reads, ~ 74% were successfully mapped to the reference genome of L. stagnalis. Our reference-based transcriptome assembly predicted 42,478 gene loci, of which 37,661 genes encode coding sequences (CDS) of at least 100 codons. In addition, we provide gene annotations using Blast2GO and functional annotations using Pfam for ~ 95% of these sequences, contributing to the largest number of annotated genes in L. stagnalis CNS so far. Moreover, among 242 previously cloned L. stagnalis genes, we were able to match ~ 87% of them in our transcriptome assembly, indicating a high percentage of gene coverage. The expressional differences for innexins, FMRFamide, and molluscan insulin peptide genes were validated by real-time qPCR. Lastly, our transcriptomic analyses revealed distinct, age-specific gene clusters, differentially expressed genes, and enriched pathways in young, adult, and old CNS. More specifically, our data show significant changes in expression of critical genes involved in transcription factors, metabolisms (e.g. cytochrome P450), extracellular matrix constituent, and signaling receptor and transduction (e.g. receptors for acetylcholine, N-Methyl-D-aspartic acid, and serotonin), as well as stress- and disease-related genes in young compared to either adult or old snails. CONCLUSIONS: Together, these datasets are the largest and most updated L. stagnalis CNS transcriptomes, which will serve as a resource for future molecular studies and functional annotation of transcripts and genes in L. stagnalis.


Asunto(s)
Perfilación de la Expresión Génica , Lymnaea , Animales , Sistema Nervioso Central , Lymnaea/genética , Anotación de Secuencia Molecular , Transcriptoma
9.
Methods Mol Biol ; 2324: 219-236, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34165718

RESUMEN

Several recent studies support a functional role for pseudogenes, a copy of a parent gene that has lost protein-coding potential, which was for a long time thought to represent only "junk" DNA. Several hundreds of pseudogenes have now been reported as transcribed RNAs in a large variety of tissues and tumor types. Most studies have focused on pseudogenes expressed in sense direction, relative to their protein-coding gene counterpart, but some reports suggest that pseudogenes can be also transcribed as antisense RNAs (asRNAs). Key regulatory genes, such as PTEN and OCT4, have in fact been reported to be under the regulation of pseudogene-expressed asRNAs. Here, we review what is known about pseudogene-expressed asRNAs, we discuss the functional role that these transcripts may have in gene regulation and we summarize the techniques that are available to study them.


Asunto(s)
Regulación de la Expresión Génica/genética , Seudogenes/genética , ARN sin Sentido/genética , ARN no Traducido/genética , Animales , Inmunoprecipitación de Cromatina/métodos , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo/métodos , Humanos , Lymnaea/genética , Óxido Nítrico Sintasa de Tipo I/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Fosfohidrolasa PTEN/genética , Estabilidad del ARN , Transcripción Genética
10.
Rev Bras Parasitol Vet ; 30(2): e026320, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34161492

RESUMEN

Despite the epidemiological importance of the Lymnaeidae family regarding transmission of Fasciola hepatica, knowledge about the diversity and distribution of these molluscs and the role of each species in the expansion of fasciolosis remains sparse. Classical morphological (n=10) identification was performed in lymneids from Lagoa Santa, a municipality in the state of Minas Gerais, Brazil, along with molecular and phylogenetic analysis (n=05) based on the partial nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I gene (COI mtDNA) and ribosomal internal transcribed spacer II (ITS-2 rDNA). The shell morphology made it possible to distinguish the lymneids of Lagoa Santa from Pseudosuccinea columella. Differences found in the penile complex and prostate shape allowed this species to be distinguished from Galba truncatula. However, the homogeneity of reproductive tract characteristics among Lymnaea (Galba) cubensis, L. viator and L. neotropica confirmed that these characteristics show low taxonomic reliability for identifying cryptic species. Genetic divergence analysis for the COI mtDNA gene and ITS-2 region of rDNA revealed greater similarity to Lymnaea (Galba) cubensis. Thus, correct species differentiation is important for monitoring the epidemiological risk of fasciolosis in the state of Minas Gerais, where cases of the disease have increased over recent years.


