Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.257
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38780270

RESUMEN

Spinal cord injury is associated with spinal vascular disruptions that result in spinal ischemia and tissue hypoxia. This study evaluated the therapeutic efficacy of normobaric hyperoxia on spinal cord oxygenation and circulatory function at the acute stage of cervical spinal cord injury. Adult male Sprague Dawley rats underwent dorsal cervical laminectomy or cervical spinal cord contusion. At 1-2 days after spinal surgery, spinal cord oxygenation was monitored in anesthetized and spontaneously breathing rats through optical recording of oxygen sensor foils placed on the cervical spinal cord and pulse oximetry. The arterial blood pressure, heart rate, blood gases, and peripheral oxyhemoglobin saturation were also measured under hyperoxic (50% O2) and normoxic (21% O2) conditions. The results showed that contused animals had significantly lower spinal cord oxygenation levels than uninjured animals during normoxia. Peripheral oxyhemoglobin saturation, arterial oxygen partial pressure, and mean arterial blood pressure are significantly reduced following cervical spinal cord contusion. Notably, spinal oxygenation of contused rats could be improved to a level comparable to uninjured animals under hyperoxia. Furthermore, acute hyperoxia elevated blood pressure, arterial oxygen partial pressure, and peripheral oxyhemoglobin saturation. These results suggest that normobaric hyperoxia can significantly improve spinal cord oxygenation and circulatory function in the acute phase after cervical spinal cord injury. We propose that adjuvant normobaric hyperoxia combined with other hemodynamic optimization strategies may prevent secondary damage after spinal cord injury and improve functional recovery.


Asunto(s)
Hiperoxia , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/metabolismo , Masculino , Hiperoxia/fisiopatología , Hiperoxia/sangre , Ratas , Oxígeno/sangre , Oxígeno/metabolismo , Médula Espinal/metabolismo , Médula Espinal/irrigación sanguínea , Médula Espinal/fisiopatología , Médula Cervical/lesiones , Médula Cervical/metabolismo , Presión Sanguínea/fisiología , Oxihemoglobinas/metabolismo , Frecuencia Cardíaca/fisiología
3.
Exp Neurol ; 376: 114769, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582278

RESUMEN

Ampakines are positive allosteric modulators of AMPA receptors. We hypothesized that low-dose ampakine treatment increases diaphragm electromyogram (EMG) activity after mid-cervical contusion injury in rats. Adult male and female Sprague Dawley rats were implanted with in-dwelling bilateral diaphragm EMG electrodes. Rats received a 150 kDyn C4 unilateral contusion (C4Ct). At 4- and 14-days following C4Ct, rats were given an intravenous bolus of ampakine CX717 (5 mg/kg, n = 10) or vehicle (2-hydroxypropyl-beta-cyclodextrin; HPCD; n = 10). Diaphragm EMG was recorded while breathing was assessed using whole-body plethysmography. At 4-days, ampakine administration caused an immediate and sustained increase in bilateral peak inspiratory diaphragm EMG bursting and ventilation. The vehicle had no impact on EMG bursting. CX717 treated rats were able to increase EMG activity during a respiratory challenge to a greater extent vs. vehicle treated. Rats showed a considerable degree of spontaneous recovery of EMG bursting by 14 days, and the impact of CX717 delivery was blunted as compared to 4-days. Direct recordings from the phrenic nerve at 21-24 days following C4Ct confirmed that ampakines stimulated bilateral phrenic neural output in injured rats. We conclude that low-dose intravenous treatment with a low-impact ampakine can enhance diaphragm activation shortly following mid-cervical contusion injury, when deficits in diaphragm activation are prominent.


Asunto(s)
Diafragma , Electromiografía , Isoxazoles , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Animales , Diafragma/efectos de los fármacos , Diafragma/fisiopatología , Ratas , Masculino , Femenino , Traumatismos de la Médula Espinal/fisiopatología , Modelos Animales de Enfermedad , Contusiones/fisiopatología , Médula Cervical/lesiones , Médula Cervical/efectos de los fármacos
4.
Rinsho Shinkeigaku ; 64(5): 333-338, 2024 May 24.
Artículo en Japonés | MEDLINE | ID: mdl-38644212

