Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.538
Filtrar
1.
J Cell Mol Med ; 28(10): e18409, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38769917

RESUMEN

Farnesoid X receptor (FXR), a ligand-activated transcription factor, plays an important role in maintaining water homeostasis by up-regulating aquaporin 2 (AQP2) expression in renal medullary collecting ducts; however, its role in the survival of renal medullary interstitial cells (RMICs) under hypertonic conditions remains unclear. We cultured primary mouse RMICs and found that the FXR was expressed constitutively in RMICs, and that its expression was significantly up-regulated at both mRNA and protein levels by hypertonic stress. Using luciferase and ChIP assays, we found a potential binding site of nuclear factor kappa-B (NF-κB) located in the FXR gene promoter which can be bound and activated by NF-κB. Moreover, hypertonic stress-induced cell death in RMICs was significantly attenuated by FXR activation but worsened by FXR inhibition. Furthermore, FXR increased the expression and nuclear translocation of hypertonicity-induced tonicity-responsive enhance-binding protein (TonEBP), the expressions of its downstream target gene sodium myo-inositol transporter (SMIT), and heat shock protein 70 (HSP70). The present study demonstrates that the NF-κB/FXR/TonEBP pathway protects RMICs against hypertonic stress.


Asunto(s)
Médula Renal , FN-kappa B , Transducción de Señal , Animales , FN-kappa B/metabolismo , Ratones , Médula Renal/metabolismo , Médula Renal/citología , Presión Osmótica , Acuaporina 2/metabolismo , Acuaporina 2/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Masculino , Ratones Endogámicos C57BL , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Regiones Promotoras Genéticas , Células Cultivadas , Regulación de la Expresión Génica , Simportadores/metabolismo , Simportadores/genética , Receptores Citoplasmáticos y Nucleares
2.
Exp Physiol ; 109(5): 766-778, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38551893

RESUMEN

It has been proposed that diuretics can improve renal tissue oxygenation through inhibition of tubular sodium reabsorption and reduced metabolic demand. However, the impact of clinically used diuretic drugs on the renal cortical and medullary microcirculation is unclear. Therefore, we examined the effects of three commonly used diuretics, at clinically relevant doses, on renal cortical and medullary perfusion and oxygenation in non-anaesthetised healthy sheep. Merino ewes received acetazolamide (250 mg; n = 9), furosemide (20 mg; n = 10) or amiloride (10 mg; n = 7) intravenously. Systemic and renal haemodynamics, renal cortical and medullary tissue perfusion and P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ , and renal function were then monitored for up to 8 h post-treatment. The peak diuretic response occurred 2 h (99.4 ± 14.8 mL/h) after acetazolamide, at which stage cortical and medullary tissue perfusion and P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ were not significantly different from their baseline levels. The peak diuretic response to furosemide occurred at 1 h (196.5 ± 12.3 mL/h) post-treatment but there were no significant changes in cortical and medullary tissue oxygenation during this period. However, cortical tissue P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ fell from 40.1 ± 3.8 mmHg at baseline to 17.2 ± 4.4 mmHg at 3 h and to 20.5 ± 5.3 mmHg at 6 h after furosemide administration. Amiloride did not produce a diuretic response and was not associated with significant changes in cortical or medullary tissue oxygenation. In conclusion, clinically relevant doses of diuretic agents did not improve regional renal tissue oxygenation in healthy animals during the 8 h experimentation period. On the contrary, rebound renal cortical hypoxia may develop after dissipation of furosemide-induced diuresis.


Asunto(s)
Acetazolamida , Amilorida , Diuréticos , Furosemida , Corteza Renal , Médula Renal , Animales , Furosemida/farmacología , Acetazolamida/farmacología , Amilorida/farmacología , Diuréticos/farmacología , Ovinos , Femenino , Corteza Renal/efectos de los fármacos , Corteza Renal/metabolismo , Médula Renal/efectos de los fármacos , Médula Renal/metabolismo , Oxígeno/metabolismo , Hemodinámica/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos
3.
J Cell Mol Med ; 28(7): e18235, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38509735

RESUMEN

Kidney stone, one of the oldest known diseases, has plagued humans for centuries, consistently imposing a heavy burden on patients and healthcare systems worldwide due to their high incidence and recurrence rates. Advancements in endoscopy, imaging, genetics, molecular biology and bioinformatics have led to a deeper and more comprehensive understanding of the mechanism behind nephrolithiasis. Kidney stone formation is a complex, multi-step and long-term process involving the transformation of stone-forming salts from free ions into asymptomatic or symptomatic stones influenced by physical, chemical and biological factors. Among the various types of kidney stones observed in clinical practice, calcareous nephrolithiasis is currently the most common and exhibits the most intricate formation mechanism. Extensive research suggests that calcareous nephrolithiasis primarily originates from interstitial subepithelial calcified plaques and/or calcified blockages in the openings of collecting ducts. These calcified plaques and blockages eventually come into contact with urine in the renal pelvis, serving as a nidus for crystal formation and subsequent stone growth. Both pathways of stone formation share similar mechanisms, such as the drive of abnormal urine composition, involvement of oxidative stress and inflammation, and an imbalance of stone inhibitors and promoters. However, they also possess unique characteristics. Hence, this review aims to provide detailed description and present recent discoveries regarding the formation processes of calcareous nephrolithiasis from two distinct birthplaces: renal interstitium and tubule lumen.


Asunto(s)
Calcinosis , Cálculos Renales , Humanos , Médula Renal/metabolismo , Cálculos Renales/complicaciones , Cálculos Renales/metabolismo , Calcinosis/metabolismo , Endoscopía , Inflamación/metabolismo
4.
Kidney Int ; 105(2): 242-244, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38245213

RESUMEN

The renal medulla maintains salt and water balance and is prone to dysregulation because of high oxygen demand. Challenges in obtaining high-quality tissue have limited characterization of molecular programs regulating the medulla. Haug et al. leveraged gene expression, chromatin accessibility, long-range chromosomal interactions, and spatial transcriptomics to build a reference set of medullary tissue marker genes to define the medullary role in kidney function, exemplifying the strength and utility of multi-omic data integration.


Asunto(s)
Médula Renal , Multiómica , Médula Renal/metabolismo , Cloruro de Sodio Dietético/metabolismo , Cloruro de Sodio/metabolismo , Equilibrio Hidroelectrolítico
5.
J Clin Anesth ; 93: 111359, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38061226

RESUMEN

Acute kidney injury occurs frequently in the perioperative setting. The renal medulla often endures hypoxia or hypoperfusion and is susceptible to the imbalance between oxygen supply and demand due to the nature of renal blood flow distribution and metabolic rate in the kidney. The current available evidence demonstrated that the urine oxygen pressure is proportional to the variations of renal medullary tissue oxygen pressure. Thus, urine oxygenation can be a candidate for reflecting the change of oxygen in the renal medulla. In this review, we discuss the basic physiology of acute kidney injury, as well as techniques for monitoring urine oxygen tension, confounding factors affecting the reliable measurement of urine oxygen tension, and its clinical use, highlighting its potential role in early detection and prevention of acute kidney injury.


Asunto(s)
Lesión Renal Aguda , Riñón , Humanos , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/etiología , Médula Renal/irrigación sanguínea , Médula Renal/metabolismo , Hipoxia/diagnóstico , Hipoxia/etiología , Oxígeno/metabolismo , Circulación Renal/fisiología , Consumo de Oxígeno
6.
Am J Physiol Renal Physiol ; 326(2): F189-F201, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37994410

RESUMEN

To reabsorb >99% of the glomerular filtrate, the metabolic demand of the kidney is high. Interestingly, renal blood flow distribution exhibits marked inhomogeneity, with typical tissue oxygen tension (Po2) of 50-60 mmHg in the well-perfused cortex and 10-20 mmHg in the inner medulla. Cellular fluid composition and acidity also varies substantially. To understand how different renal epithelial cells adapt to their local environment, we have developed and applied computational models of mitochondrial function of proximal convoluted tubule cell (baseline Po2 = 50 mmHg, cytoplasmic pH = 7.20) and medullary thick ascending limb (mTAL) cell (baseline Po2 = 10 mmHg, cytoplasmic pH = 6.85). The models predict key cellular quantities, including ATP generation, P/O (phosphate/oxygen) ratio, proton motive force, electrical potential gradient, oxygen consumption, the redox state of key electron carriers, and ATP consumption. Model simulations predict that close to their respective baseline conditions, the proximal tubule and mTAL mitochondria exhibit qualitatively similar behaviors. Nonetheless, because the mTAL mitochondrion has adapted to a much lower Po2, it can sustain a sufficiently high ATP production at Po2 as low as 4-5 mmHg, whereas the proximal tubule mitochondria would not. Also, because the mTAL cytosol is already acidic under baseline conditions, the proton motive force (pmf) exhibits higher sensitivity to further acidification. Among the different pathways that lead to oxidative phosphorylation impairment, the models predict that both the proximal tubule and mTAL mitochondria are most sensitive to reductions in Complex III activity.NEW & NOTEWORTHY Tissue fluid composition varies substantially within the mammalian kidney. The renal cortex is well perfused and pH neutral, whereas some medullary regions are hypoxic and acidic. How do these environments affect the mitochondrial function of proximal convoluted tubule and medullary thick ascending limb cells, which reside in the cortex and medulla, respectively? This computational modeling study demonstrates that these mitochondria can adapt to their contrasting environments and exhibit different sensitivities to perturbations to local environments.


Asunto(s)
Túbulos Renales Proximales , Riñón , Ratas , Animales , Riñón/metabolismo , Túbulos Renales Proximales/metabolismo , Oxígeno/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Médula Renal/metabolismo , Mamíferos/metabolismo
7.
Nat Commun ; 14(1): 4140, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468493

RESUMEN

Kidney stone disease causes significant morbidity and increases health care utilization. In this work, we decipher the cellular and molecular niche of the human renal papilla in patients with calcium oxalate (CaOx) stone disease and healthy subjects. In addition to identifying cell types important in papillary physiology, we characterize collecting duct cell subtypes and an undifferentiated epithelial cell type that was more prevalent in stone patients. Despite the focal nature of mineral deposition in nephrolithiasis, we uncover a global injury signature characterized by immune activation, oxidative stress and extracellular matrix remodeling. We also identify the association of MMP7 and MMP9 expression with stone disease and mineral deposition, respectively. MMP7 and MMP9 are significantly increased in the urine of patients with CaOx stone disease, and their levels correlate with disease activity. Our results define the spatial molecular landscape and specific pathways contributing to stone-mediated injury in the human papilla and identify associated urinary biomarkers.


Asunto(s)
Cálculos Renales , Médula Renal , Humanos , Médula Renal/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 7 de la Matriz , Oxalato de Calcio/metabolismo , Transcriptoma , Cálculos Renales/genética , Cálculos Renales/metabolismo
8.
Elife ; 122023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36722887

RESUMEN

Hyperosmolarity of the renal medulla is essential for urine concentration and water homeostasis. However, how renal medullary collecting duct (MCD) cells survive and function under harsh hyperosmotic stress remains unclear. Using RNA-Seq, we identified SLC38A2 as a novel osmoresponsive neutral amino acid transporter in MCD cells. Hyperosmotic stress-induced cell death in MCD cells occurred mainly via ferroptosis, and it was significantly attenuated by SLC38A2 overexpression but worsened by Slc38a2-gene deletion or silencing. Mechanistic studies revealed that the osmoprotective effect of SLC38A2 is dependent on the activation of mTORC1. Moreover, an in vivo study demonstrated that Slc38a2-knockout mice exhibited significantly increased medullary ferroptosis following water restriction. Collectively, these findings reveal that Slc38a2 is an important osmoresponsive gene in the renal medulla and provide novel insights into the critical role of SLC38A2 in protecting MCD cells from hyperosmolarity-induced ferroptosis via the mTORC1 signalling pathway.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Ferroptosis , Animales , Ratones , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Riñón/metabolismo , Médula Renal/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
9.
Biomed J ; 46(2): 100577, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36642221

RESUMEN

Mass spectrometry-based proteomics has been extensively applied to current biomedical research. From such large-scale identification of proteins, several computational tools have been developed for determining protein-protein interactions (PPI) network and functional significance of the identified proteins and their complex. Analyses of PPI network and functional enrichment have been widely applied to various fields of biomedical research. Herein, we summarize commonly used tools for PPI network analysis and functional enrichment in kidney stone research and discuss their applications to kidney stone disease (KSD). Such computational approach has been used mainly to investigate PPI networks and functional significance of the proteins derived from urine of patients with kidney stone (stone formers), stone matrix, Randall's plaque, renal papilla, renal tubular cells, mitochondria and immune cells. The data obtained from computational biotechnology leads to experimental validation and investigations that offer new knowledge on kidney stone formation processes. Moreover, the computational approach may also lead to defining new therapeutic targets and preventive strategies for better outcome in KSD management.


Asunto(s)
Oxalato de Calcio , Cálculos Renales , Humanos , Oxalato de Calcio/análisis , Oxalato de Calcio/metabolismo , Cálculos Renales/metabolismo , Cálculos Renales/patología , Riñón/química , Riñón/metabolismo , Riñón/patología , Médula Renal/química , Médula Renal/metabolismo , Médula Renal/patología , Biotecnología
10.
Physiol Rep ; 11(1): e15554, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36636010

RESUMEN

The epithelial Na+ channel (ENaC) is traditionally composed of three subunits, although non-canonical expression has been found in various tissues including the vasculature, brain, lung, and dendritic cells of the immune system. Studies of ENaC structure and function have largely relied on heterologous expression systems, often with epitope-tagged channel subunits. Relevant in vivo physiological studies have used ENaC inhibitors, mice with global or tissue specific knockout of subunits, and anti-ENaC subunit antibodies generated by investigators or by commercial sources. Availability of well-characterized, specific antibodies is imperative as we move forward in understanding the role of ENaC in non-epithelial tissues where expression, subunit organization, and electrophysiological characteristics may differ from epithelial tissues. We report that a commonly used commercial anti-α subunit antibody recognizes an intense non-specific band on mouse whole kidney and lung immunoblots, which migrates adjacent to a less intense, aldosterone-induced full length α-subunit. This antibody localizes to the basolateral membrane of aquaporin 2 negative cells in kidney medulla. We validated antibodies against the ß- and γ-subunits from the same commercial source. Our work illustrates the importance of validation studies when using popular, commercially available anti-ENaC antibodies.


Asunto(s)
Canales Epiteliales de Sodio , Riñón , Ratones , Animales , Canales Epiteliales de Sodio/metabolismo , Riñón/metabolismo , Sodio/metabolismo , Epitelio/metabolismo , Médula Renal/metabolismo
11.
Physiol Rep ; 10(23): e15535, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36511486

RESUMEN

This study examined the influence of PPARG activation by pioglitazone (PG) on the mRNA of core clock, inflammation- and metabolism-related genes in the mouse kidney medulla as well as urinary sodium/potassium excretion rhythms disrupted by reverse feeding. Mice were assigned to daytime feeding and nighttime feeding groups. PG 20 mg/kg was administered at 7 am or 7 pm. On day 8 of the feeding intervention, mice were killed at noon and midnight. Kidney medulla expression of Arntl, Clock, Nr1d1, Cry1, Cry2, Per1, Per2, Nfe2l2, Pparg, and Scnn1g was determined by qRT PCR. We measured urinary K+ , Na+ , urine volume, food, and H2 O intake. The reverse feeding uncoupled the peripheral clock gene rhythm in mouse kidney tissues. It was accompanied by a decreased expression of Nfe2l2 and Pparg as well as an increased expression of Rela and Scnn1g. These changes in gene expressions concurred with an increase in urinary Na+ , K+ , water excretion, microcirculation disorders, and cell loss, especially in distal tubules. PG induced the restoration of diurnal core clock gene expression as well as Nfe2l2, Pparg, Scnn1g mRNA, and decreased Rela expressions, stimulating Na+ reabsorption and inhibiting K+ excretion. PG intake at 7 pm was more effective than at 7 am.


Asunto(s)
Ritmo Circadiano , Médula Renal , Animales , Ratones , Ritmo Circadiano/fisiología , Médula Renal/metabolismo , Pioglitazona/farmacología , PPAR gamma/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
J Cell Physiol ; 237(10): 3883-3899, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35908199

RESUMEN

The renal collecting ducts (CD) are formed by a fully differentiated epithelium, and their tissue organization and function require the presence of mature cell adhesion structures. In certain circumstances, the cells can undergo de-differentiation by a process called epithelial-mesenchymal transition (EMT), in which the cells lose their epithelial phenotype and acquire the characteristics of the mesenchymal cells, which includes loss of cell-cell adhesion. We have previously shown that in renal papillary CD cells, cell adhesion structures are located in sphingomyelin (SM)-enriched plasma membrane microdomains and the inhibition of SM synthase 1 activity induced CD cells to undergo an EMT process. In the present study, we evaluated the influence of SM metabolism during the EMT of the cells that form the CD of the renal papilla during aging. To this end, primary cultures of renal papillary CD cells from young, middle-, and aged-rats were performed. By combining biochemical and immunofluorescence studies, we found experimental evidence that CD cells undergo an increase in spontaneous and reversible EMT during aging and that at least one of the reasons for this phenomenon is the decrease in SM content due to the combination of decreased SM synthase activity and an increase in SM degradation mediated by neutral sphingomyelinase. Age is a risk factor for many diseases, among which renal fibrosis is included. Our findings highlight the importance of sphingolipids and particularly SM as a modulator of the fate of CD cells and probably contribute to the development of treatments to avoid or reverse renal fibrosis during aging.


Asunto(s)
Transición Epitelial-Mesenquimal , Enfermedades Renales , Animales , Células Epiteliales/metabolismo , Fibrosis , Médula Renal/metabolismo , Ratas , Esfingomielina Fosfodiesterasa/genética , Esfingomielinas/metabolismo
13.
Acta Physiol (Oxf) ; 236(1): e13860, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35862484

RESUMEN

AIM: Cardiac surgery requiring cardiopulmonary bypass (CPB) can result in renal and cerebral injury. Intraoperative tissue hypoxia could contribute to such organ injury. Hypothermia, however, may alleviate organ hypoxia. Therefore, we tested whether moderate hypothermia (30°C) improves cerebral and renal tissue perfusion and oxygenation during ovine CPB. METHODS: Ten sheep were studied while conscious, under stable anesthesia, and during 3 h of CPB. In a randomized within-animal cross-over design, five sheep commenced CPB at a target body temperature of 30°C (moderate hypothermia). After 90 min, the body temperature was increased to 36°C (standard procedure). The remaining five sheep were randomized to the opposite order of target body temperature. RESULTS: Compared with the standard procedure, moderately hypothermic CPB reduced renal oxygen delivery (-34.8% ± 19.6%, P = 0.003) and renal oxygen consumption (-42.7% ± 35.2%, P = 0.04). Nevertheless, moderately hypothermic CPB did not significantly alter either renal cortical or medullary tissue PO2 . Moderately hypothermic CPB also did not significantly alter cerebral perfusion, cerebral tissue PO2 , or cerebral oxygen saturation compared with the standard procedure. Compared with the anesthetized state, the standard procedure reduced renal medullary PO2 (-21.0 ± 13.8 mmHg, P = 0.014) and cerebral oxygen saturation (65.0% ± 7.0% to 55.4% ± 9.6%, P = 0.022) but did not significantly alter either renal cortical or cerebral PO2 . CONCLUSION: Ovine experimental CPB leads to renal medullary tissue hypoxia. Moderately hypothermic CPB did not improve cerebral or renal tissue oxygenation. In the kidney, this is probably because renal tissue oxygen consumption is matched by reduced renal oxygen delivery.


Asunto(s)
Hipotermia Inducida , Hipotermia , Animales , Encéfalo , Puente Cardiopulmonar/efectos adversos , Estudios Cruzados , Hemodinámica , Hipotermia/metabolismo , Hipotermia Inducida/métodos , Hipoxia/metabolismo , Médula Renal/metabolismo , Oxígeno/metabolismo , Consumo de Oxígeno , Ovinos
14.
Int J Mol Sci ; 23(11)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35682969

RESUMEN

Pregnancy is characterized by adaptations in the function of several maternal body systems that ensure the development of the fetus whilst maintaining health of the mother. The renal system is responsible for water and electrolyte balance, as well as waste removal. Thus, it is imperative that structural and functional changes occur in the kidney during pregnancy. However, our knowledge of the precise morphological and molecular mechanisms occurring in the kidney during pregnancy is still very limited. Here, we investigated the changes occurring in the mouse kidney during pregnancy by performing an integrated analysis involving histology, gene and protein expression assays, mass spectrometry profiling and bioinformatics. Data from non-pregnant and pregnant mice were used to identify critical signalling pathways mediating changes in the maternal kidneys. We observed an expansion of renal medulla due to proliferation and infiltration of interstitial cellular constituents, as well as alterations in the activity of key cellular signalling pathways (e.g., AKT, AMPK and MAPKs) and genes involved in cell growth/metabolism (e.g., Cdc6, Foxm1 and Rb1) in the kidneys during pregnancy. We also generated plasma and urine proteomic profiles, identifying unique proteins in pregnancy. These proteins could be used to monitor and study potential mechanisms of renal adaptations during pregnancy and disease.


Asunto(s)
Riñón , Proteómica , Animales , Femenino , Feto/metabolismo , Riñón/metabolismo , Médula Renal/metabolismo , Ratones , Embarazo , Proteínas/metabolismo , Equilibrio Hidroelectrolítico
15.
Eur J Immunol ; 52(8): 1258-1272, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35527392

RESUMEN

Renal immune cells serve as sentinels against ascending bacteria but also promote detrimental inflammation. The kidney medulla is characterized by extreme electrolyte concentrations. We here address how its main osmolytes, NaCl and urea, regulate tubular cell cytokine expression and monocyte chemotaxis. In the healthy human kidney, more monocytes were detected in medulla than cortex. The monocyte gradient was attenuated in patients with medullary NaCl depletion by loop diuretic therapy and in the nephrotic syndrome. Renal tubular epithelial cell gene expression responded similarly to NaCl and tonicity control mannitol, but not urea. NaCl significantly upregulated chemotactic cytokines, most markedly CCL26, CCL2, and CSF1. This induction was inhibited by the ROS scavenger n-acetylcysteine. In contrast, urea, the main medullary osmolyte in catabolism, dampened tubular epithelial CCL26 and CSF1 expression. Renal medullary chemokine and monocyte marker expression decreased in catabolic mice. NaCl-, but not urea-stimulated tubular epithelium or CCL2 and CCL26, promoted human classical monocyte migration. CCL26 improved bactericidal function. In the human kidney medulla, monocyte densities correlated with tubular CCL26 protein abundance. In summary, medullary-range NaCl, but not urea, promotes tubular cytokine expression and monocyte recruitment. This may contribute to the pyelonephritis vulnerability in catabolism but can possibly be harnessed against pathologic inflammation.


Asunto(s)
Médula Renal , Cloruro de Sodio , Animales , Citocinas/metabolismo , Células Epiteliales/metabolismo , Humanos , Inflamación/metabolismo , Médula Renal/metabolismo , Ratones , Monocitos/metabolismo , Cloruro de Sodio/metabolismo , Cloruro de Sodio/farmacología , Urea/metabolismo , Urea/farmacología
16.
Food Funct ; 13(2): 891-903, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34994761

RESUMEN

A high-salt (HS) diet leads to metabolic disorders in Dahl salt-sensitive (SS) rats, and promotes the development of hypertension. According to the changes in the metabolites of SS rats, a set of combined dietary supplements containing amino acids and organic acids (AO) were designed. The purpose of the present study was to evaluate the effect of AO supplementation on the blood pressure of SS rats after the HS diet and clarify the mechanism of AO by metabolomics and biochemical analyses. The results showed that AO supplementation avoided the elevation of blood pressure induced by the HS diet in SS rats, increased the renal antioxidant enzyme activities (catalase, superoxide dismutase, glutathione reductase, and glutathione S-transferase), reduced the H2O2 and MDA levels, and restored the normal antioxidant status of the serum and kidneys. AO also reversed the decrease in the nitric oxide (NO) levels and NO synthase activity induced by the HS feed, which involved the L-arginine/NO pathway. Metabolomics analysis showed that AO administration increased the levels of amino acids such as cysteine, glycine, hypotaurine, and lysine in the renal medulla and the levels of leucine, isoleucine, and serine in the renal cortex. Of note, lysine, hypotaurine and glycine had higher metabolic centrality in the metabolic correlation network of the renal medulla after AO administration. In conclusion, AO intervention could prevent HS diet-induced hypertension in SS rats by restoring the metabolic homeostasis of the kidneys. Hence, AO has the potential to become a functional food additive to improve salt-sensitive hypertension.


Asunto(s)
Aminoácidos/farmacología , Presión Sanguínea/efectos de los fármacos , Hipertensión/inducido químicamente , Cloruro de Sodio Dietético/administración & dosificación , Aminoácidos/química , Animales , Suplementos Dietéticos , Glutatión/metabolismo , Hipertensión/prevención & control , Corteza Renal/efectos de los fármacos , Corteza Renal/metabolismo , Médula Renal/efectos de los fármacos , Médula Renal/metabolismo , Masculino , Ratas , Ratas Endogámicas Dahl , Cloruro de Sodio Dietético/efectos adversos
17.
Cell Mol Life Sci ; 78(23): 7831-7849, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34724098

RESUMEN

Randall's plaques (RP) are well established as precursor lesions of idiopathic calcium oxalate (CaOx) stones, and the process of biomineralization driven by osteogenic-like cells has been highlighted in RP formation, but the mechanism is poorly understood. Given the inhibitory role of α-Klotho (KL), an aging suppressor protein with high expression in kidneys, in ectopic calcification and the close association between KL gene polymorphisms and urolithiasis susceptibility, we determined the potential role of KL in RP formation. This study found that both soluble KL (s-KL) and transmembrane KL (m-KL) were downregulated, and that s-KL but not m-KL was inversely correlated with upregulation of osteogenic markers in RP tissues. Additionally, s-KL expression was markedly suppressed in human renal interstitial fibroblasts (hRIFs) and slightly suppressed in HK-2 cells after osteogenic induction, intriguingly, which was echoed to the greater osteogenic capability of hRIFs than HK-2 cells. Further investigations showed the inhibitory effect of s-KL on hRIF osteogenic differentiation in vitro and in vivo. Moreover, coculture with recombinant human KL (r-KL) or HK-2 cells suppressed osteogenic differentiation of hRIFs, and this effect was abolished by coculture with KL-silenced HK-2 cells or the ß-catenin agonist SKL2001. Mechanistically, s-KL inactivated the Wnt-ß-catenin pathway by directly binding to Wnt2 and upregulating SFRP1. Further investigations identified activation of the Wnt-ß-catenin pathway and downregulation of SFRP1 and DKK1 in RP tissues. In summary, this study identified s-KL deficiency as a pathological feature of RP and revealed that s-KL released from HK-2 cells inhibited osteogenic differentiation of hRIFs by inactivating the Wnt-ß-catenin pathway, not only providing in-depth insight into the role of s-KL in renal interstitial biomineralization but also shedding new light on the interaction of renal tubular epithelial cells with interstitial cells to clarify RP formation.


Asunto(s)
Diferenciación Celular , Fibroblastos/patología , Cálculos Renales/patología , Proteínas Klotho/metabolismo , Osteogénesis , Proteínas Wnt/antagonistas & inhibidores , beta Catenina/antagonistas & inhibidores , Animales , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Cálculos Renales/genética , Cálculos Renales/metabolismo , Médula Renal/metabolismo , Médula Renal/patología , Proteínas Klotho/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Desnudos , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
18.
Am J Physiol Cell Physiol ; 321(3): C507-C518, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34191628

RESUMEN

The fluid in the 14 distinct segments of the renal tubule undergoes sequential transport processes that gradually convert the glomerular filtrate into the final urine. The solute carrier (SLC) family of proteins is responsible for much of the transport of ions and organic molecules along the renal tubule. In addition, some SLC family proteins mediate housekeeping functions by transporting substrates for metabolism. Here, we have developed a curated list of SLC family proteins. We used the list to produce resource webpages that map these proteins and their transcripts to specific segments along the renal tubule. The data were used to highlight some interesting features of expression along the renal tubule including sex-specific expression in the proximal tubule and the role of accessory proteins (ß-subunit proteins) that are thought to be important for polarized targeting in renal tubule epithelia. Also, as an example of application of the data resource, we describe the patterns of acid-base transporter expression along the renal tubule.


Asunto(s)
Enfermedades Renales/genética , Glomérulos Renales/metabolismo , Médula Renal/metabolismo , Túbulos Renales/metabolismo , Organoides/metabolismo , Proteínas Transportadoras de Solutos/genética , Animales , Transporte Biológico , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Tasa de Filtración Glomerular , Humanos , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Glomérulos Renales/patología , Médula Renal/patología , Túbulos Renales/patología , Masculino , Ratones , Anotación de Secuencia Molecular , Organoides/patología , Factores Sexuales , Análisis de la Célula Individual , Proteínas Transportadoras de Solutos/clasificación , Proteínas Transportadoras de Solutos/metabolismo
19.
Int J Mol Sci ; 22(9)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064510

RESUMEN

The nuclear factor of activated T cells 5 (NFAT5) is well known for its sensitivity to cellular osmolarity changes, such as in the kidney medulla. Accumulated evidence indicates that NFAT5 is also a sensitive factor to stress signals caused by non-hypertonic stimuli such as heat shock, biomechanical stretch stress, ischaemia, infection, etc. These osmolality-related and -unrelated stimuli can induce NFAT5 upregulation, activation and nuclear accumulation, leading to its protective role against various detrimental effects. However, dysregulation of NFAT5 expression may cause pathological conditions in different tissues, leading to a variety of diseases. These protective or pathogenic effects of NFAT5 are dictated by the regulation of its target gene expression and activation of its signalling pathways. Recent studies have found a number of kinases that participate in the phosphorylation/activation of NFAT5 and related signal proteins. Thus, this review will focus on the NFAT5-mediated signal transduction pathways. As for the stimuli that upregulate NFAT5, in addition to the stresses caused by hyperosmotic and non-hyperosmotic environments, other factors such as miRNA, long non-coding RNA, epigenetic modification and viral infection also play an important role in regulating NFAT5 expression; thus, the discussion in this regard is another focus of this review. As the heart, unlike the kidneys, is not normally exposed to hypertonic environments, studies on NFAT5-mediated cardiovascular diseases are just emerging and rapidly progressing. Therefore, we have also added a review on the progress made in this field of research.


Asunto(s)
Enfermedades Cardiovasculares/genética , Epigénesis Genética , MicroARNs/genética , ARN Largo no Codificante/genética , Factores de Transcripción/genética , Virosis/genética , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Metilación de ADN , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Histonas/genética , Histonas/metabolismo , Humanos , Médula Renal/metabolismo , Médula Renal/patología , MicroARNs/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Concentración Osmolar , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Largo no Codificante/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Virosis/metabolismo , Virosis/patología , Virosis/virología , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Int J Mol Sci ; 22(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065436

RESUMEN

High saturated fat diets have been associated with the development of obesity and hypertension, along with other pathologies related to the metabolic syndrome. In contrast, the Mediterranean diet, characterized by its high content of monounsaturated fatty acids, has been proposed as a dietary factor capable of positively regulating cardiovascular function. These effects have been linked to changes in the local renal renin angiotensin system (RAS) and the activity of the sympathetic nervous system. The main goal of this study was to analyze the role of two dietary fat sources on aminopeptidases activities involved in local kidney RAS. Male Wistar rats (six months old) were fed during 24 weeks with three different diets: the standard diet (S), the standard diet supplemented with virgin olive oil (20%) (VOO), or the standard diet enriched with butter (20%) plus cholesterol (0.1%) (Bch). Kidney samples were separated in medulla and cortex for aminopeptidase activities (AP) assay. Urine samples were collected for routine analysis by chemical tests. Aminopeptidase activities were determined by fluorometric methods in soluble (sol) and membrane-bound (mb) fractions of renal tissue, using arylamide derivatives as substrates. After the experimental period, the systolic blood pressure (SBP) values were similar in standard and VOO animals, and significantly lower than in the Bch group. At the same time, a significant increase in GluAP and IRAP activities were found in renal medulla of Bch animals. However, in VOO group the increase of GluAP activity in renal medulla was lower, while AspAP activity decreased in the renal cortex. Furthermore, the VOO diet also affected other aminopeptidase activities, such as TyrAP and pGluAP, related to the regulation of the sympathetic nervous system and the metabolic rate. These results support the beneficial effect of VOO in the regulation of SBP through changes in local AP activities of the kidney.


Asunto(s)
Aminopeptidasas/metabolismo , Presión Sanguínea/efectos de los fármacos , Corteza Renal/efectos de los fármacos , Médula Renal/efectos de los fármacos , Aceite de Oliva/farmacología , Animales , Mantequilla , Colesterol/metabolismo , Dieta Mediterránea , Grasas de la Dieta/farmacología , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Corteza Renal/metabolismo , Médula Renal/metabolismo , Masculino , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ratas , Ratas Wistar , Sistema Renina-Angiotensina/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...