Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Intervalo de año de publicación
1.
Int. j. morphol ; 41(2): 675-685, abr. 2023. ilus, tab
Artículo en Inglés | LILACS | ID: biblio-1440334

RESUMEN

SUMMARY: Pulmonary ventilation is a mechanical process in which the respiratory muscles act in coordination to maintain the oxygenation of the organism. Any alteration in the performance of these muscles may reduce the effectiveness of the process. The respiratory muscles differ from the other skeletal muscles in the vital support that they provide through rhythmiccontractions. The structure and energy system of the muscles are specially adapted to perform this function. The composition of the respiratory muscles is exceptional; they are small, and present an abundant capillary network, endowing them with a high aerobic level and resistance to fatigue. Coordinated regulation of the local renin-angiotensin system provides proper blood flow and energy supply in the myofibrils of the skeletal muscle tissue. Specifically, this performance will depend to a large extent on blood flow and glucose consumption, regulated by the renin-angiotensin system. The angiotensin converting enzyme is responsible for degrading kinins, which finally regulate muscle bioenergy and glucose between the blood vessel and the skeletal muscle. The objective of this review is to describe the structure of the respiratory muscles and their association with the angiotensin converting enzyme gene.


La ventilación pulmonar es un proceso mecánico en el que los músculos respiratorios actúan coordinadamente para mantener la oxigenación en el organismo. Así, cualquier alteración en el desempeño de estos músculos puede reducir la efectividad del proceso. Los músculos respiratorios se diferencian de otros músculos esqueléticos, debido al apoyo vital que brindan a través de sus contracciones rítmicas. La estructura y el sistema energético de estos músculos están especialmente adaptados para realizar esta función. La composición de los músculos respiratorios es especial; son pequeñas y presentan una abundante red capilar, lo que les otorga un alto nivel aeróbico y resistencia a la fatiga. La regulación coordinada del sistema renina-angiotensina local, proporciona un adecuado flujo sanguíneo y suministro de energía a las miofibrillas del músculo esquelético. En concreto, este rendimiento dependerá en gran medida del flujo sanguíneo y del consumo de glucosa, regulado por el sistema renina-angiotensina. Aquí, la enzima convertidora de angiotensina es responsable de degradar las kininas, que finalmente regulan la bioenergía muscular y la glucosa entre el vaso sanguíneo y el músculo esquelético. El objetivo de esta breve comunicación es describir la estructura de los músculos respiratorios y su asociación con el gen de la enzima convertidora de angiotensina.


Asunto(s)
Humanos , Músculos Respiratorios/anatomía & histología , Músculos Respiratorios/enzimología , Músculos Respiratorios/fisiología , Polimorfismo Genético , Sistema Renina-Angiotensina , Músculos Respiratorios/embriología , Peptidil-Dipeptidasa A/genética
2.
Compr Physiol ; 9(3): 1025-1080, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31187893

RESUMEN

This review is a comprehensive description of all muscles that assist lung inflation or deflation in any way. The developmental origin, anatomical orientation, mechanical action, innervation, and pattern of activation are described for each respiratory muscle fulfilling this broad definition. In addition, the circumstances in which each muscle is called upon to assist ventilation are discussed. The number of "respiratory" muscles is large, and the coordination of respiratory muscles with "nonrespiratory" muscles and in nonrespiratory activities is complex-commensurate with the diversity of activities that humans pursue, including sleep (8.27). The capacity for speech and adoption of the bipedal posture in human evolution has resulted in patterns of respiratory muscle activation that differ significantly from most other animals. A disproportionate number of respiratory muscles affect the nose, mouth, pharynx, and larynx, reflecting the vital importance of coordinated muscle activity to control upper airway patency during both wakefulness and sleep. The upright posture has freed the hands from locomotor functions, but the evolutionary history and ontogeny of forelimb muscles pervades the patterns of activation and the forces generated by these muscles during breathing. The distinction between respiratory and nonrespiratory muscles is artificial, as many "nonrespiratory" muscles can augment breathing under conditions of high ventilator demand. Understanding the ontogeny, innervation, activation patterns, and functions of respiratory muscles is clinically useful, particularly in sleep medicine. Detailed explorations of how the nervous system controls the multiple muscles required for successful completion of respiratory behaviors will continue to be a fruitful area of investigation. © 2019 American Physiological Society. Compr Physiol 9:1025-1080, 2019.


Asunto(s)
Mecánica Respiratoria/fisiología , Músculos Respiratorios/fisiología , Animales , Desarrollo Fetal/fisiología , Humanos , Mesodermo/anatomía & histología , Reclutamiento Neurofisiológico/fisiología , Músculos Respiratorios/anatomía & histología , Músculos Respiratorios/embriología , Músculos Respiratorios/inervación , Sistema Respiratorio/anatomía & histología , Sueño/fisiología , Vigilia/fisiología
3.
Pediatr Pulmonol ; 48(7): 640-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23401383

RESUMEN

RATIONALE: The preterm diaphragm is structurally and functionally immature, potentially contributing to an increased risk of respiratory distress and failure. We investigated developmental changes in contractile function and susceptibility to fatigue of the costal diaphragm in the fetal lamb to understand factors contributing to the risk of developing diaphragm dysfunction and respiratory disorders. We hypothesized that the functional capacity of the diaphragm will vary with maturational stage as will its susceptibility to fatigue. METHODS: Lambs were studied at 75, 100, 125, 145, 154, 168, and 200 days postconceptional age (term = 147 days). Lambs were euthanized (sodium pentobarbitone, 100 mg/kg) either at delivery or immediately prior to post-mortem for postnatal lambs. Contractile function was assessed on longitudinal strips of intact muscle fibers and the remaining tissue frozen in liquid nitrogen for analysis of myosin heavy chain (MHC) mRNA expression and protein content. RESULTS: Fetal development of diaphragm function was characterized by a significant increase in maximum specific force, increased susceptibility to fatigue, reduced twitch contraction times, and a progressive increase in MHCI and MHCII protein content. Postnatally, there was a progressive decrease in the susceptibility to fatigue that coincided with an increase in the MHC I:II protein ratio. CONCLUSION: These data indicate that the functional capacity of the diaphragm varies with maturational age and may be an important determinant of the susceptibility to preterm respiratory failure.


Asunto(s)
Diafragma/embriología , Feto/embriología , Contracción Muscular/fisiología , Desarrollo de Músculos/fisiología , Fatiga Muscular/fisiología , ARN Mensajero/análisis , Animales , Animales Recién Nacidos , Diafragma/metabolismo , Diafragma/fisiología , Feto/metabolismo , Feto/fisiología , Perfilación de la Expresión Génica , Técnicas In Vitro , Desarrollo de Músculos/genética , Cadenas Pesadas de Miosina/genética , Músculos Respiratorios/embriología , Músculos Respiratorios/metabolismo , Músculos Respiratorios/fisiología , Ovinos
4.
Histol Histopathol ; 27(7): 817-26, 2012 07.
Artículo en Inglés | MEDLINE | ID: mdl-22648538

RESUMEN

Skeletal (striated) muscle is one of the four basic tissue types, together with the epithelium, connective and nervous tissues. Lungs, on the other hand, develop from the foregut and among various cell types contain smooth, but not skeletal muscle. Therefore, during earlier stages of development, it is unlikely that skeletal muscle and lung depend on each other. However, during the later stages of development, respiratory muscle, primarily the diaphragm and the intercostal muscles, execute so called fetal breathing-like movements (FBMs), that are essential for lung growth and cell differentiation. In fact, the absence of FBMs results in pulmonary hypoplasia, the most common cause of death in the first week of human neonatal life. Most knowledge on this topic arises from in vivo experiments on larger animals and from various in vitro experiments. In the current era of mouse mutagenesis and functional genomics, it was our goal to develop a mouse model for pulmonary hypoplasia. We employed various genetically engineered mice lacking different groups of respiratory muscles or lacking all the skeletal muscle and established the criteria for pulmonary hypoplasia in mice, and therefore established a mouse model for this disease. We followed up this discovery with systematic subtractive microarray analysis approach and revealed novel functions in lung development and disease for several molecules. We believe that our approach combines elements of both in vivo and in vitro approaches and allows us to study the function of a series of molecules in the context of lung development and disease and, simultaneously, in the context of lung's dependence on skeletal muscle-executed FBMs.


Asunto(s)
Pulmón/embriología , Pulmón/crecimiento & desarrollo , Músculo Esquelético/embriología , Músculo Esquelético/crecimiento & desarrollo , Animales , Humanos , Ratones , Músculos Respiratorios/embriología , Músculos Respiratorios/crecimiento & desarrollo
5.
Histol Histopathol ; 22(5): 483-95, 2007 05.
Artículo en Inglés | MEDLINE | ID: mdl-17330803

RESUMEN

Fetal breathing-like movements (FBMs) are important in normal lung growth and pneumocyte differentiation. In amyogenic mouse embryos (designated as Myf5-/-:MyoD-/-, entirely lacking skeletal musculature and FBMs), type II pneumocytes fail to differentiate into type I pneumocytes, the cells responsible for gas exchange, and the fetuses die from asphyxia at birth. Using oligonucleotide microarrays, we compared gene expression in the lungs of Myf5-/-:MyoD-/- embryos to that in normal lungs at term. Nine genes were found to be up-regulated and 54 down-regulated at least 2-fold in the lungs of double-mutant embryos. Since many down-regulated genes are involved in lymphocyte function, immunohistochemistry was employed to study T- and B-cell maturity in the thymus and spleen. Our findings of normal lymphocyte maturity implied that the down-regulation was specific to the double-mutant lung phenotype and not to its immune system. Immunostaining also revealed altered distribution of transcription and growth factors (SATB1, c-Myb, CTGF) from down-regulated genes whose knockouts are now known to undergo embryonic or neonatal death secondary to respiratory failure. Together, it appears that microarray analysis has identified a profile of genes potentially involved in pneumocyte differentiation and therefore in the mechanisms that may be implicated in the mechanochemical signal transduction pathways underlying FBMs-dependent pulmonary hypoplasia.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Enfermedades Pulmonares/patología , Pulmón/patología , Proteína MioD/metabolismo , Factor 5 Regulador Miogénico/deficiencia , Análisis de Secuencia por Matrices de Oligonucleótidos , Animales , Diferenciación Celular/genética , Factor de Crecimiento del Tejido Conjuntivo , Perfilación de la Expresión Génica , Proteínas Inmediatas-Precoces/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Pulmón/embriología , Pulmón/metabolismo , Pulmón/fisiopatología , Enfermedades Pulmonares/embriología , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/fisiopatología , Linfocitos/metabolismo , Linfocitos/patología , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Ratones , Ratones Noqueados , Proteína MioD/genética , Factor 5 Regulador Miogénico/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Mecánica Respiratoria , Músculos Respiratorios/embriología , Factores de Tiempo
6.
Neonatal Netw ; 24(5): 15-22, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16279051

RESUMEN

Newborn lungs are particularly susceptible to pathophysiology. Respiratory distress commonly brings infants to the intensive care nursery. Premature birth compromises the infant's ability to respond to early lung dysfunction because of the reduced functional reserve available at younger gestational ages. The respiratory pump consists of respiratory musculature and the chest wall. The respiratory pump is the physiologic "machine" that responds to lung pathology. From gestation onward, components of the pump undergo developmental changes that influence its compensatory ability in the neonate. Careful observation of the synchrony of the chest wall and abdomen during spontaneous breathing efforts assists the caretaker in detecting respiratory compromise and impending respiratory failure. Noninvasive monitoring of respiratory patterns is a valuable tool for the neonatal caregiver, who must understand the developmental changes in the respiratory pump and be able to identify an infant's ineffective responses to lung pathophysiology.


Asunto(s)
Recién Nacido/fisiología , Síndrome de Dificultad Respiratoria del Recién Nacido/fisiopatología , Insuficiencia Respiratoria/fisiopatología , Mecánica Respiratoria/fisiología , Músculos Respiratorios/fisiología , Pared Torácica/fisiología , Desarrollo Infantil , Humanos , Síndrome de Dificultad Respiratoria del Recién Nacido/enfermería , Insuficiencia Respiratoria/enfermería , Músculos Respiratorios/anatomía & histología , Músculos Respiratorios/embriología , Pared Torácica/anatomía & histología , Pared Torácica/embriología
7.
J Appl Physiol (1985) ; 94(1): 375-89, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12486025

RESUMEN

Development of the mammalian respiratory control system begins early in gestation and does not achieve mature form until weeks or months after birth. A relatively long gestation and period of postnatal maturation allows for prolonged pre- and postnatal interactions with the environment, including experiences such as episodic or chronic hypoxia, hyperoxia, and drug or toxin exposures. Developmental plasticity occurs when such experiences, during critical periods of maturation, result in long-term alterations in the structure or function of the respiratory control neural network. A critical period is a time window during development devoted to structural and/or functional shaping of the neural systems subserving respiratory control. Experience during the critical period can disrupt and alter developmental trajectory, whereas the same experience before or after has little or no effect. One of the clearest examples to date is blunting of the adult ventilatory response to acute hypoxia challenge by early postnatal hyperoxia exposure in the newborn. Developmental plasticity in neural respiratory control development can occur at multiple sites during formation of brain stem neuronal networks and chemoafferent pathways, at multiple times during development, by multiple mechanisms. Past concepts of respiratory control system maturation as rigidly predetermined by a genetic blueprint have now yielded to a different view in which extremely complex interactions between genes, transcriptional factors, growth factors, and other gene products shape the respiratory control system, and experience plays a key role in guiding normal respiratory control development. Early-life experiences may also lead to maladaptive changes in respiratory control. Pathological conditions as well as normal phenotypic diversity in mature respiratory control may have their roots, at least in part, in developmental plasticity.


Asunto(s)
Envejecimiento/fisiología , Plasticidad Neuronal/fisiología , Músculos Respiratorios/embriología , Músculos Respiratorios/inervación , Sistema Respiratorio/embriología , Sistema Respiratorio/inervación , Animales , Animales Recién Nacidos/fisiología , Feto/fisiología , Humanos , Recién Nacido , Sistema Nervioso/embriología , Sistema Nervioso/crecimiento & desarrollo
8.
Am J Respir Cell Mol Biol ; 22(3): 304-15, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10696067

RESUMEN

Although fetal breathing movements are required for normal lung development, there is uncertainty concerning the specific effect of absent fetal breathing movements on pulmonary cell maturation. We set out to evaluate pulmonary development in a genetically defined mouse model, the myogenin null mouse, in which there is a lack of normal skeletal muscle fibers and thus skeletal muscle movements are absent in utero. Significant decreases were observed in lung:body weight ratio and lung total DNA at embryonic days (E)14, E17, and E20. Reverse transcriptase/polymerase chain reaction, in situ immunofluorescence, and electron microscopy revealed early lung cell differentiation in both null and wild-type lungs as early as E14. However at E14, myogenin null lungs had decreased 5'-bromo-2-deoxyuridine incorporation compared with that of wild-type littermates, whereas at E17 and E20, increased Bax immunolabeling and terminal deoxyribonucleotidyl transferase-mediated dUTP-biotin nick-end labeling staining were detected in the myogenin null mice but not in the wild-type littermates. These observations highlight the importance of skeletal muscle contractile activity in utero for normal lung organogenesis. Null mice lacking the muscle-specific transcription factor myogenin exhibit a secondary effect on lung development such that decreased lung cell proliferation and increased programmed cell death are associated with lung hypoplasia.


Asunto(s)
Miogenina/genética , Proteínas Proto-Oncogénicas c-bcl-2 , Alveolos Pulmonares/embriología , Alveolos Pulmonares/patología , Músculos Respiratorios/anomalías , Animales , Apoptosis/fisiología , División Celular/fisiología , Cianosis/patología , Regulación del Desarrollo de la Expresión Génica , Heterocigoto , Homocigoto , Técnicas para Inmunoenzimas , Etiquetado Corte-Fin in Situ , Cifosis/patología , Ratones , Ratones Mutantes , Tamaño de los Órganos , Proteolípidos/análisis , Proteolípidos/genética , Proteínas Proto-Oncogénicas/análisis , Alveolos Pulmonares/química , Proteínas Asociadas a Surfactante Pulmonar , Surfactantes Pulmonares/análisis , Surfactantes Pulmonares/genética , ARN Mensajero/análisis , Respiración , Músculos Respiratorios/embriología , Proteína X Asociada a bcl-2
9.
Equine Vet J Suppl ; (24): 32-9, 1997 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9355800

RESUMEN

The lung develops before birth as a collapsible, liquid-filled, organ. Throughout the later stages of gestation the fetal lungs are maintained at a level of expansion that is considerably greater than the level achieved as a result of passive equilibration between lung recoil and the chest wall. Fetal breathing movements (FBM) are a feature of normal fetal life and, as such, are used clinically in the assessment of fetal wellbeing. By opposing lung recoil, FBM help to maintain the high level of lung expansion that is now known to be essential for normal growth and structural maturation of the fetal lungs. During 'apnoeic' periods between successive episodes of FBM, active laryngeal constriction has the effect of opposing lung recoil by resisting the escape of lung liquid via the trachea. The prolonged absence or impairment of FBM is likely to result in a reduced mean level of lung expansion which can lead to hypoplasia of the lungs. There is clinical evidence, disputed by some, that the absence of FBM exacerbates the effects of other factors that are associated with lung hypoplasia, such as premature rupture of fetal membranes and oligohydramnios. Even in the absence of such factors, prolonged or repeated reductions or abolition of FBM may contribute to impairments of fetal lung development; FBM can be inhibited by fetal hypoxaemia, hypoglycaemia, maternal alcohol consumption, maternal smoking, intra-amniotic infection and maternal consumption of sedatives or narcotic drugs. Abnormal growth of the fetal lungs has relevance for postnatal respiratory health as it is now recognised that there may be only a limited capacity after birth for the restoration of normal pulmonary architecture following impaired intra-uterine lung development.


Asunto(s)
Pulmón/embriología , Pulmón/fisiología , Respiración/fisiología , Mecánica Respiratoria/fisiología , Músculos Respiratorios/fisiología , Ovinos/embriología , Ovinos/fisiología , Animales , Femenino , Pulmón/crecimiento & desarrollo , Embarazo , Músculos Respiratorios/embriología
10.
Biol Neonate ; 69(2): 67-75, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-8713651

RESUMEN

We studied the expression of myosin heavy chain (MHC) isoforms in the costal diaphragm (DIA) and the genioglossus (GG) muscles from 16 to 42 weeks gestation in the human using Western blotting techniques. Embryonic/neonatal MHC (MHCemb/neo) was the predominant isoform expressed in the DIA and GG at 16-24 weeks gestation. Subsequently, MHCemb/neo expression declined and the expression of MHCslow and MHC2A increased. At term, the DIA MHC phenotype was a composite of MHCemb/neo (15% of the total MHC complement), MHCslow (32%), MHC2A (47%), and MHC2B (6%); whereas, the GG was largely comprised of MHC2A (74%). We conclude that human DIA and GG demonstrate temporally dependent changes in MHC expression during gestation- and muscle-specific MHC phenotypes as they approach term.


Asunto(s)
Músculo Esquelético/embriología , Cadenas Pesadas de Miosina/biosíntesis , Músculos Respiratorios/embriología , Diafragma/embriología , Diafragma/metabolismo , Electroforesis en Gel de Poliacrilamida , Feto/metabolismo , Edad Gestacional , Humanos , Músculos Intercostales/embriología , Músculos Intercostales/metabolismo , Músculo Esquelético/metabolismo , Fenotipo , Músculos Respiratorios/metabolismo
11.
Exp Lung Res ; 21(4): 489-502, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-7588438

RESUMEN

The bronchial tree is formed during the pseudo-glandular stage of lung development in a process termed lung branching morphogenesis. Coinciding with the period of lung branching morphogenesis is the appearance of spontaneous airway contractions, a phenomenon whose role in development remains unclear. In this study, an in vitro model of murine lung branching morphogenesis was used to examine the potential role of airway contractions in airway branching and lung growth. Spontaneous airway contractions of the proximal airways were observed in cultured murine lungs (obtained at 11 days of gestation) after 48 h in culture. Airway contractility was inhibited in a reversible manner by the voltage-dependent calcium channel blocker Nifedipine. Interestingly, long-term incubation of lung rudiments with Nifedipine not only prevented airway contraction, but also caused lung hypoplasia. The Nifedipine-treated hypoplastic lungs showed a normal branching pattern, suggesting that airway contractions and calcium channel function are not necessary for cleft formation directly. These observations suggest that calcium ion transport is necessary for development of airway contractions and for normal progression of lung growth.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Pulmón/efectos de los fármacos , Pulmón/embriología , Animales , Calcio/metabolismo , Técnicas In Vitro , Pulmón/fisiología , Ratones , Modelos Biológicos , Nifedipino/farmacología , Mecánica Respiratoria/efectos de los fármacos , Mecánica Respiratoria/fisiología , Músculos Respiratorios/efectos de los fármacos , Músculos Respiratorios/embriología , Músculos Respiratorios/fisiología
12.
J Gravit Physiol ; 2(1): P68-9, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-11538938

RESUMEN

There are limited data regarding changes in oxidative and antioxidant enzymes induced by simulated or actual weightlessness, and any additional information would provide insight into potential mechanisms involving other changes observed in muscles from animals previously flown in space. Thus, the NASA Biospecimen Sharing Program was an opportunity to collect valuable information. Oxidative and antioxidant enzyme levels, as well as lipid perioxidation, were measured in respiratory muscles from rats flown on board Space Shuttle mission STS-54. The results indicated that there was an increasing trend in citrate synthase activity in the flight diaphragm when compared to ground based controls, and there were no significant changes observed in the intercostal muscles for any of the parameters. However, lipid peroxidation was significantly (p<0.05) decreased in the flight diaphragm. These results indicate that 6 day exposure to microgravity may have a different effect on oxidative and antioxidant activity in rat respiratory muscles when compared to data from previous 14 day hindlimb suspension studies.


Asunto(s)
Citrato (si)-Sintasa/metabolismo , Peroxidación de Lípido/fisiología , Músculos Respiratorios/embriología , Vuelo Espacial , Superóxido Dismutasa/metabolismo , Ingravidez , Animales , Diafragma/enzimología , Diafragma/metabolismo , Músculos Intercostales/enzimología , Músculos Intercostales/metabolismo , Ratas , Ratas Sprague-Dawley
13.
Respir Physiol ; 97(1): 111-21, 1994 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8091020

RESUMEN

We measured blood flow to the respiratory muscles of the fetal lamb using the radioactively-labelled microsphere technique in order to assess whether fetal breathing is an energetically costly activity as has been reported. Diaphragm flow ranged from 6.4-35.2 ml.min-1.100 g-1 during fetal apnoea and rose to 21.1-615 ml.min-1.100 g-1 during fetal breathing (P < 0.02; n = 7). Parasternal muscle flow also increased significantly (P < 0.02) between fetal apnoea and breathing while external and internal intercostal flows did not change. Expressed as a percentage of cardiac output the diaphragm received 0.08-0.28% during apnoea and 0.22-2.2% during fetal breathing. Neither placental blood flow nor fetal O2 consumption increased significantly between fetal apnoea and breathing. We conclude that the levels of perfusion required by the respiratory muscles for breathing in the fetus are inconsistent with fetal breathing costing a large proportion of the fetal O2 budget.


Asunto(s)
Apnea/fisiopatología , Feto/fisiología , Respiración/fisiología , Músculos Respiratorios/embriología , Animales , Circulación Sanguínea , Diafragma/irrigación sanguínea , Diafragma/embriología , Consumo de Oxígeno , Flujo Sanguíneo Regional , Músculos Respiratorios/irrigación sanguínea , Ovinos
14.
Pediatr Res ; 35(4 Pt 1): 484-9, 1994 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-8047386

RESUMEN

In the fetus, normal lung growth requires both fetal breathing movements (FBM) and adequate pulmonary blood flow. We postulated that FBM intermittently increase pulmonary blood flow and may stimulate lung growth through that effect. To test the hypothesis that normal intermittent FBM cause associated intermittent increases in pulmonary blood flow, we studied eight chronically instrumented fetal sheep (gestational ages 125-143 d) on 34 occasions (total study time = 65.7 h). Each fetus had a cuff electromagnetic flow transducer around the left pulmonary artery, electrocortical electrodes, and catheters in the trachea, main pulmonary artery, carotid artery, and amniotic cavity. Mean blood flow though the left pulmonary artery averaged 59 +/- 8 mL/min (mean +/- SEM; per kg: 25 +/- 4 mL/kg/min) and was similar in both the presence (61 +/- 9 mL/min) and absence (57 +/- 7 mL/min) of FBM and during both high and low voltage electrocortical activity. In contrast, in utero phasic pulmonary blood flow varied with FBM, increasing during the inspiratory phase and decreasing during the expiratory phase. Both pulmonary and systemic vascular pressures showed changes in the opposite directions. Arterial pH and blood gas tensions were normal and did not change with FBM or electrocortical activity. We conclude that FBM do not increase mean blood flow through the left pulmonary artery; thus, it is unlikely that FBM stimulate lung growth through changes in pulmonary blood flow.


Asunto(s)
Pulmón/embriología , Circulación Pulmonar , Respiración/fisiología , Músculos Respiratorios/embriología , Animales , Velocidad del Flujo Sanguíneo , Presión Sanguínea , Dióxido de Carbono/sangre , Sangre Fetal/química , Edad Gestacional , Modelos Biológicos , Oxígeno/sangre , Presión Parcial , Arteria Pulmonar/embriología , Músculos Respiratorios/fisiología , Ovinos/embriología
15.
Brain Res ; 522(2): 333-6, 1990 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-2224532

RESUMEN

Recordings of respiratory muscle activity in fetal lambs from early in gestation provide insight into the organization of the central pattern generator for respiration in mammals. Evidence presented here is consistent with the recent hypothesis that production of the respiratory pattern involves two separate neural modules: one, the 'rhythm' module, which specifies the respiratory cycle and another, the 'form' module, which creates the characteristic shape of each burst of activity within this cycle. The rhythm module is already functional when gestation is 35% complete while the form module appears to be constructed gradually over the second half of gestation.


Asunto(s)
Músculos Respiratorios/embriología , Animales , Electromiografía , Desarrollo Embrionario y Fetal/fisiología , Edad Gestacional , Consumo de Oxígeno/fisiología , Músculos Respiratorios/fisiología , Ovinos
16.
Nature ; 343(6257): 420, 1990 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-2300190
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA