Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.328
Filtrar
2.
Commun Biol ; 6(1): 1121, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925530

RESUMEN

Skeletal muscle stem cells (MuSC) are crucial for tissue homoeostasis and repair after injury. Following activation, they proliferate to generate differentiating myoblasts. A proportion of cells self-renew, re-enter the MuSC niche under the basal lamina outside the myofiber and become quiescent. Quiescent MuSC have a primary cilium, which is disassembled upon cell cycle entry. Ex vivo experiments suggest cilia are important for MuSC self-renewal, however, their requirement for muscle regeneration in vivo remains poorly understood. Talpid3 (TA3) is essential for primary cilia formation and Hedgehog (Hh) signalling. Here we use tamoxifen-inducible conditional deletion of TA3 in MuSC (iSC-KO) and show that regeneration is impaired in response to cytotoxic injury. Depletion of MuSC after regeneration suggests impaired self-renewal, also consistent with an exacerbated phenotype in TA3iSC-KO mice after repeat injury. Single cell transcriptomics of MuSC progeny isolated from myofibers identifies components of several signalling pathways, which are deregulated in absence of TA3, including Hh and Wnt. Pharmacological activation of Wnt restores muscle regeneration, while purmorphamine, an activator of the Smoothened (Smo) co-receptor in the Hh pathway, has no effect. Together, our data show that TA3 and primary cilia are important for MuSC self-renewal and pharmacological treatment can efficiently restore muscle regeneration.


Asunto(s)
Proteínas de Ciclo Celular , Cilios , Músculos , Células Satélite del Músculo Esquelético , Células Madre , Animales , Ratones , Células Cultivadas , Cilios/genética , Cilios/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Músculos/citología , Células Satélite del Músculo Esquelético/metabolismo , Proteínas de Ciclo Celular/genética , Células Madre/citología
3.
Nature ; 601(7893): 446-451, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34937935

RESUMEN

Exosomes and other small extracellular vesicles (sEVs) provide a unique mode of cell-to-cell communication in which microRNAs (miRNAs) produced and released from one cell are taken up by cells at a distance where they can enact changes in gene expression1-3. However, the mechanism by which miRNAs are sorted into exosomes/sEVs or retained in cells remains largely unknown. Here we demonstrate that miRNAs possess sorting sequences that determine their secretion in sEVs (EXOmotifs) or cellular retention (CELLmotifs) and that different cell types, including white and brown adipocytes, endothelium, liver and muscle, make preferential use of specific sorting sequences, thus defining the sEV miRNA profile of that cell type. Insertion or deletion of these CELLmotifs or EXOmotifs in a miRNA increases or decreases retention in the cell of production or secretion into exosomes/sEVs. Two RNA-binding proteins, Alyref and Fus, are involved in the export of miRNAs carrying one of the strongest EXOmotifs, CGGGAG. Increased miRNA delivery mediated by EXOmotifs leads to enhanced inhibition of target genes in distant cells. Thus, this miRNA code not only provides important insights that link circulating exosomal miRNAs to tissues of origin, but also provides an approach for improved targeting in RNA-mediated therapies.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Adipocitos/citología , Comunicación Celular , Endotelio/citología , Exosomas/genética , Exosomas/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Hígado/citología , MicroARNs/genética , MicroARNs/metabolismo , Músculos/citología
4.
Sci China Life Sci ; 64(12): 1998-2029, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34865207

RESUMEN

Stem cells are undifferentiated cells capable of self-renewal and differentiation, giving rise to specialized functional cells. Stem cells are of pivotal importance for organ and tissue development, homeostasis, and injury and disease repair. Tissue-specific stem cells are a rare population residing in specific tissues and present powerful potential for regeneration when required. They are usually named based on the resident tissue, such as hematopoietic stem cells and germline stem cells. This review discusses the recent advances in stem cells of various tissues, including neural stem cells, muscle stem cells, liver progenitors, pancreatic islet stem/progenitor cells, intestinal stem cells, and prostate stem cells, and the future perspectives for tissue stem cell research.


Asunto(s)
Células Madre , Animales , Encéfalo/citología , Predicción , Humanos , Intestinos/citología , Hígado/citología , Hígado/fisiología , Masculino , Músculos/citología , Páncreas/citología , Próstata/citología , Regeneración/fisiología , Roedores , Investigación con Células Madre , Células Madre/fisiología
5.
Cells ; 10(12)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34943996

RESUMEN

Mesenchymal stem cells (MSCs) are known to migrate to tissue injury sites to participate in immune modulation, tissue remodelling and wound healing, reducing tissue damage. Upon neutrophil activation, there is a release of myeloperoxidase (MPO), an oxidant enzyme. But little is known about the direct role of MSCs on MPO activity. The aim of this study was to investigate the effect of equine mesenchymal stem cells derived from muscle microinvasive biopsy (mdMSC) on the oxidant response of neutrophils and particularly on the activity of the myeloperoxidase released by stimulated equine neutrophils. After specific treatment (trypsin and washings in phosphate buffer saline), the mdMSCs were exposed to isolated neutrophils. The effect of the suspended mdMSCs was studied on the ROS production and the release of total and active MPO by stimulated neutrophils and specifically on the activity of MPO in a neutrophil-free model. Additionally, we developed a model combining adherent mdMSCs with neutrophils to study total and active MPO from the neutrophil extracellular trap (NET). Our results show that mdMSCs inhibited the ROS production, the activity of MPO released by stimulated neutrophils and the activity of MPO bound to the NET. Moreover, the co-incubation of mdMSCs directly with MPO results in a strong inhibition of the peroxidase activity of MPO, probably by affecting the active site of the enzyme. We confirm the strong potential of mdMSCs to lower the oxidant response of neutrophils. The novelty of our study is an evident inhibition of the activity of MPO by MSCs. The results indicated a new potential therapeutic approach of mdMSCs in the inhibition of MPO, which is considered as a pro-oxidant actor in numerous chronic and acute inflammatory pathologies.


Asunto(s)
Trampas Extracelulares/enzimología , Células Madre Mesenquimatosas/metabolismo , Músculos/citología , Peroxidasa/metabolismo , Animales , Degranulación de la Célula , Caballos , Neutrófilos/metabolismo , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo
6.
STAR Protoc ; 2(3): 100508, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34585146

RESUMEN

Endothelial cells (ECs) harbor distinct phenotypical and functional characteristics depending on their tissue localization and contribute to brain, eye, lung, and muscle diseases such as dementia, macular degeneration, pulmonary hypertension, and sarcopenia. To study their function, isolation of pure ECs in high quantities is crucial. Here, we describe protocols for rapid and reproducible blood vessel EC purification established for scRNA sequencing from murine tissues using mechanical and enzymatic digestion followed by magnetic and fluorescence-activated cell sorting. For complete details on the use and execution of these protocol, please refer to Kalucka et al. (2020), Rohlenova et al. (2020), and Goveia et al. (2020).


Asunto(s)
Encéfalo/citología , Coroides/citología , Células Endoteliales/citología , Pulmón/citología , Músculos/citología , Animales , Citometría de Flujo/métodos , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Nat Commun ; 12(1): 5043, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413292

RESUMEN

Skeletal muscle has a remarkable ability to regenerate owing to its resident stem cells (also called satellite cells, SCs). SCs are normally quiescent; when stimulated by damage, they activate and expand to form new fibers. The mechanisms underlying SC proliferative progression remain poorly understood. Here we show that DHX36, a helicase that unwinds RNA G-quadruplex (rG4) structures, is essential for muscle regeneration by regulating SC expansion. DHX36 (initially named RHAU) is barely expressed at quiescence but is highly induced during SC activation and proliferation. Inducible deletion of Dhx36 in adult SCs causes defective proliferation and muscle regeneration after damage. System-wide mapping in proliferating SCs reveals DHX36 binding predominantly to rG4 structures at various regions of mRNAs, while integrated polysome profiling shows that DHX36 promotes mRNA translation via 5'-untranslated region (UTR) rG4 binding. Furthermore, we demonstrate that DHX36 specifically regulates the translation of Gnai2 mRNA by unwinding its 5' UTR rG4 structures and identify GNAI2 as a downstream effector of DHX36 for SC expansion. Altogether, our findings uncover DHX36 as an indispensable post-transcriptional regulator of SC function and muscle regeneration acting through binding and unwinding rG4 structures at 5' UTR of target mRNAs.


Asunto(s)
Regiones no Traducidas 5' , ARN Helicasas DEAD-box/metabolismo , G-Cuádruplex , Músculos/citología , Regeneración/fisiología , Células Madre/citología , Animales , Animales Modificados Genéticamente , Células Cultivadas , Modelos Animales de Enfermedad , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Músculos/metabolismo , Mioblastos/metabolismo , Polirribosomas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , Células Madre/metabolismo
8.
Nat Commun ; 12(1): 5059, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429413

RESUMEN

With the current interest in cultured meat, mammalian cell-based meat has mostly been unstructured. There is thus still a high demand for artificial steak-like meat. We demonstrate in vitro construction of engineered steak-like tissue assembled of three types of bovine cell fibers (muscle, fat, and vessel). Because actual meat is an aligned assembly of the fibers connected to the tendon for the actions of contraction and relaxation, tendon-gel integrated bioprinting was developed to construct tendon-like gels. In this study, a total of 72 fibers comprising 42 muscles, 28 adipose tissues, and 2 blood capillaries were constructed by tendon-gel integrated bioprinting and manually assembled to fabricate steak-like meat with a diameter of 5 mm and a length of 10 mm inspired by a meat cut. The developed tendon-gel integrated bioprinting here could be a promising technology for the fabrication of the desired types of steak-like cultured meats.


Asunto(s)
Bioimpresión/métodos , Geles , Carne , Tendones , Animales , Bovinos , Técnicas de Cultivo de Célula , Colágeno , Células Endoteliales , Músculos/citología , Músculos/fisiología , Impresión Tridimensional , Células Madre , Tendones/citología , Ingeniería de Tejidos
9.
ACS Appl Mater Interfaces ; 13(33): 39135-39141, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34374274

RESUMEN

Many physiochemical properties of the extracellular matrix (ECM) of muscle tissues, such as nanometer scale dimension, nanotopography, negative charge, and elasticity, must be carefully reproduced to fabricate scaffold materials mimicking muscle tissues. Hence, we developed a muscle tissue ECM-mimicking scaffold using Mo6S3I6 inorganic molecular wires (IMWs). Composed of bio-essential elements and having a nanofibrous structure with a diameter of ∼1 nm and a negative surface charge with high stability, Mo6S3I6 IMWs are ideal for mimicking natural ECM molecules. Once Mo6S3I6 IMWs were patterned on a polydimethylsiloxane surface with an elasticity of 1877.1 ± 22.2 kPa, that is, comparable to that of muscle tissues, the proliferation and α-tubulin expression of myoblasts enhanced significantly. Additionally, the repetitive one-dimensional patterns of Mo6S3I6 IMWs induced the alignment and stretching of myoblasts with enhanced α-tubulin expression and differentiation into myocytes. This study demonstrates that Mo6S3I6 IMWs are promising for mimicking the ECM of muscle tissues.


Asunto(s)
Materiales Biomiméticos/química , Dimetilpolisiloxanos/química , Matriz Extracelular/metabolismo , Nanocables/química , Andamios del Tejido/química , Materiales Biomiméticos/metabolismo , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Humanos , Yodo/química , Molibdeno/química , Músculos/citología , Mioblastos/citología , Mioblastos/metabolismo , Azufre/química , Propiedades de Superficie , Ingeniería de Tejidos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
10.
J Exp Zool B Mol Dev Evol ; 336(6): 496-510, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34254444

RESUMEN

Ploidy transitions through whole genome duplication have shaped evolution by allowing the sub- and neo-functionalization of redundant copies of highly conserved genes to express novel traits. The nuclear:cytoplasmic (n:c) ratio is maintained in polyploid vertebrates resulting in larger cells, but body size is maintained by a concomitant reduction in cell number. Ploidy can be manipulated easily in most teleosts, and the zebrafish, already well established as a model system for biomedical research, is therefore an excellent system in which to study the effects of increased cell size and reduced cell numbers in polyploids on development and physiology. Here we describe a novel technique using confocal microscopy to measure genome size and determine ploidy non-lethally at 48 h post-fertilization (hpf) in transgenic zebrafish expressing fluorescent histones. Volumetric analysis of myofiber nuclei using open-source software can reliably distinguish diploids and triploids from a mixed-ploidy pool of embryos for subsequent experimentation. We present an example of this by comparing heart rate between confirmed diploid and triploid embryos at 54 hpf.


Asunto(s)
Ploidias , Pez Cebra/embriología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Tamaño de la Célula , Tamaño del Genoma , Microscopía Confocal , Músculos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...