Asunto(s)
Fasciola hepatica , Animales , Brasil , Fasciola hepatica/genética , Lymnaea/genética , Filogenia , Reproducibilidad de los Resultados
11.
BMC Genomics ; 22(1): 144, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648459

RESUMEN

BACKGROUND: Host immune function can contribute to numerous ecological/evolutionary processes. Ecoimmunological studies, however, typically use one/few phenotypic immune assays and thus do not consider the complexity of the immune system. Therefore, "omics" resources that allow quantifying immune activity across multiple pathways are needed for ecoimmunological models. We applied short-read based RNAseq (Illumina NextSeq 500, PE-81) to characterise transcriptome profiles of Lymnaea stagnalis (Gastropoda), a multipurpose model snail species. We used a genetically diverse snail stock and exposed individuals to immune elicitors (injury, bacterial/trematode pathogens) and changes in environmental conditions that can alter immune activity (temperature, food availability). RESULTS: Immune defence factors identified in the de novo assembly covered elements broadly described in other gastropods. For instance, pathogen-recognition receptors (PRR) and lectins activate Toll-like receptor (TLR) pathway and cytokines that regulate cellular and humoral defences. Surprisingly, only modest diversity of antimicrobial peptides and fibrinogen related proteins were detected when compared with other taxa. Additionally, multiple defence factors that may contribute to the phenotypic immune assays used to quantify antibacterial activity and phenoloxidase (PO)/melanisation-type reaction in this species were found. Experimental treatments revealed factors from non-self recognition (lectins) and signalling (TLR pathway, cytokines) to effectors (e.g., antibacterial proteins, PO enzymes) whose transcription depended on immune stimuli and environmental conditions, as well as components of snail physiology/metabolism that may drive these effects. Interestingly, the transcription of many factors (e.g., PRR, lectins, cytokines, PO enzymes, antibacterial proteins) showed high among-individual variation. CONCLUSIONS: Our results indicate several uniform aspects of gastropod immunity, but also apparent differences between L. stagnalis and some previously examined taxa. Interestingly, in addition to immune defence factors that responded to immune elicitors and changes in environmental conditions, many factors showed high among-individual variation across experimental snails. We propose that such factors are highly important to be included in future ecoimmunological studies because they may be the key determinants of differences in parasite resistance among individuals both within and between natural snail populations.


Asunto(s)
Perfilación de la Expresión Génica , Lymnaea , Transcriptoma , Animales , Evolución Biológica , Lymnaea/genética , Lymnaea/metabolismo , Monofenol Monooxigenasa
12.
J Gerontol A Biol Sci Med Sci ; 76(6): 975-982, 2021 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-33453110

RESUMEN

With the increase of life span, normal aging and age-related memory decline are affecting an increasing number of people; however, many aspects of these processes are still not fully understood. Although vertebrate models have provided considerable insights into the molecular and electrophysiological changes associated with brain aging, invertebrates, including the widely recognized molluscan model organism, the great pond snail (Lymnaea stagnalis), have proven to be extremely useful for studying mechanisms of aging at the level of identified individual neurons and well-defined circuits. Its numerically simpler nervous system, well-characterized life cycle, and relatively long life span make it an ideal organism to study age-related changes in the nervous system. Here, we provide an overview of age-related studies on L. stagnalis and showcase this species as a contemporary choice for modeling the molecular, cellular, circuit, and behavioral mechanisms of aging and age-related memory impairment.


Asunto(s)
Envejecimiento/fisiología , Modelos Animales de Enfermedad , Lymnaea/crecimiento & desarrollo , Trastornos de la Memoria/fisiopatología , Factores de Edad , Animales , Epigénesis Genética/genética , Lymnaea/genética , Lymnaea/fisiología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/fisiología , Neuronas/fisiología
13.
BMC Genomics ; 22(1): 18, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407100

RESUMEN

BACKGROUND: The pond snail Lymnaea stagnalis (L. stagnalis) has been widely used as a model organism in neurobiology, ecotoxicology, and parasitology due to the relative simplicity of its central nervous system (CNS). However, its usefulness is restricted by a limited availability of transcriptome data. While sequence information for the L. stagnalis CNS transcripts has been obtained from EST libraries and a de novo RNA-seq assembly, the quality of these assemblies is limited by a combination of low coverage of EST libraries, the fragmented nature of de novo assemblies, and lack of reference genome. RESULTS: In this study, taking advantage of the recent availability of a preliminary L. stagnalis genome, we generated an RNA-seq library from the adult L. stagnalis CNS, using a combination of genome-guided and de novo assembly programs to identify 17,832 protein-coding L. stagnalis transcripts. We combined our library with existing resources to produce a transcript set with greater sequence length, completeness, and diversity than previously available ones. Using our assembly and functional domain analysis, we profiled L. stagnalis CNS transcripts encoding ion channels and ionotropic receptors, which are key proteins for CNS function, and compared their sequences to other vertebrate and invertebrate model organisms. Interestingly, L. stagnalis transcripts encoding numerous putative Ca2+ channels showed the most sequence similarity to those of Mus musculus, Danio rerio, Xenopus tropicalis, Drosophila melanogaster, and Caenorhabditis elegans, suggesting that many calcium channel-related signaling pathways may be evolutionarily conserved. CONCLUSIONS: Our study provides the most thorough characterization to date of the L. stagnalis transcriptome and provides insights into differences between vertebrates and invertebrates in CNS transcript diversity, according to function and protein class. Furthermore, this study provides a complete characterization of the ion channels of Lymnaea stagnalis, opening new avenues for future research on fundamental neurobiological processes in this model system.


Asunto(s)
Drosophila melanogaster , Lymnaea , Animales , Ganglios , Perfilación de la Expresión Génica , Canales Iónicos , Lymnaea/genética , Ratones , Transcriptoma
14.
Rev. bras. parasitol. vet ; 30(2): e026320, 2021. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1288694

RESUMEN

Abstract Despite the epidemiological importance of the Lymnaeidae family regarding transmission of Fasciola hepatica, knowledge about the diversity and distribution of these molluscs and the role of each species in the expansion of fasciolosis remains sparse. Classical morphological (n=10) identification was performed in lymneids from Lagoa Santa, a municipality in the state of Minas Gerais, Brazil, along with molecular and phylogenetic analysis (n=05) based on the partial nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I gene (COI mtDNA) and ribosomal internal transcribed spacer II (ITS-2 rDNA). The shell morphology made it possible to distinguish the lymneids of Lagoa Santa from Pseudosuccinea columella. Differences found in the penile complex and prostate shape allowed this species to be distinguished from Galba truncatula. However, the homogeneity of reproductive tract characteristics among Lymnaea (Galba) cubensis, L. viator and L. neotropica confirmed that these characteristics show low taxonomic reliability for identifying cryptic species. Genetic divergence analysis for the COI mtDNA gene and ITS-2 region of rDNA revealed greater similarity to Lymnaea (Galba) cubensis. Thus, correct species differentiation is important for monitoring the epidemiological risk of fasciolosis in the state of Minas Gerais, where cases of the disease have increased over recent years.


Resumo Apesar da importância epidemiológica da família Lymnaeidae na transmissão de Fasciola hepatica, o conhecimento sobre a diversidade e a distribuição desses moluscos e o papel de cada espécie, na expansão da fasciolose, ainda é escasso. Realizou-se a identificação morfológica clássica (n=10) em limneídeos de Lagoa Santa, município do estado de Minas Gerais, Brasil, juntamente com a análise molecular e filogenética (n=05), baseada nas sequências parciais de nucleotídeos do gene mitocondrial da subunidade I do citocromo c oxidase (COI mtDNA) e espaçador interno, transcrito do DNA ribossomal II (ITS-2 rDNA). A morfologia da concha possibilitou distinguir os limneídeos de Lagoa Santa de Pseudosuccinea columella. As diferenças encontradas no complexo peniano e na forma da próstata permitiram que essa espécie fosse distinta de Galba truncatula. No entanto, a homogeneidade das características do trato reprodutivo entre Lymnaea (Galba) cubensis, L. viator e L. neotropica confirmou que essas características apresentam baixa confiabilidade taxonômica para a identificação de espécies crípticas. A análise da divergência genética para o gene COI mtDNA e região ITS-2 do rDNA revelou maior similaridade entre os limneídeos de Lagoa Santa com Lymnaea (Galba) cubensis.


Asunto(s)
Animales , Fasciola hepatica/genética , Filogenia , Brasil , Reproducibilidad de los Resultados , Lymnaea/genética
15.
Biomolecules ; 11(1)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33374963

RESUMEN

Lynx1, membrane-bound protein co-localized with the nicotinic acetylcholine receptors (nAChRs) and regulates their function, is a three-finger protein (TFP) made of three ß-structural loops, similarly to snake venom α-neurotoxin TFPs. Since the central loop II of α-neurotoxins is involved in binding to nAChRs, we have recently synthesized the fragments of Lynx1 central loop, including those with the disulfide between Cys residues introduced at N- and C-termini, some of them inhibiting muscle-type nAChR similarly to the whole-size water-soluble Lynx1 (ws-Lynx1). Literature shows that the main fragment interacting with TFPs is the C-loop of both nAChRs and acetylcholine binding proteins (AChBPs) while some ligand-binding capacity is preserved by analogs of this loop, for example, by high-affinity peptide HAP. Here we analyzed the structural organization of these peptide models of ligands and receptors and its role in binding. Thus, fragments of Lynx1 loop II, loop C from the Lymnaea stagnalis AChBP and HAP were synthesized in linear and Cys-cyclized forms and structurally (CD and NMR) and functionally (radioligand assay on Torpedo nAChR) characterized. Connecting the C- and N-termini by disulfide in the ws-Lynx1 fragment stabilized its conformation which became similar to the loop II within the 1H-NMR structure of ws-Lynx1, the activity being higher than for starting linear fragment but lower than for peptide with free cysteines. Introduced disulfides did not considerably change the structure of HAP and of loop C fragments, the former preserving high affinity for α-bungarotoxin, while, surprisingly, no binding was detected with loop C and its analogs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Bungarotoxinas/química , Proteínas Portadoras/ultraestructura , Receptores Nicotínicos/química , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Proteínas Portadoras/química , Humanos , Ligandos , Lymnaea/química , Lymnaea/genética , Modelos Moleculares , Neurotoxinas/química , Péptidos/química , Unión Proteica/genética , Conformación Proteica en Lámina beta , Receptores Nicotínicos/ultraestructura
16.
Gen Comp Endocrinol ; 299: 113621, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32966777

RESUMEN

In the last years, our interpretation of the origin and function of the gonadotropin-releasing hormone (GnRH) neuropeptide superfamily has changed substantially. A main driver for these conceptual changes came from increased investigations into functions and evolutionary lineage of previously identified molluscan GnRH molecules. Emerging evidence suggests not only reproductive, but also diverse biological effects of these molecules and proposes they should most likely be called corazonin (CRZ). Clearly, a more global understanding requires further exploration of species-specific functions and structure of invGnRH/CRZ peptides. Towards this goal, we have identified the full-length cDNA of invGnRH/CRZ peptide in an invertebrate model species, the great pond snail Lymnaea stagnalis, termed ly-GnRH/CRZ, and characterized the transcript and peptide distribution in the central nervous system (CNS) and peripheral organs. Our results are consistent with previous data that molluscan GnRHs are more related to CRZs and serve diverse functions. Hence, our findings support the notion that peptides originally termed molluscan GnRH are multifunctional modulators and that nomenclature change should be taken into consideration.


Asunto(s)
Sistema Nervioso Central/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Proteínas de Insectos/metabolismo , Lymnaea/metabolismo , Neuropéptidos/metabolismo , Reproducción , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Hormona Liberadora de Gonadotropina/genética , Proteínas de Insectos/genética , Lymnaea/genética , Neuropéptidos/genética
17.
Sci Rep ; 10(1): 13526, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32782285

RESUMEN

Many neurons concurrently and/or differentially release multiple neurotransmitter substances to selectively modulate the activity of distinct postsynaptic targets within a network. However, the molecular mechanisms that produce synaptic heterogeneity by regulating the cotransmitter release characteristics of individual presynaptic terminals remain poorly defined. In particular, we know little about the regulation of neuropeptide corelease, despite the fact that they mediate synaptic transmission, plasticity and neuromodulation. Here, we report that an identified Lymnaea neuron selectively releases its classical small molecule and peptide neurotransmitters, acetylcholine and FMRFamide-derived neuropeptides, to differentially influence the activity of distinct postsynaptic targets that coordinate cardiorespiratory behaviour. Using a combination of electrophysiological, molecular, and pharmacological approaches, we found that neuropeptide cotransmitter release was regulated by cross-talk between extrinsic neurotrophic factor signaling and target-specific retrograde arachidonic acid signaling, which converged on modulation of glycogen synthase kinase 3. In this context, we identified a novel role for the Lymnaea synaptophysin homologue as a specific and synapse-delimited inhibitory regulator of peptide neurotransmitter release. This study is among the first to define the cellular and molecular mechanisms underlying the differential release of cotransmitter substances from individual presynaptic terminals, which allow for context-dependent tuning and plasticity of the synaptic networks underlying patterned motor behaviour.


Asunto(s)
Lymnaea/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Neurotransmisores/metabolismo , Sinapsis/fisiología , Transmisión Sináptica , Animales , Células Cultivadas , Lymnaea/genética , Factores de Crecimiento Nervioso/genética , Terminales Presinápticos/fisiología , Receptores Nicotínicos/metabolismo
18.
J Evol Biol ; 33(10): 1440-1451, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32697880

RESUMEN

Seminal fluid proteins (SFPs) can trigger drastic changes in mating partners, mediating post-mating sexual selection and associated sexual conflict. Also, cross-species comparisons have demonstrated that SFPs evolve rapidly and hint that post-mating sexual selection drives their rapid evolution. In principle, this pattern should be detectable within species as rapid among-population divergence in SFP expression and function. However, given the multiple other factors that could vary among populations, isolating divergence in SFP-mediated effects is not straightforward. Here, we attempted to address this gap by combining the power of a common garden design with functional assays involving artificial injection of SFPs in the simultaneously hermaphroditic freshwater snail, Lymnaea stagnalis. We detected among-population divergence in SFP gene expression, suggesting that seminal fluid composition differs among four populations collected in Western Europe. Furthermore, by artificially injecting seminal fluid extracted from these field-derived snails into standardized mating partners, we also detected among-population divergence in the strength of post-mating effects induced by seminal fluid. Both egg production and subsequent sperm transfer of partners differed depending on the population origin of seminal fluid, with the response in egg production seemingly closely corresponding to among-population divergence in SFP gene expression. Our results thus lend strong intraspecific support to the notion that SFP expression and function evolve rapidly, and confirm L. stagnalis as an amenable system for studying processes driving SFP evolution.


Asunto(s)
Lymnaea/metabolismo , Aislamiento Reproductivo , Semen/metabolismo , Animales , Femenino , Expresión Génica , Lymnaea/genética , Masculino
19.
Genome Biol Evol ; 12(8): 1217-1239, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32413100

RESUMEN

The precise localization of CaV2 voltage-gated calcium channels at the synapse active zone requires various interacting proteins, of which, Rab3-interacting molecule or RIM is considered particularly important. In vertebrates, RIM interacts with CaV2 channels in vitro via a PDZ domain that binds to the extreme C-termini of the channels at acidic ligand motifs of D/E-D/E/H-WC-COOH, and knockout of RIM in vertebrates and invertebrates disrupts CaV2 channel synaptic localization and synapse function. Here, we describe a previously uncharacterized clade of RIM proteins bearing domain architectures homologous to those of known RIM homologs, but with some notable differences including key amino acids associated with PDZ domain ligand specificity. This novel RIM emerged near the stem lineage of metazoans and underwent extensive losses, but is retained in select animals including the early-diverging placozoan Trichoplax adhaerens, and molluscs. RNA expression and localization studies in Trichoplax and the mollusc snail Lymnaea stagnalis indicate differential regional/tissue type expression, but overlapping expression in single isolated neurons from Lymnaea. Ctenophores, the most early-diverging animals with synapses, are unique among animals with nervous systems in that they lack the canonical RIM, bearing only the newly identified homolog. Through phylogenetic analysis, we find that CaV2 channel D/E-D/E/H-WC-COOH like PDZ ligand motifs were present in the common ancestor of cnidarians and bilaterians, and delineate some deeply conserved C-terminal structures that distinguish CaV1 from CaV2 channels, and CaV1/CaV2 from CaV3 channels.


Asunto(s)
Canales de Calcio/genética , Evolución Molecular , Filogenia , Placozoa/genética , Proteínas de Unión al GTP rab/genética , Secuencia de Aminoácidos , Animales , Canales de Calcio/metabolismo , Lymnaea/genética , Placozoa/química , Placozoa/metabolismo , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/metabolismo
20.
Development ; 146(9)2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31088796

RESUMEN

The establishment of left-right body asymmetry is a key biological process that is tightly regulated genetically. In the first application of CRISPR/Cas9 to a mollusc, we show decisively that the actin-related diaphanous gene Lsdia1 is the single maternal gene that determines the shell coiling direction of the freshwater snail Lymnaea stagnalis Biallelic frameshift mutations of the gene produced sinistrally coiled offspring generation after generation, in the otherwise totally dextral genetic background. This is the gene sought for over a century. We also show that the gene sets the chirality at the one-cell stage, the earliest observed symmetry-breaking event linked directly to body handedness in the animal kingdom. The early intracellular chirality is superseded by the inter-cellular chirality during the 3rd cleavage, leading to asymmetric nodal and Pitx expression, and then to organismal body handedness. Thus, our findings have important implications for chiromorphogenesis in invertebrates as well as vertebrates, including humans, and for the evolution of snail chirality. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Moluscos/genética , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Forminas/genética , Forminas/metabolismo , Lymnaea/genética , Lymnaea/metabolismo , Moluscos/metabolismo , Caracoles/genética , Caracoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA