Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 574
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167485, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39226992

RESUMEN

Telethonin/titin-cap (TCAP) encodes a Z-disc protein that plays important roles in sarcomere/T-tubule interactions, stretch-sensing and signaling. Mutations in TCAP are associated with muscular dystrophy and cardiomyopathy; however, the complete etiology and its roles in myocardial infarction and regeneration are not fully understood. Here, we generated tcap gene knockout zebrafish with CRISPR/Cas9 technology and observed muscular dystrophy-like phenotypes and abnormal mitochondria in skeletal muscles. The stretch-sensing ability was inhibited in tcap-/- mutants. Moreover, Tcap deficiency led to alterations in cardiac morphology and function as well as increases in reactive oxygen species (ROS) and mitophagy. In addition, the cardiac regeneration and cardiomyocyte proliferation ability of tcap-/- mutants were impaired, but these impairments could be rescued by supplementation with ROS scavengers or autophagy inhibitors. Overall, our study demonstrates the essential roles of Tcap in striated muscle function and heart regeneration. Additionally, elevations in ROS and autophagy may account for the phenotypes resulting from Tcap deficiency and could serve as novel therapeutic targets for muscular dystrophy and cardiomyopathy.


Asunto(s)
Autofagia , Especies Reactivas de Oxígeno , Regeneración , Proteínas de Pez Cebra , Pez Cebra , Animales , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Músculo Estriado/metabolismo , Músculo Estriado/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Conectina/metabolismo , Conectina/genética , Corazón/fisiopatología , Corazón/fisiología , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/genética
2.
Medicina (Kaunas) ; 60(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39064518

RESUMEN

Background and Objectives: Radiofrequency catheter ablation (RFCA) is a highly successful intervention. By comparing the lesion changes in prostate parenchymal and striated muscle tissues after RFCA with and without cooling, it was possible to assess the correlation between the shape regularity, area, and perimeter of the thermal lesion, and to predict the geometric shape changes of the lesions. Materials and Methods: A standard prostate and striated muscle RFCA procedure was performed on 13 non-purebred dogs in two sessions: no cooling and cooling with 0.1% NaCl solution. Microtome-cut 2-3 µm sections of tissue samples were stained with haematoxylin and eosin and further examined. The quotient formula was employed to evaluate the geometric shape of the damage zones at the ablation site. Results: The extent of injury following RFCA in striated muscle tissue was comparable to that in prostate parenchymal tissue. Regression analysis indicated a strong and positive relationship between area and perimeter in all experimental groups. In the experimental groups of parenchymal tissues with and without cooling, an increase in the area or perimeter of the damage zone corresponded to an increase in the quotient value. A similar tendency was observed in the striated muscle group with cooling. However, in the striated muscle group without cooling, an increase in lesion area or perimeter lowered the quotient value. Standardised regression coefficients demonstrated that in the striated muscle with cooling, the damage zone shape was more determined by area than perimeter. However, in the parenchymal tissue, the perimeter had a more substantial impact on the damage zone shape than the area. Conclusions: The damage area and perimeter have predictive power on the overall shape regularity of damage zone geometry in both striated muscles and parenchymal tissue. This approach is employed to achieve a balance between the need for tumour eradication and the minimisation of ablation-induced complications to healthy tissue.


Asunto(s)
Ablación por Catéter , Músculo Estriado , Animales , Masculino , Ablación por Catéter/métodos , Ablación por Catéter/efectos adversos , Perros , Tejido Parenquimatoso , Próstata/cirugía , Próstata/patología , Músculo Esquelético/lesiones
3.
Curr Opin Neurol ; 37(5): 509-514, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38989655

RESUMEN

PURPOSE OF REVIEW: To highlight recent insights in different aspects of striated muscle laminopathies (SMLs) related to LMNA mutations. RECENT FINDINGS: Clinical and genetic studies allow better patient management and diagnosis, with confirmation of ventricular tachyarrhythmias (VTA) risk prediction score to help with ICD implantation and development of models to help with classification of LMNA variants of uncertain significance. From a pathophysiology perspective, characterization of lamin interactomes in different contexts revealed new lamin A/C partners. Expression or function modulation of these partners evidenced them as potential therapeutic targets. After a positive phase 2, the first phase 3 clinical trial, testing a p38 inhibitor targeting the life-threatening cardiac disease of SML, has been recently stopped, thus highlighting the need for new therapeutic approaches together with new animal and cell models. SUMMARY: Since the first LMNA mutation report in 1999, lamin A/C structure and functions have been actively explored to understand the SML pathophysiology. The latest discoveries of partners and altered pathways, highlight the importance of lamin A/C at the nuclear periphery and in the nucleoplasm. Modulation of altered pathways allowed some benefits, especially for cardiac involvement. However, additional studies are still needed to fully assess treatment efficacy and safety.


Asunto(s)
Lamina Tipo A , Laminopatías , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Laminopatías/genética , Animales , Mutación , Músculo Estriado/patología , Músculo Estriado/metabolismo
4.
Auton Neurosci ; 253: 103177, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636284

RESUMEN

BACKGROUND: Many esophageal striated muscles of mammals are dually innervated by the vagal and enteric nerves. Recently, substance P (SP)-sensory nerve terminals with calcitonin gene-related peptide (CGRP) were found on a few striated muscle fibers in the rat esophagus, implying that these muscle fibers are triply innervated. In this study, we examined the localization and origin of CGRP-nerve endings in striated muscles to consider their possible roles in the esophagus regarding triple innervation. METHODS: Wholemounts of the rat esophagus were immunolabeled to detect CGRP-nerve endings in striated muscles. Also, retrograde tracing was performed by injecting Fast Blue (FB) into the esophagus, and cryostat sections of the medulla oblongata, nodose ganglion (NG), and the tenth thoracic (T10) dorsal root ganglion (DRG) were immunostained to identify the origin of the CGRP-nerve endings. RESULTS: CGRP-fine, varicose nerve endings were localized in motor endplates on a few esophageal striated muscle fibers (4 %), most of which received nitric oxide (NO) synthase nerve terminals, and most of the CGRP nerve endings were SP- and transient receptor potential vanilloid member 1 (TRPV1)-positive. Retrograde tracing showed many FB-labeled CGRP-neurons positive for SP and TRPV1 in the NG and T10 DGR. CONCLUSIONS: This study suggests that the CGRP-varicose nerve endings containing SP and TRPV1 in motor endplates are sensory, and a few esophageal striated muscle fibers are triply innervated. The nerve endings may detect acetylcholine-derived acetic acid from the vagal motor nerve endings and NO from esophageal intrinsic nerve terminals in the motor endplates to regulate esophageal motility.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Esófago , Ganglio Nudoso , Células Receptoras Sensoriales , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/análisis , Esófago/inervación , Esófago/metabolismo , Masculino , Células Receptoras Sensoriales/metabolismo , Ganglio Nudoso/metabolismo , Placa Motora/metabolismo , Ratas , Ganglios Espinales/metabolismo , Bulbo Raquídeo/metabolismo , Sustancia P/metabolismo , Músculo Estriado/inervación , Músculo Estriado/metabolismo , Nervio Vago/metabolismo , Ratas Wistar , Ratas Sprague-Dawley , Fibras Musculares Esqueléticas/metabolismo , Canales Catiónicos TRPV/metabolismo , Amidinas
5.
J Physiol ; 602(9): 1893-1910, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615232

RESUMEN

Dysferlin is a 237 kDa membrane-associated protein characterised by multiple C2 domains with a diverse role in skeletal and cardiac muscle physiology. Mutations in DYSF are known to cause various types of human muscular dystrophies, known collectively as dysferlinopathies, with some patients developing cardiomyopathy. A myriad of in vitro membrane repair studies suggest that dysferlin plays an integral role in the membrane repair complex in skeletal muscle. In comparison, less is known about dysferlin in the heart, but mounting evidence suggests that dysferlin's role is similar in both muscle types. Recent findings have shown that dysferlin regulates Ca2+ handling in striated muscle via multiple mechanisms and that this becomes more important in conditions of stress. Maintenance of the transverse (t)-tubule network and the tight coordination of excitation-contraction coupling are essential for muscle contractility. Dysferlin regulates the maintenance and repair of t-tubules, and it is suspected that dysferlin regulates t-tubules and sarcolemmal repair through a similar mechanism. This review focuses on the emerging complexity of dysferlin's activity in striated muscle. Such insights will progress our understanding of the proteins and pathways that regulate basic heart and skeletal muscle function and help guide research into striated muscle pathology, especially that which arises due to dysferlin dysfunction.


Asunto(s)
Calcio , Disferlina , Humanos , Calcio/metabolismo , Disferlina/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Músculo Estriado/metabolismo , Músculo Estriado/fisiología
6.
Int. j. morphol ; 42(2): 341-347, abr. 2024. ilus
Artículo en Inglés | LILACS | ID: biblio-1558136

RESUMEN

SUMMARY: The different embryological origins of striated muscle tissue make it an interesting tissue but at the same time difficult to understand, this is how the musculature of the face comes from the first pharyngeal arch, on the other hand. The muscles of the tongue derive from the somites. The muscles of the larynx come from the pharyngeal arches. The muscles of the spine come from the medial or internal myotome of the somite, while the muscles of the limbs and body wall come from the external myotome. The cardiac musculature originates from the lateral splanchnic mesoderm. In this work, the development of myoblasts in human, mouse and chicken fetuses was studied in the facial region, tongue, and spine, limbs, body wall and cardiac muscles using histological histochemical techniques and immunohistochemical technique. The objective of the work is to compare the histogenesis of striated muscle (skeletal, visceral and cardiac), indicating the differences in origin, evolution of the morphological characteristics in each of them and the signaling routes that are involved in its development.


Los distintos origenes embriológicos del tejido muscular estriado lo hace un tejido interesante, pero a la vez difícil de entender, es así como la musculatura de la cara proviene del primer arco faríngeo, en cambio, la musculatura de la lengua deriva de los somitos. La musculatura de la laringe proviene de los arcos faríngeos. La musculatura de la columna vertebral proviene del miotomo medial o interno del somito, en cambio la musculatura de los miembros y pared del cuerpo proviene del miotomo externo. La musculatura cardiaca se origina del mesoderma lateral esplácnico. En este trabajo se estudió el desarrollo de mioblastos en fetos humanos, de ratón y pollo, en la región facial, lengua, columna vertebral, miembros, pared del cuerpo y musculatura cardíaca mediante técnicas histológicas histoquímicas y técnica inmunohistoquímica. El objetivo del trabajo fue comparar la histogénesis del músculo estriado (esquelético, visceral y cardíaco), indicando las diferencias de origen, evolución de las características morfológicas en cada una de ellas y las rutas de señalización que se ven involucradas en el desarrollo del mismo.


Asunto(s)
Animales , Desarrollo Embrionario , Músculo Estriado/embriología , Pollos
7.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396664

RESUMEN

The tunica muscularis of mammalian esophagi is composed of striated muscle and smooth muscle. Contraction of the esophageal striated muscle portion is mainly controlled by cholinergic neurons. On the other hand, smooth muscle contraction and relaxation are controlled not only by cholinergic components but also by non-cholinergic components in the esophagus. Adenosine triphosphate (ATP) is known to regulate smooth muscle contraction and relaxation in the gastrointestinal tract via purinergic receptors. However, the precise mechanism of purinergic regulation in the esophagus is still unclear. Therefore, the aim of the present study was to clarify the effects of ATP on the mechanical responses of the esophageal muscle in mice. An isolated segment of the mouse esophagus was placed in a Magnus's tube and longitudinal mechanical responses were recorded. Exogenous application of ATP induced contractile responses in the esophageal preparations. Tetrodotoxin, a blocker of voltage-dependent sodium channels in neurons and striated muscle, did not affect the ATP-induced contraction. The ATP-evoked contraction was blocked by pretreatment with suramin, a purinergic receptor antagonist. RT-PCR revealed the expression of mRNA of purinergic receptor genes in the mouse esophageal tissue. The findings suggest that purinergic signaling might regulate the motor activity of mouse esophageal smooth muscle.


Asunto(s)
Adenosina Trifosfato , Músculo Estriado , Ratones , Animales , Adenosina Trifosfato/farmacología , Contracción Muscular/fisiología , Esófago , Músculo Estriado/fisiología , Receptores Purinérgicos , Músculo Liso , Mamíferos
8.
Insect Sci ; 31(2): 435-447, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37489033

RESUMEN

Locust (Locusta migratoria) has a single striated muscle myosin heavy chain (Mhc) gene, which contains 5 clusters of alternative exclusive exons and 1 differently included penultimate exon. The alternative exons of Mhc gene encode 4 distinct regions in the myosin motor domain, that is, the N-terminal SH3-like domain, one lip of the nucleotide-binding pocket, the relay, and the converter. Here, we investigated the role of the alternative regions on the motor function of locust muscle myosin. Using Sf9-baculovirus protein expression system, we expressed and purified 5 isoforms of the locust muscle myosin heavy meromyosin (HMM), including the major isoform in the thorax dorsal longitudinal flight muscle (FL1) and 4 isoforms expressed in the abdominal intersegmental muscle (AB1 to AB4). Among these 5 HMMs, FL1-HMM displayed the highest level of actin-activated adenosine triphosphatase (ATPase) activity (hereafter referred as ATPase activity). To identify the alternative region(s) responsible for the elevated ATPase activity of FL1-HMM, we produced a number of chimeras of FL1-HMM and AB4-HMM. Substitution with the relay of AB4-HMM (encoded by exon-14c) substantially decreased the ATPase activity of FL1-HMM, and conversely, the relay of FL1-HMM (encoded by exon-14a) enhanced the ATPase activity of AB4-HMM. Mutagenesis showed that the exon-14a-encoded residues Gly474 and Asn509 are responsible for the elevated ATPase activity of FL1-HMM. Those results indicate that the alternative relay encoded by exon-14a/c play a key role in regulating the ATPase activity of FL1-HMM and AB4-HMM.


Asunto(s)
Locusta migratoria , Músculo Estriado , Animales , Locusta migratoria/genética , Locusta migratoria/metabolismo , Secuencia de Aminoácidos , Miosinas/química , Miosinas/genética , Miosinas/metabolismo , Isoformas de Proteínas/genética , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Músculo Estriado/metabolismo
10.
Cytoskeleton (Hoboken) ; 81(2-3): 127-140, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37792405

RESUMEN

The calponin family proteins are expressed in both muscle and non-muscle cells and involved in the regulation of cytoskeletal dynamics and cell contractility. In the nematode Caenorhabditis elegans, UNC-87 and CLIK-1 are calponin-related proteins with 42% identical amino acid sequences containing seven calponin-like motifs. Genetic studies demonstrated that UNC-87 and CLIK-1 have partially redundant function in regulating actin cytoskeletal organization in striated and non-striated muscle cells. However, biochemical studies showed that UNC-87 and CLIK-1 are different in their ability to bundle actin filaments. In this study, I extended comparison between UNC-87 and CLIK-1 and found additional differences in vitro and in vivo. Although UNC-87 and CLIK-1 bound to actin filaments similarly, UNC-87, but not CLIK-1, bound to myosin and inhibited actomyosin ATPase in vitro. In striated muscle, UNC-87 and CLIK-1 were segregated into different subregions within sarcomeric actin filaments. CLIK-1 was concentrated near the actin pointed ends, whereas UNC-87 was enriched toward the actin barbed ends. Restricted localization of UNC-87 was not altered in a clik-1-null mutant, suggesting that their segregated localization is not due to competition between the two related proteins. These results suggest that the two calponin-related proteins have both common and distinct roles in regulating actin filaments.


Asunto(s)
Proteínas de Caenorhabditis elegans , Músculo Estriado , Animales , Caenorhabditis elegans/metabolismo , Actinas/metabolismo , Calponinas , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Citoesqueleto de Actina/metabolismo , Músculo Estriado/metabolismo , Músculo Esquelético/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
11.
WIREs Mech Dis ; 16(2): e1638, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38155593

RESUMEN

Titin, the so-called "third filament" of the sarcomere, represents a difficult challenge for the determination of damaging genetic variants. A single titin molecule extends across half the length of a sarcomere in striated muscle, fulfilling a variety of vital structural and signaling roles, and has been linked to an equally varied range of myopathies, resulting in a significant burden on individuals and healthcare systems alike. While the consequences of truncating variants of titin are well-documented, the ramifications of the missense variants prevalent in the general population are less so. We here present a compendium of titin missense variants-those that result in a single amino-acid substitution in coding regions-reported to be pathogenic and discuss these in light of the nature of titin and the variant position within the sarcomere and their domain, the structural, pathological, and biophysical characteristics that define them, and the methods used for characterization. Finally, we discuss the current knowledge and integration of the multiple fields that have contributed to our understanding of titin-related pathology and offer suggestions as to how these concurrent methodologies may aid the further development in our understanding of titin and hopefully extend to other, less well-studied giant proteins. This article is categorized under: Cardiovascular Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Molecular and Cellular Physiology.


Asunto(s)
Músculo Estriado , Sarcómeros , Humanos , Conectina/genética , Músculo Esquelético/metabolismo , Músculo Estriado/fisiología , Sarcómeros/genética
12.
Skelet Muscle ; 13(1): 20, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38044436

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked disease caused by mutations in DMD gene and loss of the protein dystrophin, which ultimately leads to myofiber membrane fragility and necrosis, with eventual muscle atrophy and contractures. Affected boys typically die in their second or third decade due to either respiratory failure or cardiomyopathy. Among the developed therapeutic strategies for DMD, gene therapy approaches partially restore micro-dystrophin or quasi-dystrophin expression. However, despite extensive attempts to develop definitive therapies for DMD, the standard of care remains corticosteroid, which has only palliative benefits. Animal models have played a key role in studies of DMD pathogenesis and treatment development. The golden retriever muscular dystrophy (GRMD) dog displays a phenotype aligning with the progressive course of DMD. Therefore, canine studies may translate better to humans. Recent studies suggested that nicotinamide adenine dinucleotide (NAD+) cellular content could be a critical determinant for striated muscle function. We showed here that NAD+ content was decreased in the striated muscles of GRMD, leading to an alteration of one of NAD+ co-substrate enzymes, PARP-1. Moreover, we showed that boosting NAD+ content using nicotinamide (NAM), a natural NAD+ precursor, modestly reduces aspects of striated muscle disease. Collectively, our results provide mechanistic insights into DMD.


Asunto(s)
Músculo Estriado , Distrofia Muscular de Duchenne , Masculino , Perros , Animales , Humanos , Distrofia Muscular de Duchenne/patología , Distrofina/genética , NAD/metabolismo , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Músculo Estriado/patología
13.
J Gen Physiol ; 155(12)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37934475

RESUMEN

Calcium binding to troponin, with subsequent displacement of its linked tropomyosin molecule on the thin filament surface, cooperates with myosin binding to actin in the contractile regulation of striated muscle. The intertwined role of these systems is studied in the present issue of JGP by Ishii et al. (https://doi.org/10.1085/jgp.202313414). A particularly interesting feature of the paper, except for studying both skeletal and cardiac muscle proteins, is that the experiments unlike most other similar studies are performed at physiological temperature (35-40°C).


Asunto(s)
Músculo Esquelético , Músculo Estriado , Temperatura , Contracción Muscular , Actinas
14.
PLoS Genet ; 19(8): e1010895, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37624850

RESUMEN

Striated muscle laminopathies caused by missense mutations in the nuclear lamin gene LMNA are characterized by cardiac dysfunction and often skeletal muscle defects. Attempts to predict which LMNA variants are pathogenic and to understand their physiological effects lag behind variant discovery. We created Caenorhabditis elegans models for striated muscle laminopathies by introducing pathogenic human LMNA variants and variants of unknown significance at conserved residues within the lmn-1 gene. Severe missense variants reduced fertility and/or motility in C. elegans. Nuclear morphology defects were evident in the hypodermal nuclei of many lamin variant strains, indicating a loss of nuclear envelope integrity. Phenotypic severity varied within the two classes of missense mutations involved in striated muscle disease, but overall, variants associated with both skeletal and cardiac muscle defects in humans lead to more severe phenotypes in our model than variants predicted to disrupt cardiac function alone. We also identified a separation of function allele, lmn-1(R204W), that exhibited normal viability and swimming behavior but had a severe nuclear migration defect. Thus, we established C. elegans avatars for striated muscle laminopathies and identified LMNA variants that offer insight into lamin mechanisms during normal development.


Asunto(s)
Laminopatías , Músculo Estriado , Enfermedades Musculares , Animales , Humanos , Caenorhabditis elegans/genética , Lamina Tipo A/genética , Músculo Esquelético , Enfermedades Musculares/genética , Mutación Missense/genética
15.
Int J Mol Sci ; 24(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37175806

RESUMEN

Autophagy (cellular self-degradation) plays a major role in maintaining the functional integrity (homeostasis) of essentially all eukaryotic cells. During the process, superfluous and damaged cellular constituents are delivered into the lysosomal compartment for enzymatic degradation. In humans, age-related defects in autophagy have been linked to the incidence of various age-associated degenerative pathologies (e.g., cancer, neurodegenerative diseases, diabetes, tissue atrophy and fibrosis, and immune deficiency) and accelerated ageing. Muscle mass decreases at detectable levels already in middle-aged patients, and this change can increase up to 30-50% at age 80. AUTEN-67 and -99, two small-molecule enhancers of autophagy with cytoprotective and anti-ageing effects have been previously identified and initially characterized. These compounds can increase the life span in wild-type and neurodegenerative model strains of the fruit fly Drosophila melanogaster. Adult flies were treated with these AUTEN molecules via feeding. Fluorescence and electron microscopy and Western blotting were used to assess the level of autophagy and cellular senescence. Flying tests were used to measure the locomotor ability of the treated animals at different ages. In the current study, the effects of AUTEN-67 and -99 were observed on striated muscle cells using the Drosophila indirect flight muscle (IFM) as a model. The two molecules were capable of inducing autophagy in IFM cells, thereby lowering the accumulation of protein aggregates and damaged mitochondria, both characterizing muscle ageing. Furthermore, the two molecules significantly improved the flying ability of treated animals. AUTEN-67 and -99 decrease the rate at which striated muscle cells age. These results may have a significant medical relevance that could be further examined in mammalian models.


Asunto(s)
Drosophila , Músculo Estriado , Animales , Humanos , Persona de Mediana Edad , Anciano de 80 o más Años , Drosophila melanogaster , Envejecimiento , Autofagia , Mamíferos
17.
Int J Mol Sci ; 24(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239821

RESUMEN

Synchrotron small-angle X-ray diffraction is the method of choice for nm-scale structural studies of striated muscle under physiological conditions and on millisecond time scales. The lack of generally applicable computational tools for modeling X-ray diffraction patterns from intact muscles has been a significant barrier to exploiting the full potential of this technique. Here, we report a novel "forward problem" approach using the spatially explicit computational simulation platform MUSICO to predict equatorial small-angle X-ray diffraction patterns and the force output simultaneously from resting and isometrically contracting rat skeletal muscle that can be compared to experimental data. The simulation generates families of thick-thin filament repeating units, each with their individually predicted occupancies of different populations of active and inactive myosin heads that can be used to generate 2D-projected electron density models based on known Protein Data Bank structures. We show how, by adjusting only a few selected parameters, we can achieve a good correspondence between experimental and predicted X-ray intensities. The developments presented here demonstrate the feasibility of combining X-ray diffraction and spatially explicit modeling to form a powerful hypothesis-generating tool that can be used to motivate experiments that can reveal emergent properties of muscle.


Asunto(s)
Músculo Esquelético , Músculo Estriado , Difracción de Rayos X , Rayos X , Músculo Esquelético/fisiología , Citoesqueleto de Actina/química , Contracción Muscular/fisiología
18.
J Chem Inf Model ; 63(11): 3462-3473, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37204863

RESUMEN

Despite large investments from academia and industry, heart failure, which results from a disruption of the contractile apparatus, remains a leading cause of death. Cardiac muscle contraction is a calcium-dependent mechanism, which is regulated by the troponin protein complex (cTn) and specifically by the N-terminal domain of its calcium-binding subunit (cNTnC). There is an increasing need for the development of small molecules that increase calcium sensitivity without altering the systolic calcium concentration, thereby strengthening the cardiac function. Here, we examined the effect of our previously identified calcium-sensitizing small molecule, ChemBridge compound 7930079, in the context of several homologous muscle systems. The effect of this molecule on force generation in isolated cardiac trabeculae and slow skeletal muscle fibers was measured. Furthermore, we explored the use of Gaussian accelerated molecular dynamics in sampling highly predictive receptor conformations based on NMR-derived starting structures. Additionally, we took a rational computational approach for lead optimization based on lipophilic diphenyl moieties. This integrated structural-biochemical-physiological approach led to the identification of three novel low-affinity binders, which had similar binding affinities to the known positive inotrope trifluoperazine. The most potent identified calcium sensitizer was compound 16 with an apparent affinity of 117 ± 17 µM.


Asunto(s)
Músculo Estriado , Troponina C , Troponina C/química , Calcio/metabolismo , Músculo Estriado/metabolismo , Relación Estructura-Actividad
19.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37047237

RESUMEN

Contraction in striated muscle is classically described as regulated by calcium-mediated structural changes in the actin-containing thin filaments, which release the binding sites for the interaction with myosin motors to produce force. In this view, myosin motors, arranged in the thick filaments, are basically always ready to interact with the thin filaments, which ultimately regulate the contraction. However, a new "dual-filament" activation paradigm is emerging, where both filaments must be activated to generate force. Growing evidence from the literature shows that the thick filament activation has a role on the striated muscle fine regulation, and its impairment is associated with severe pathologies. This review is focused on the proposed mechanical feedback that activates the inactive motors depending on the level of tension generated by the active ones, the so-called mechanosensing mechanism. Since the main muscle function is to generate mechanical work, the implications on muscle mechanics will be highlighted, showing: (i) how non-mechanical modulation of the thick filament activation influences the contraction, (ii) how the contraction influences the activation of the thick filament and (iii) how muscle, through the mechanical modulation of the thick filament activation, can regulate its own mechanics. This description highlights the crucial role of the emerging bi-directional feedback on muscle mechanical performance.


Asunto(s)
Músculo Esquelético , Músculo Estriado , Animales , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Vertebrados/metabolismo , Sarcómeros/metabolismo , Miosinas/metabolismo , Contracción Muscular/fisiología
20.
Clin Genet ; 103(6): 617-624, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36843357

RESUMEN

The Popeye domain-containing protein 3 (POPDC3), a transmembrane protein with a unique cyclic adenosine monophosphate (cAMP) binding site, is widely expressed in mammalian tissues, with the highest levels of expression in skeletal muscle. POPDC3 plays a key role in many physiological and pathological processes and is considered a candidate biomarker and potential therapeutic target of cancer. In addition, POPDC3 gene variants have been associated with limb-girdle muscular dystrophy (LGMD) type 26. However, there are only a few studies on the biological role of POPDC3, interacting proteins, potential downstream targets, and regulated signaling pathways. Therefore, this review focuses on the structure of POPDC3 protein, interacting molecules, and the role and mechanism in cancer, and in cardiac and skeletal muscle, and to review the current research progress of POPDC3 and propose possible future study directions.


Asunto(s)
Músculo Estriado , Distrofia Muscular de Cinturas , Neoplasias , Animales , Humanos , Moléculas de Adhesión Celular/genética , Homeostasis , Mamíferos/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...