RESUMEN

A 46-year-old man with neck pain and impaired physical mobility called for emergency medical services. The patient was able to communicate with the emergency medical team upon their arrival. However, he went into cardiopulmonary arrest 5 minutes later. Cardiopulmonary resuscitation was immediately performed, and the patient was admitted to our hospital with a Glasgow Coma Scale score of E1V1M1. His respiratory rate was 5 breaths/minute and his partial pressure of carbon dioxide in arterial blood (PaCO2) was 127 |mmHg, necessitating intubation and ventilation. His consciousness improved as the PaCO2 level decreased. However, he was unable to be weaned off the ventilator and breathe independently. Neurological examination revealed flaccid quadriplegia, pain sensation up to the C5 level, absence of deep tendon reflexes, indifferent plantar responses, and absence of the rectoanal inhibitory reflex. Magnetic resonance imaging showed a hyperintense lesion with slight enlargement of the anterior two-thirds of the spinal cord at the C2-C4 level on both T2-weighted and diffusion-weighted images, consistent with a diagnosis of spinal cord infarction. Although the quadriplegia and sensory loss partially improved, the patient was unable to be weaned from the ventilator. Cervical cord infarction of the anterior spinal artery can cause rapid respiratory failure leading to cardiopulmonary arrest. Therefore, cervical cord infarction should be included as a differential diagnosis when examining patients after cardiopulmonary resuscitation.


Asunto(s)
Paro Cardíaco , Infarto , Humanos , Masculino , Persona de Mediana Edad , Paro Cardíaco/etiología , Paro Cardíaco/terapia , Infarto/etiología , Infarto/diagnóstico , Médula Cervical/diagnóstico por imagen , Reanimación Cardiopulmonar , Insuficiencia Respiratoria/etiología , Insuficiencia Respiratoria/terapia , Imagen por Resonancia Magnética
5.
Spinal Cord Ser Cases ; 10(1): 19, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600098

RESUMEN

STUDY DESIGN: Cross-Sectional Study. OBJECTIVES: To investigate the changes in the characteristics of cervical spinal cord injuries (CSCI) before and after the coronavirus disease 2019 (COVID-19) pandemic among patients transported to our hospital in Japan. SETTING: Hospital with an emergency center in Chiba, Japan. METHODS: Patients eligible for the study were those transported within 24 h of injury and diagnosed with cervical spinal cord injury between January 2018 and December 2021 at our hospital. Medical records were retrospectively examined to investigate the number and characteristics of patients with CSCI. The clinical variables of patients with CSCI were compared according to the time of admission as related to the COVID-19 pandemic: 2018-19 (before) or 2020-21 (after). RESULTS: The total number of patients with CSCI from 2018 to 2021 was 108, with 57 before the COVID-19 pandemic and 51 after the COVID-19 pandemic. The number of severe cases with an injury severity score (ISS) of >16 decreased after COVID-19 (p < 0.05). Falls on level surfaces were the most common cause of injury both before and after COVID-19. Although the ranking of traffic accidents decreased after COVID-19, among those, the number of bicycle injuries tended to increase. CONCLUSIONS: The number of serious cases with an ISS > 16 decreased, presumably because of the decline in high-energy trauma due to the background decrease in the number of traffic accidents.


Asunto(s)
COVID-19 , Médula Cervical , Traumatismos del Cuello , Traumatismos de la Médula Espinal , Humanos , Pandemias , Estudios Retrospectivos , Médula Cervical/lesiones , Estudios Transversales , Vértebras Cervicales/lesiones , COVID-19/epidemiología , COVID-19/complicaciones , Traumatismos de la Médula Espinal/diagnóstico , Traumatismos del Cuello/complicaciones
7.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474302

RESUMEN

Our previous research studies have demonstrated the role of microRNA133b (miR133b) in healing the contused spinal cord when administered either intranasally or intravenously 24 h following an injury. While our data showed beneficial effects of exogenous miR133b delivered within hours of a spinal cord injury (SCI), the kinetics of endogenous miR133b levels in the contused spinal cord and rostral/caudal segments of the injury were not fully investigated. In this study, we examined the miR133b dysregulation in a mouse model of moderate unilateral contusion injury at the fifth cervical (C5) level. Between 30 min and 7 days post-injury, mice were euthanized and tissues were collected from different areas of the spinal cord, ipsilateral and contralateral prefrontal motor cortices, and off-targets such as lung and spleen. The endogenous level of miR133b was determined by RT-qPCR. We found that after SCI, (a) most changes in miR133b level were restricted to the injured area with very limited alterations in the rostral and caudal parts relative to the injury site, (b) acute changes in the endogenous levels were predominantly specific to the lesion site with delayed miR133b changes in the motor cortex, and (c) ipsilateral and contralateral hemispheres responded differently to unilateral SCI. Our results suggest that the therapeutic window for exogenous miR133b therapy begins earlier than 24 h post-injury and potentially lasts longer than 7 days.


Asunto(s)
Médula Cervical , Contusiones , MicroARNs , Traumatismos de la Médula Espinal , Animales , Ratones , Contusiones/metabolismo , Modelos Animales de Enfermedad , MicroARNs/metabolismo , MicroARNs/uso terapéutico , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Médula Cervical/lesiones
8.
Physiol Rep ; 12(5): e15973, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38467570

RESUMEN

Cervical spinal cord injury impacts ventilatory and non-ventilatory functions of the diaphragm muscle (DIAm) and contributes to clinical morbidity and mortality in the afflicted population. Periodically, integrated brainstem neural circuit activity drives the DIAm to generate a markedly augmented effort or sigh-which plays an important role in preventing atelectasis and thus maintaining lung function. Across species, the general pattern of DIAm efforts during a normal sigh is variable in amplitude and the extent of post-sigh "apnea" (i.e., the post-sigh inter-breath interval). This post-sigh inter-breath interval acts as a respiratory reset, following the interruption of regular respiratory rhythm by sigh. We examined the impact of upper cervical (C2 ) spinal cord hemisection (C2 SH) on the transdiaphragmatic pressure (Pdi ) generated during sighs and the post-sigh respiratory reset in rats. Sighs were identified in Pdi traces by their characteristic biphasic pattern. We found that C2 SH results in a reduction of Pdi during both eupnea and sighs, and a decrease in the immediate post-sigh breath interval. These results are consistent with partial removal of descending excitatory synaptic inputs to phrenic motor neurons that results from C2 SH. Following cervical spinal cord injury, a reduction in the amplitude of Pdi during sighs may compromise the maintenance of normal lung function.


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Respiración , Diafragma/fisiología
9.
Eur J Neurol ; 31(6): e16268, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38465478

RESUMEN

BACKGROUND AND PURPOSE: In amyotrophic lateral sclerosis (ALS), there is an unmet need for more precise patient characterization through quantitative, ideally operator-independent, assessments of disease extent and severity. Radially sampled averaged magnetization inversion recovery acquisitions (rAMIRA) magnetic resonance imaging enables gray matter (GM) and white matter (WM) area quantitation in the cervical and thoracic spinal cord (SC) with optimized contrast. We aimed to investigate rAMIRA-derived SC GM and SC WM areas and their association with clinical phenotype and disability in ALS. METHODS: A total of 36 patients with ALS (mean [SD] age 61.7 [12.6] years, 14 women) and 36 healthy, age- and sex-matched controls (HCs; mean [SD] age 63.1 [12.1] years, 14 women) underwent two-dimensional axial rAMIRA imaging at the inter-vertebral disc levels C2/3-C5/C6 and the lumbar enlargement level Tmax. ALS Functional Rating Scale-revised (ALSFRS-R) score, muscle strength, and sniff nasal inspiratory pressure (SNIP) were assessed. RESULTS: Compared to HCs, GM and WM areas were reduced in patients at all cervical levels (p < 0.0001). GM area (p = 0.0001), but not WM area, was reduced at Tmax. Patients with King's Stage 3 showed significant GM atrophy at all levels, while patients with King's Stage 1 showed significant GM atrophy selectively at Tmax. SC GM area was significantly associated with muscle force at corresponding myotomes. GM area at C3/C4 was associated with ALSFRS-R (p < 0.001) and SNIP (p = 0.0016). CONCLUSION: Patients with ALS assessed by rAMIRA imaging show significant cervical and thoracic SC GM and SC WM atrophy. SC GM area correlates with muscle strength and clinical disability. GM area reduction at Tmax may be an early disease sign. Longitudinal studies are warranted.


Asunto(s)
Esclerosis Amiotrófica Lateral , Atrofia , Sustancia Gris , Imagen por Resonancia Magnética , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/complicaciones , Femenino , Persona de Mediana Edad , Masculino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Anciano , Atrofia/patología , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Vértebras Torácicas/diagnóstico por imagen , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Vértebras Cervicales/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
10.
Clin Neurophysiol ; 161: 188-197, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520799

RESUMEN

OBJECTIVE: Corticospinal inhibitory mechanisms are relevant to functional recovery but remain poorly understood after spinal cord injury (SCI). Post-injury characteristics of contralateral silent period (CSP), a measure of corticospinal inhibition evaluated using transcranial magnetic stimulation (TMS), is inconsistent in literature. We envisioned that investigating CSP across muscles with varying degrees of weakness may be a reasonable approach to resolve inconsistencies and elucidate the relevance of corticospinal inhibition for upper extremity function following SCI. METHODS: We studied 27 adults with chronic C1-C8 SCI (age 48.8 ± 16.1 years, 3 females) and 16 able-bodied participants (age 33.2 ± 11.8 years, 9 females). CSP characteristics were assessed across biceps (muscle power = 3-5) and triceps (muscle power = 1-3) representing stronger and weaker muscles, respectively. We assessed functional abilities using the Capabilities of the Upper Extremity Test (CUE-T). RESULTS: Participants with chronic SCI had prolonged CSPs for biceps but delayed and diminished CSPs for triceps compared to able-bodied participants. Early-onset CSPs for biceps and longer, deeper CSPs for triceps correlated with better CUE-T scores. CONCLUSIONS: Corticospinal inhibition is pronounced for stronger biceps but diminished for weaker triceps muscle in SCI indicating innervation relative to the level of injury matters in the study of CSP. SIGNIFICANCE: Nevertheless, corticospinal inhibition or CSP holds relevance for upper extremity function following SCI.


Asunto(s)
Inhibición Neural , Tractos Piramidales , Traumatismos de la Médula Espinal , Estimulación Magnética Transcraneal , Extremidad Superior , Humanos , Femenino , Traumatismos de la Médula Espinal/fisiopatología , Masculino , Adulto , Persona de Mediana Edad , Tractos Piramidales/fisiopatología , Extremidad Superior/fisiopatología , Estimulación Magnética Transcraneal/métodos , Inhibición Neural/fisiología , Músculo Esquelético/fisiopatología , Potenciales Evocados Motores/fisiología , Médula Cervical/fisiopatología , Médula Cervical/lesiones , Adulto Joven , Vértebras Cervicales/fisiopatología , Electromiografía/métodos
11.
Magn Reson Imaging ; 109: 56-66, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38458552

RESUMEN

BACKGROUND: Diffusion tensor imaging (DTI) is a promising technique for the visualization of the cervical spinal cord (CSC) in vivo. It provides information about the tissue structure of axonal white matter, and it is thought to be more sensitive than other MR imaging techniques for the evaluation of damage to tracts in the spinal cord. AIM: The purpose of this study was to determine the within-participants reliability and error magnitude of measurements of DTI metrics in healthy human CSC. METHODS: A total of twenty healthy controls (10 male, mean age: 33.9 ± 3.5 years, 10 females, mean age: 47.5 ± 14.4 years), with no family history of any neurological disorders or a contraindication to MRI scanning were recruited over a period of two months. Each participant was scanned twice with an MRI 3 T scanner using standard DTI sequences. Spinal Cord Toolbox (SCT) software was used for image post-processing. Data were first corrected for motion artefact, then segmented, registered to a template, and then the DTI metrics were computed. The within-participants coefficients of variation (CV%), the single and average within-participants intraclass correlation coefficients (ICC) and Bland-Altman plots for WM, VC, DC and LC fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were determined for the cervical spinal cord (between the 2nd and 5th cervical vertebrae). RESULTS: DTI metrics showed poor to excellent within-participants reliability for both single and average ICC and moderate to high reproducibility for CV%, all variation dependent on the location of the ROI. The BA plots showed good within-participants agreement between the scan-rescan values. CONCLUSION: Results from this reliability study demonstrate that clinical trials using the DTI technique are feasible and that DTI, in particular regions of the cord is suitable for use for the monitoring of degenerative WM changes.


Asunto(s)
Médula Cervical , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Adulto , Persona de Mediana Edad , Imagen de Difusión Tensora/métodos , Médula Cervical/diagnóstico por imagen , Reproducibilidad de los Resultados , Médula Espinal/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética
12.
J Neural Eng ; 21(2)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38471169

RESUMEN

Objective. Chronic motor impairments of arms and hands as the consequence of a cervical spinal cord injury (SCI) have a tremendous impact on activities of daily life. A considerable number of people however retain minimal voluntary motor control in the paralyzed parts of the upper limbs that are measurable by electromyography (EMG) and inertial measurement units (IMUs). An integration into human-machine interfaces (HMIs) holds promise for reliable grasp intent detection and intuitive assistive device control.Approach. We used a multimodal HMI incorporating EMG and IMU data to decode reach-and-grasp movements of groups of persons with cervical SCI (n = 4) and without (control, n = 13). A post-hoc evaluation of control group data aimed to identify optimal parameters for online, co-adaptive closed-loop HMI sessions with persons with cervical SCI. We compared the performance of real-time, Random Forest-based movement versus rest (2 classes) and grasp type predictors (3 classes) with respect to their co-adaptation and evaluated the underlying feature importance maps.Main results. Our multimodal approach enabled grasp decoding significantly better than EMG or IMU data alone (p<0.05). We found the 0.25 s directly prior to the first touch of an object to hold the most discriminative information. Our HMIs correctly predicted 79.3 ± STD 7.4 (102.7 ± STD 2.3 control group) out of 105 trials with grand average movement vs. rest prediction accuracies above 99.64% (100% sensitivity) and grasp prediction accuracies of 75.39 ± STD 13.77% (97.66 ± STD 5.48% control group). Co-adaption led to higher prediction accuracies with time, and we could identify adaptions in feature importances unique to each participant with cervical SCI.Significance. Our findings foster the development of multimodal and adaptive HMIs to allow persons with cervical SCI the intuitive control of assistive devices to improve personal independence.


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Humanos , Electromiografía/métodos , Mano , Brazo , Fuerza de la Mano
13.
Neuroradiology ; 66(5): 839-846, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38441573

RESUMEN

PURPOSE: Degenerative cervical myelopathy (DCM) is a common cause of spinal cord dysfunction. In this study, we explored the potential of magnetization transfer ratio (MTR) for evaluating the structural integrity of spinal cord tracts in patients with clinically significant DCM. METHODS: Fifty-three patients with DCM and 41 patients with cervical radiculopathy were evaluated using high-resolution cervical spinal cord magnetic resonance imaging (MRI), which included the magnetization transfer technique. MRI data were analyzed with the Spinal Cord Toolbox (v5.5); MTR values in each spinal tract were calculated and compared between groups after correction for patient age and sex. Correlations between MTR values and patients' clinical disability rate were also evaluated. RESULTS: A statistically significant reduction in the average MTR of the spinal cord white matter, as well as the MTR of the ventral columns and lateral funiculi, was revealed in the DCM group (adjusted p < 0.01 for all comparisons). Furthermore, reductions in MTR values in the fasciculus cuneatus, spinocerebellar, rubrospinal, and reticulospinal tracts were found in patients with DCM (adjusted p < 0.01 for all comparisons). Positive correlations between the JOA score and the MTR within the ventral columns of the spinal cord (R = 0.38, adjusted p < 0.05) and the ventral spinocerebellar tract (R = 0.41, adjusted p < 0.05) were revealed. CONCLUSION: The findings of our study indicate that demyelination in patients with DCM primarily affects the spinal tracts of the extrapyramidal system, and the extent of these changes is related to the severity of the condition.


Asunto(s)
Médula Cervical , Compresión de la Médula Espinal , Enfermedades de la Médula Espinal , Sustancia Blanca , Humanos , Enfermedades de la Médula Espinal/diagnóstico por imagen , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Imagen por Resonancia Magnética/métodos , Médula Cervical/diagnóstico por imagen , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/patología
14.
Brain Res ; 1832: 148842, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447599

RESUMEN

BACKGROUND: Idiopathic trigeminal neuralgia (TN) cases encountered frequently in daily practice indicate significant gaps that still need to be illuminated in the etiopathogenesis. In this study, a novel TN animal model was developed by compressing the dorsal horn (DH) of the upper cervical spinal cord. METHODS: Eighteen rabbits were equally divided into three groups, namely control (CG), sham (SG), and spinal cord compression (SCC) groups. External pressure was applied to the left side at the C3 level in the SCC group. Dorsal hemilaminectomy was performed in the SG, and the operative side was closed without compression. No procedure was implemented in the control group. Samples from the SC, TG, and ION were taken after seven days. For the histochemical staining, damage and axons with myelin were scored using Hematoxylin and Eosin and Toluidine Blue, respectively. Immunohistochemistry, nuclei, apoptotic index, astrocyte activity, microglial labeling, and CD11b were evaluated. RESULTS: Mechanical allodynia was observed on the ipsilateral side in the SCC group. In addition, both the TG and ION were partially damaged from SC compression, which resulted in significant histopathological changes and increased the expression of all markers in both the SG and SCC groups compared to that in the CG. There was a notable increase in tissue damage, an increase in the number of apoptotic nuclei, an increase in the apoptotic index, an indication of astrocytic gliosis, and an upsurge in microglial cells. Significant increases were noted in the SG group, whereas more pronounced significant increases were observed in the SCC group. Transmission electron microscopy revealed myelin damage, mitochondrial disruption, and increased anchoring particles. Similar changes were observed to a lesser extent in the contralateral spinal cord. CONCLUSION: Ipsilateral trigeminal neuropathic pain was developed due to upper cervical SCC. The clinical finding is supported by immunohistochemical and ultrastructural changes. Thus, alterations in the DH due to compression of the upper cervical region should be considered as a potential cause of idiopathic TN.


Asunto(s)
Médula Cervical , Neuralgia , Neuralgia del Trigémino , Animales , Conejos , Neuralgia del Trigémino/complicaciones , Neuralgia del Trigémino/metabolismo , Neuralgia del Trigémino/patología , Médula Cervical/metabolismo , Neuralgia/metabolismo , Médula Espinal/metabolismo , Nervio Trigémino , Asta Dorsal de la Médula Espinal/metabolismo , Hiperalgesia/metabolismo
15.
Neuroradiology ; 66(5): 835-838, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531984

RESUMEN

Understanding the risks of contrast-induced encephalopathy (CIE), a serious complication of contrast agents, is crucial in endovascular treatment. We present the case of a 73-year-old woman who developed CIE in the medulla and cervical cord during coil embolization for unruptured left basilar-superior cerebellar artery and basilar artery tip aneurysms. The CIE was identified via neuromonitoring. In this case, spinal cord ischemia might have occurred due to reduced perfusion pressure after inserting the distal access catheter (DAC) in the vertebral artery. Multiple injections of contrast medium via the DAC during coil embolization likely contributed to an unusual form of CIE. Extreme caution is warranted during endovascular treatments involving the posterior circulation, due to the relatively high incidence of contrast-mediated encephalopathy, which can lead to severe consequences such as perforator infarction. Neuromonitoring is very useful for the early detection of neurological changes, particularly because intraoperative angiography may not reveal all irregularities.


Asunto(s)
Encefalopatías , Médula Cervical , Embolización Terapéutica , Aneurisma Intracraneal , Femenino , Humanos , Anciano , Resultado del Tratamiento , Aneurisma Intracraneal/terapia , Aneurisma Intracraneal/cirugía
16.
Sci Rep ; 14(1): 4363, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388829

RESUMEN

The purpose of this study was to compare the acceleration and surface electromyography (EMG) of the lower extremity and trunk muscles during straight-leg raising (SLR) in patients with incomplete cervical cord injury according to their levels of walking independence. Twenty-four patients were measured acceleration and EMG during SLR held for 10 s. Data were analyzed separately for the dominant and nondominant sides and compared between the nonindependent (NI) and independent (ID) groups based on their levels of walking independence. Frequency analysis of the EMG showed that the high-frequency (HF) band of the contralateral biceps femoris (BF) in the ID group and bands below the medium-frequency (MF) of the BF and the HF and MF bands of the rectus abdominis in the NI group were significantly higher during dominant and nondominant SLR. During the nondominant SLR, the low-frequency band of the internal oblique and the MF band of the external oblique were significantly higher in the NI group. The ID group mobilized muscle fiber type 2 of the BF, whereas the NI group mobilized type 1 of the BF and types 2 and 1 of the trunk muscles to stabilize the pelvis. This result was more pronounced during the nondominant SLR.


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Humanos , Pierna/fisiología , Músculo Esquelético/fisiología , Caminata/fisiología , Extremidad Inferior , Electromiografía , Recto del Abdomen
17.
Clin Neurol Neurosurg ; 237: 108149, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38350172

RESUMEN

Dural arteriovenous fistulas may have insidious clinical presentations and are often challenging to diagnose. A small number of cases have been associated with perimedullary venous congestion and cord oedema, mimicking common pathologies, such as cervical myelopathy. We describe a case report of a patient presenting with a constellation of symptoms and radiological signs mimicking C5/6 cervical myelopathy secondary to disc herniation. The patient was managed with anterior cervical discectomy and fusion, with postoperative neurological deterioration unresponsive to steroid therapy. This prompted further investigation of other pathologies. An infratentorial Cognard 5 and Borden type 3 dural arteriovenous fistula was diagnosed on 6-vessel DSA and managed with onyx embolization. Marked improvement of neurological symptoms, notably bilateral lower limb weakness, was achieved postoperatively. In summary, this case demonstrates the importance of considering alternative, less common pathologies that involve the cervical spinal cord when neurological improvement is not achieved following decompressive surgery for cervical myelopathy.


Asunto(s)
Malformaciones Vasculares del Sistema Nervioso Central , Médula Cervical , Enfermedades de la Médula Espinal , Humanos , Enfermedades de la Médula Espinal/diagnóstico por imagen , Enfermedades de la Médula Espinal/cirugía , Malformaciones Vasculares del Sistema Nervioso Central/diagnóstico por imagen , Malformaciones Vasculares del Sistema Nervioso Central/cirugía , Discectomía
18.
Hum Brain Mapp ; 45(3): e26597, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38375948

RESUMEN

Although functional magnetic resonance imaging (fMRI) is widely applied in the brain, fMRI of the spinal cord is more technically demanding. Proximity to the vertebral column and lungs results in strong spatial inhomogeneity and temporal fluctuations in B0 . Increasing field strength enables higher spatial resolution and improved sensitivity to blood oxygenation level-dependent (BOLD) signal, but amplifies the effects of B0 inhomogeneity. In this work, we present the first task fMRI in the spinal cord at 7 T. Further, we compare the performance of single-shot and multi-shot 2D echo-planar imaging (EPI) protocols, which differ in sensitivity to spatial and temporal B0 inhomogeneity. The cervical spinal cords of 11 healthy volunteers were scanned at 7 T using single-shot 2D EPI at 0.75 mm in-plane resolution and multi-shot 2D EPI at 0.75 and 0.6 mm in-plane resolutions. All protocols used 3 mm slice thickness. For each protocol, the BOLD response to 13 10-s noxious thermal stimuli applied to the right thumb was acquired in a 10-min fMRI run. Image quality, temporal signal to noise ratio (SNR), and BOLD activation (percent signal change and z-stat) at both individual- and group-level were evaluated between the protocols. Temporal SNR was highest in single-shot and multi-shot 0.75 mm protocols. In group-level analyses, activation clusters appeared in all protocols in the ipsilateral dorsal quadrant at the expected C6 neurological level. In individual-level analyses, activation clusters at the expected level were detected in some, but not all subjects and protocols. Single-shot 0.75 mm generally produced the highest mean z-statistic, while multi-shot 0.60 mm produced the best-localized activation clusters and the least geometric distortion. Larger than expected within-subject segmental variation of BOLD activation along the cord was observed. Group-level sensory task fMRI of the cervical spinal cord is feasible at 7 T with single-shot or multi-shot EPI. The best choice of protocol will likely depend on the relative importance of sensitivity to activation versus spatial localization of activation for a given experiment. PRACTITIONER POINTS: First stimulus task fMRI results in the spinal cord at 7 T. Single-shot 0.75 mm 2D EPI produced the highest mean z-statistic. Multi-shot 0.60 mm 2D EPI provided the best-localized activation and least distortion.


Asunto(s)
Médula Cervical , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Médula Cervical/diagnóstico por imagen , Imagen Eco-Planar/métodos , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología
19.
NMR Biomed ; 37(6): e5115, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38355219

RESUMEN

Arterial spin labeling (ASL) has been widely used to evaluate arterial blood and perfusion dynamics, particularly in the brain, but its application to the spinal cord has been limited. The purpose of this study was to optimize vessel-selective pseudocontinuous arterial spin labeling (pCASL) for angiographic and perfusion imaging of the rat cervical spinal cord. A pCASL preparation module was combined with a train of gradient echoes for dynamic angiography. The effects of the echo train flip angle, label duration, and a Cartesian or radial readout were compared to examine their effects on visualizing the segmental arteries and anterior spinal artery (ASA) that supply the spinal cord. Lastly, vessel-selective encoding with either vessel-encoded pCASL (VE-pCASL) or super-selective pCASL (SS-pCASL) were compared. Vascular territory maps were obtained with VE-pCASL perfusion imaging of the spinal cord, and the interanimal variability was evaluated. The results demonstrated that longer label durations (200 ms) resulted in greater signal-to-noise ratio in the vertebral arteries, improved the conspicuity of the ASA, and produced better quality maps of blood arrival times. Cartesian and radial readouts demonstrated similar image quality. Both VE-pCASL and SS-pCASL adequately labeled the right or left vertebral arteries, which revealed the interanimal variability in the segmental artery with variations in their location, number, and laterality. VE-pCASL also demonstrated unique interanimal variations in spinal cord perfusion with a right-sided dominance across the six animals. Vessel-selective pCASL successfully achieved visualization of the arterial inflow dynamics and corresponding perfusion territories of the spinal cord. These methodological developments provide unique insights into the interanimal variations in the arterial anatomy and dynamics of spinal cord perfusion.


Asunto(s)
Angiografía por Resonancia Magnética , Ratas Sprague-Dawley , Animales , Masculino , Angiografía por Resonancia Magnética/métodos , Imagen de Perfusión/métodos , Marcadores de Spin , Ratas , Médula Cervical/diagnóstico por imagen , Médula Cervical/irrigación sanguínea , Médula Espinal/irrigación sanguínea , Médula Espinal/diagnóstico por imagen
20.
Hum Brain Mapp ; 45(2): e26600, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339896

RESUMEN

Resting functional magnetic resonance imaging (fMRI) studies have identified intrinsic spinal cord activity, which forms organised motor (ventral) and sensory (dorsal) resting-state networks. However, to facilitate the use of spinal fMRI in, for example, clinical studies, it is crucial to first assess the reliability of the method, particularly given the unique anatomical, physiological, and methodological challenges associated with acquiring the data. Here, we characterise functional connectivity relationships in the cervical cord and assess their between-session test-retest reliability in 23 young healthy volunteers. Resting-state networks were estimated in two ways (1) by estimating seed-to-voxel connectivity maps and (2) by calculating seed-to-seed correlations. Seed regions corresponded to the four grey matter horns (ventral/dorsal and left/right) of C5-C8 segmental levels. Test-retest reliability was assessed using the intraclass correlation coefficient. Spatial overlap of clusters derived from seed-to-voxel analysis between sessions was examined using Dice coefficients. Following seed-to-voxel analysis, we observed distinct unilateral dorsal and ventral organisation of cervical spinal resting-state networks that was largely confined in the rostro-caudal extent to each spinal segmental level, with more sparse connections observed between segments. Additionally, strongest correlations were observed between within-segment ipsilateral dorsal-ventral connections, followed by within-segment dorso-dorsal and ventro-ventral connections. Test-retest reliability of these networks was mixed. Reliability was poor when assessed on a voxelwise level, with more promising indications of reliability when examining the average signal within clusters. Reliability of correlation strength between seeds was highly variable, with the highest reliability achieved in ipsilateral dorsal-ventral and dorso-dorsal/ventro-ventral connectivity. However, the spatial overlap of networks between sessions was excellent. We demonstrate that while test-retest reliability of cervical spinal resting-state networks is mixed, their spatial extent is similar across sessions, suggesting that these networks are characterised by a consistent spatial representation over time.


Asunto(s)
Médula Cervical , Animales , Humanos , Médula Cervical/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Médula Espinal/diagnóstico por imagen , Sustancia Gris , Encéfalo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA