Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Am J Respir Cell Mol Biol ; 66(5): 555-563, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35157553

RESUMEN

Acute respiratory distress syndrome (ARDS) remains a significant problem in need of new pharmaceutical approaches to improve its resolution. Studies comparing gene expression signatures in rodents and humans with lung injury reveal conserved pathways, including MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-related protein kinase) activation. In preclinical acute lung injury (ALI) models, inhibition of MAP2K1 (MAPK kinase 1)/MAP2K2 (MAPK kinase 2) improves measures of ALI. Myeloid cell deletion of MAP2K1 results in sustained MAP2K2 activation and nonresolving ALI, suggesting that MAP2K2 deactivation may be a key driver of ALI resolution. We used human genomic data from the iSPAAR (Identification of SNPs Predisposing to Altered Acute Lung Injury Risk) Consortium to assess genetic variants in MAP2K1 and MAP2K2 for association with mortality from ARDS. To determine the role of MAP2K2 in ALI recovery, we studied mice deficient in Map2k2 (Mek2-/-) and wild-type control mice in ALI models. We identified a MAP2K2 variant that was associated with death in ARDS and MAP2K2 expression. In Pseudomonas aeruginosa ALI, Mek2-/- mice had similar early alveolar neutrophilic recruitment but faster resolution of alveolar neutrophilia and vascular leak. Gene expression analysis revealed a role for MAP2K2 in promoting and sustaining select proinflammatory pathway activation in ALI. Bone marrow chimera studies indicate that leukocyte MAP2K2 is the key regulator of ALI duration. These studies implicate a role for MAP2K2 in ALI duration via transcriptional regulation of inflammatory programming with potential relevance to ARDS. Targeting leukocyte MAP2K2 may be an effective strategy to promote ALI resolution.


Asunto(s)
Lesión Pulmonar Aguda , MAP Quinasa Quinasa 2/metabolismo , Síndrome de Dificultad Respiratoria , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , MAP Quinasa Quinasa 2/genética , Ratones , Síndrome de Dificultad Respiratoria/genética
2.
Cell Rep ; 38(2): 110223, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35021072

RESUMEN

MEK1 and MEK2, the only known activators of ERK, are attractive therapeutic candidates for both cancer and autoimmune diseases. However, how MEK signaling finely regulates immune cell activation is only partially understood. To address this question, we specifically delete Mek1 in hematopoietic cells in the Mek2 null background. Characterization of an allelic series of Mek mutants reveals the presence of distinct degrees of spontaneous B cell activation, which are inversely proportional to the levels of MEK proteins and ERK activation. While Mek1 and Mek2 null mutants have a normal lifespan, 1Mek1 and 1Mek2 mutants retaining only one functional Mek1 or Mek2 allele in hematopoietic cell lineages die from glomerulonephritis and lymphoproliferative disorders, respectively. This establishes that the fine-tuning of the ERK/MAPK pathway is critical to regulate B and T cell activation and function and that each MEK isoform plays distinct roles during lymphocyte activation and disease development.


Asunto(s)
Activación de Linfocitos/fisiología , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , Alelos , Animales , Linfocitos B/metabolismo , Femenino , Humanos , Activación de Linfocitos/genética , MAP Quinasa Quinasa 1/fisiología , MAP Quinasa Quinasa 2/genética , MAP Quinasa Quinasa 2/fisiología , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Fosforilación , Transducción de Señal/fisiología , Linfocitos T/metabolismo
3.
Plant J ; 108(3): 814-828, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34469599

RESUMEN

Drought stress severely limits plant growth and production in apple (Malus domestica Borkh.). To breed water-deficit-tolerant apple cultivars that maintain high yields under slight or moderate drought stress, it is important to uncover the mechanisms underlying the transcriptional regulation of chlorophyll metabolism in apple. To explore this mechanism, we generated transgenic 'Gala3' apple plants with overexpression or knockdown of MdWRKY17, which encodes a transcription factor whose expression is significantly induced by water deficit. Under moderate drought stress, we observed significantly higher chlorophyll contents and photosynthesis rates in overexpression transgenic plants than in controls, whereas these were dramatically lower in the knockdown lines. MdWRKY17 directly regulates MdSUFB expression, as demonstrated by in vitro and in vivo experiments. MdSUFB, a key component of the sulfur mobilization (SUF) system that assembles Fe-S clusters, is essential for inhibiting chlorophyll degradation and stabilizing electron transport during photosynthesis, leading to higher chlorophyll levels in transgenic apple plants overexpressing MdWRKY17. The activated MdMEK2-MdMPK6 cascade by water-deficit stress fine-tunes the MdWRKY17-MdSUFB pathway by phosphorylating MdWRKY17 under water-deficit stress. This fine-tuning of the MdWRKY17-MdSUFB regulatory pathway is important for balancing plant survival and yield losses (chlorophyll degradation and reduced photosynthesis) under slight or moderate drought stress. The phosphorylation by MdMEK2-MdMPK6 activates the MdWRKY17-MdSUFB pathway at S66 (identified by LC-MS), as demonstrated by in vitro and in vivo experiments. Our findings reveal that the MdMEK2-MdMPK6-MdWRKY17-MdSUFB pathway stabilizes chlorophyll levels under moderate drought stress, which could facilitate the breeding of apple varieties that maintain high yields under drought stress.


Asunto(s)
Clorofila/metabolismo , MAP Quinasa Quinasa 2/metabolismo , Malus/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Plantas/metabolismo , Deshidratación , Sequías , Regulación de la Expresión Génica de las Plantas , MAP Quinasa Quinasa 2/genética , Redes y Vías Metabólicas , Proteínas Quinasas Activadas por Mitógenos/genética , Fosforilación , Fotosíntesis/fisiología , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
J Biol Chem ; 297(4): 101161, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34480897

RESUMEN

Cell migration is an essential physiological process, and aberrant migration of epithelial cells underlies many pathological conditions. However, the molecular mechanisms governing cell migration are not fully understood. We report here that growth factor-induced epithelial cell migration is critically dependent on the crosstalk of two molecular switches, namely phosphorylation switch (P-switch) and transcriptional switch (T-switch). P-switch refers to dynamic interactions of deleted in liver cancer 1 (DLC1) and PI3K with tensin-3 (TNS3), phosphatase and tensin homolog (PTEN), C-terminal tension, and vav guanine nucleotide exchange factor 2 (VAV2) that are dictated by mitogen-activated protein kinase kinase 1/2-extracellular signal-regulated protein kinase 1/2-dependent phosphorylation of TNS3, PTEN, and VAV2. Phosphorylation of TNS3 and PTEN on specific Thr residues led to the switch of DLC1-TNS3 and PI3K-PTEN complexes to DLC1-PTEN and PI3K-TNS3 complexes, whereas Ser phosphorylation of VAV2 promotes the transition of the PI3K-TNS3/PTEN complexes to PI3K-VAV2 complex. T-switch denotes an increase in C-terminal tension transcription/expression regulated by both extracellular signal-regulated protein kinase 1/2 and signal transducer and activator of transcription 3 (STAT3) via interleukin-6-Janus kinase-STAT3 signaling pathway. We have found that, the P-switch is indispensable for both the initiation and continuation of cell migration induced by growth factors, whereas the T-switch is only required to sustain cell migration. The interplay of the two switches facilitated by the interleukin-6-Janus kinase-STAT3 pathway governs a sequence of dynamic protein-protein interactions for sustained cell migration. That a similar mechanism is employed by both normal and tumorigenic epithelial cells to drive their respective migration suggests that the P-switch and T-switch are general regulators of epithelial cell migration and potential therapeutic targets.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/genética , MAP Quinasa Quinasa 2/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
6.
Adv Sci (Weinh) ; 8(10): 2004344, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34026451

RESUMEN

Colorectal cancer, one of the most commonly diagnosed cancers worldwide, is often accompanied by uncontrolled proliferation of tumor cells. Dyskerin pseudouridine synthase 1 (DKC1), screened using the genome-wide RNAi strategy, is a previously unidentified key regulator that promotes colorectal cancer cell proliferation. Enforced expression of DKC1, but not its catalytically inactive mutant D125A, accelerates cell growth in vitro and in vivo. DKC1 knockdown or its inhibitor pyrazofurin attenuates cell proliferation. Proteomics, RNA immunoprecipitation (RIP)-seq, and RNA decay analyses reveal that DKC1 binds to and stabilizes the mRNA of several ribosomal proteins (RPs), including RPL10A, RPL22L1, RPL34, and RPS3. DKC1 depletion significantly accelerates mRNA decay of these RPs, which mediates the oncogenic function of DKC1. Interestingly, these DKC1-regulated RPs also interact with HRAS and suppress the RAS/RAF/MEK/ERK pathway. Pyrazofurin and trametinib combination synergistically restrains colorectal cancer cell growth in vitro and in vivo. Furthermore, DKC1 is markedly upregulated in colorectal cancer tissues compared to adjacent normal tissues. Colorectal cancer patients with higher DKC1 expression has consistently poorer overall survival and progression-free survival outcomes. Taken together, these data suggest that DKC1 is an essential gene and candidate therapeutic target for colorectal cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Neoplasias Colorrectales/tratamiento farmacológico , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 2/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Amidas/administración & dosificación , Amidas/farmacología , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Sinergismo Farmacológico , Femenino , Humanos , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/genética , MAP Quinasa Quinasa 2/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/administración & dosificación , Pirazoles/farmacología , Piridonas/administración & dosificación , Piridonas/farmacología , Pirimidinonas/administración & dosificación , Pirimidinonas/farmacología , Ribosa/administración & dosificación , Ribosa/farmacología , Proteínas Ribosómicas/metabolismo , Tasa de Supervivencia , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Biol Chem ; 296: 100218, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33839686

RESUMEN

Rare sequence variants in the microglial cell surface receptor TREM2 have been shown to increase the risk for Alzheimer's disease (AD). Disease-linked TREM2 mutations seem to confer a partial loss of function, and increasing TREM2 cell surface expression and thereby its function(s) might have therapeutic benefit in AD. However, druggable targets that could modulate microglial TREM2 surface expression are not known. To identify such targets, we conducted a screen of small molecule compounds with known pharmacology using human myeloid cells, searching for those that enhance TREM2 protein at the cell surface. Inhibitors of the kinases MEK1/2 displayed the strongest and most consistent increases in cell surface TREM2 protein, identifying a previously unreported pathway for TREM2 regulation. Unexpectedly, inhibitors of the downstream effector ERK kinases did not have the same effect, suggesting that noncanonical MEK signaling regulates TREM2 trafficking. In addition, siRNA knockdown experiments confirmed that decreased MEK1 and MEK2 were required for this recruitment. In iPSC-derived microglia, MEK inhibition increased cell surface TREM2 only modestly, so various cytokines were used to alter iPSC microglia phenotype, making cells more sensitive to MEK inhibitor-induced TREM2 recruitment. Of those tested, only IFN-gamma priming prior to MEK inhibitor treatment resulted in greater TREM2 recruitment. These data identify the first known mechanisms for increasing surface TREM2 protein and TREM2-regulated function in human myeloid cells and are the first to show a role for MEK1/MEK2 signaling in TREM2 activity.


Asunto(s)
Membrana Celular/metabolismo , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 2/genética , Glicoproteínas de Membrana/genética , Microglía/metabolismo , Receptores Inmunológicos/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Bencimidazoles/farmacología , Benzotiazoles/farmacología , Membrana Celular/efectos de los fármacos , Colchicina/farmacología , Regulación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Interferón gamma/farmacología , Interleucinas/farmacología , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa 2/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglía/citología , Microglía/efectos de los fármacos , Nitrilos/farmacología , Cultivo Primario de Células , Piridonas/farmacología , Pirimidinonas/farmacología , Quinazolinas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal , Células THP-1 , Factor de Crecimiento Transformador beta/farmacología , Zearalenona/análogos & derivados , Zearalenona/farmacología
8.
Biochem J ; 478(9): 1689-1703, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33876829

RESUMEN

Hepatic stellate cells (HSCs) are thought to play key roles in the development of liver fibrosis. Extensive evidence has established the concept that αV integrins are involved in the activation of latent transforming growth factor ß (TGF-ß), a master regulator of the fibrotic signaling cascade. Based on mRNA and protein expression profiling data, we found that αVß1 integrin is the most abundant member of the αV integrin family in either quiescent or TGF-ß1-activated primary human HSCs. Unexpectedly, either a selective αVß1 inhibitor, Compound 8 (C8), or a pan-αV integrin inhibitor, GSK3008348, decreased TGF-ß1-activated procollagen I production in primary human HSCs, in which the role of ß1 integrin was confirmed by ITGB1 siRNA. In contrast with an Activin receptor-like kinase 5 (Alk5) inhibitor, C8 and GSK3008348 failed to inhibit TGF-ß1 induced SMAD3 and SMAD2 phosphorylation, but inhibited TGF-ß-induced phosphorylation of ERK1/2 and STAT3, suggesting that αVß1 integrin is involved in non-canonical TGF-ß signaling pathways. Consistently, ITGB1 siRNA significantly decreased phosphorylation of ERK1/2. Furthermore, a selective inhibitor of MEK1/2 blocked TGF-ß1 induced phosphorylation of ERK1/2 and decreased TGF-ß1 induced procollagen I production, while a specific inhibitor of STAT3 had no effect on TGF-ß1 induced procollagen I production. Taken together, current data indicate that αVß1 integrin can regulate TGF-ß signaling independent of its reported role in activating latent TGF-ß. Our data further support that αVß1 inhibition is a promising therapeutic target for the treatment of liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas/metabolismo , Integrina alfa5beta1/genética , Procolágeno/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Proteína Smad2/genética , Factor de Crecimiento Transformador beta1/genética , Butiratos/farmacología , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/efectos de los fármacos , Humanos , Integrina alfa5beta1/antagonistas & inhibidores , Integrina alfa5beta1/metabolismo , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/genética , MAP Quinasa Quinasa 2/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Naftiridinas/farmacología , Fosforilación/efectos de los fármacos , Cultivo Primario de Células , Procolágeno/metabolismo , Pirazoles/farmacología , Pirrolidinas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
9.
J Cell Biochem ; 122(8): 835-850, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33876843

RESUMEN

Triple-negative breast cancer (TNBC) presents a clinical challenge due to the aggressive nature of the disease and a lack of targeted therapies. Constitutive activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway has been linked to chemoresistance and metastatic progression through distinct mechanisms, including activation of epithelial-to-mesenchymal transition (EMT) when cells adopt a motile and invasive phenotype through loss of epithelial markers (CDH1), and acquisition of mesenchymal markers (VIM, CDH2). Although MAPK/ERK1/2 kinase inhibitors (MEKi) are useful antitumor agents in a clinical setting, including the Food and Drug Administration (FDA)-approved MEK1,2 dual inhibitors cobimetinib and trametinib, there are limitations to their clinical utility, primarily adaptation of the BRAF pathway and ocular toxicities. The MEK5 (HGNC: MAP2K5) pathway has important roles in metastatic progression of various cancer types, including those of the prostate, colon, bone and breast, and elevated levels of ERK5 expression in breast carcinomas are linked to a worse prognoses in TNBC patients. The purpose of this study is to explore MEK5 regulation of the EMT axis and to evaluate a novel pan-MEK inhibitor on clinically aggressive TNBC cells. Our results show a distinction between the MEK1/2 and MEK5 cascades in maintenance of the mesenchymal phenotype, suggesting that the MEK5 pathway may be necessary and sufficient in EMT regulation while MEK1/2 signaling further sustains the mesenchymal state of TNBC cells. Furthermore, additive effects on MET induction are evident through the inhibition of both MEK1/2 and MEK5. Taken together, these data demonstrate the need for a better understanding of the individual roles of MEK1/2 and MEK5 signaling in breast cancer and provide a rationale for the combined targeting of these pathways to circumvent compensatory signaling and subsequent therapeutic resistance.


Asunto(s)
Movimiento Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , MAP Quinasa Quinasa 5/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Neoplasias de la Mama Triple Negativas/metabolismo , Femenino , Humanos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa 2/genética , MAP Quinasa Quinasa 5/antagonistas & inhibidores , MAP Quinasa Quinasa 5/genética , Células MCF-7 , Proteínas Proto-Oncogénicas c-fos/genética , Neoplasias de la Mama Triple Negativas/genética
10.
Am J Med Genet A ; 185(2): 469-475, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33274568

RESUMEN

Cardio-facio-cutaneous syndrome (CFC) is one of the RASopathies and is caused by germline mutations that activate the Ras/mitogen-activated protein kinase (MAPK) pathway. CFC is due to heterozygous germline mutations in protein kinases BRAF, MEK1, or MEK2 and rarely in KRAS, a small GTPase. CFC is a multiple congenital anomaly disorder in which individuals may have craniofacial dysmorphia, heart issues, skin and hair anomalies, and delayed development. Pathogenic variants for CFC syndrome are usually considered de novo because vertical transmission has only been reported with MEK2 and KRAS. The index case was a 3-year-old male with features consistent with the clinical diagnosis of CFC. Sequencing revealed a previously reported heterozygous likely pathogenic variant BRAF p.G464R. Upon detailed family history, the index case's pregnant mother was noted to have similar features to her son. Targeted familial testing of the BRAF pathogenic variant was performed on the mother, confirming her diagnosis. Prenatal genetic testing for the fetus was declined, but postnatal molecular testing of the index case's sister was positive for the familial BRAF p.G464R variant. Functional analysis of the variant demonstrated increased kinase activity. We report the first identified vertically transmitted functional BRAF pathogenic variant. Our findings emphasize the importance of obtaining a comprehensive evaluation of family members and that activating pathogenic variants within the canonical MAPK cascade mediated by BRAF are compatible with human reproduction.


Asunto(s)
Anomalías Múltiples/genética , Displasia Ectodérmica/genética , Insuficiencia de Crecimiento/genética , Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Anomalías Múltiples/patología , Adulto , Preescolar , Displasia Ectodérmica/patología , Facies , Insuficiencia de Crecimiento/patología , Femenino , Mutación de Línea Germinal/genética , Cardiopatías Congénitas/patología , Humanos , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 2/genética , Masculino , Embarazo , Proteínas Proto-Oncogénicas p21(ras)/genética
11.
Front Immunol ; 12: 785526, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069558

RESUMEN

Background: MAP2K1/2 genes are mutated in approximately 8% of melanoma patients; however, the impact of MAP2K1/2 gene alterations on the efficiency of immunotherapy has not been clarified. This study focused on the correlation between MAP2K1/2 gene mutations and the treatment response. Methods: Six metastatic melanoma clinical cohorts treated with immune checkpoint inhibitors [anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) or anti-programmed cell death-1 (PD-1)] were recruited in this study. RNA expression profiling results from each of these six cohorts and the Cancer Genome Atlas (TCGA) melanoma cohort were analysed to explore the mechanism related to immune activation. Results: Compared to patients with wild-type MAP2K1/2, those with MAP2K1/2 mutations in an independent anti-CTLA-4-treated cohort had higher objective response rates, longer progression-free survival, and longer overall survival (OS). These findings were further validated in a pooled anti-CTLA-4-treated cohort in terms of the OS. However, there was no correlation between MAP2K1/2 mutations and OS in the anti-PD-1-treated cohort. Subgroup Cox regression analysis suggested that patients with MAP2K1/2 mutations received fewer benefits from anti-PD-1 monotherapy than from anti-CTLA-4 treatment. Furthermore, transcriptome profiling analysis revealed that melanoma tumours with MAP2K mutation was enriched in CD8+ T cells, B cells, and neutrophil cells, also expressed high levels of CD33 and IL10, implying a potential mechanism underlying the benefit of melanoma patients with MAP2K1/2 mutations from anti-CTLA-4 treatment. Conclusions: MAP2K1/2 mutations were identified as an independent predictive factor for anti-CTLA-4 therapy in melanoma patients. Anti-CTLA-4 treatment might be more effective than anti-PD-1 therapy for patients with MAP2K1/2-mutated melanoma.


Asunto(s)
Inmunoterapia , MAP Quinasa Quinasa 1 , MAP Quinasa Quinasa 2 , Melanoma , Humanos , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/inmunología , MAP Quinasa Quinasa 2/genética , MAP Quinasa Quinasa 2/inmunología , Melanoma/genética , Melanoma/inmunología , Melanoma/mortalidad , Melanoma/terapia , Mutación , Supervivencia sin Progresión , Tasa de Supervivencia
12.
Biochem Biophys Res Commun ; 531(4): 445-451, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32800341

RESUMEN

Pelizaeus-Merzbacher disease (PMD) is characterized as a congenital hypomyelinating disorder in oligodendrocytes, myelin-forming glial cells in the central nervous system (CNS). The responsible gene of PMD is plp1, whose multiplication, deletion, or mutation is associated with PMD. We previously reported that primary oligodendrocytes overexpressing proteolipid protein 1 (PLP1) do not have the ability to differentiate morphologically, whereas inhibition of mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) by its cognate siRNA or chemical inhibitor reverses their undifferentiated phenotypes. Here, we show that oligodendrocyte-specific expression of kinase-deficient dominant-inhibitory mutant (MEK2K101A) of MAPK/ERK kinase 2 (MEK2), as the direct upstream molecule of MAPK/ERK in PMD model mice, promotes myelination in CNS tissues. Expression of MEK2K101A in PMD model mice also improves Rotor-rod test performance, which is often used to assess motor coordination in a rodent model with neuropathy. These results suggest that in PMD model mice, MEK2K101A can ameliorate impairments of myelination and motor function and that the signaling through MAPK/ERK may involve potential therapeutic target molecules of PMD in vivo.


Asunto(s)
MAP Quinasa Quinasa 2/genética , Enfermedad de Pelizaeus-Merzbacher/etiología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Regulación Enzimológica de la Expresión Génica , Genes Dominantes , MAP Quinasa Quinasa 2/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones Transgénicos , Mutación , Proteína Proteolipídica de la Mielina/genética , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Fenotipo , Prueba de Desempeño de Rotación con Aceleración Constante
13.
Cancer Cell ; 37(6): 834-849.e13, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32442403

RESUMEN

Molecular mechanisms underlying adaptive targeted therapy resistance in pancreatic ductal adenocarcinoma (PDAC) are poorly understood. Here, we identify SETD5 as a major driver of PDAC resistance to MEK1/2 inhibition (MEKi). SETD5 is induced by MEKi resistance and its deletion restores refractory PDAC vulnerability to MEKi therapy in mouse models and patient-derived xenografts. SETD5 lacks histone methyltransferase activity but scaffolds a co-repressor complex, including HDAC3 and G9a. Gene silencing by the SETD5 complex regulates known drug resistance pathways to reprogram cellular responses to MEKi. Pharmacological co-targeting of MEK1/2, HDAC3, and G9a sustains PDAC tumor growth inhibition in vivo. Our work uncovers SETD5 as a key mediator of acquired MEKi therapy resistance in PDAC and suggests a context for advancing MEKi use in the clinic.


Asunto(s)
Cromatina/genética , Resistencia a Antineoplásicos , Metiltransferasas/metabolismo , Terapia Molecular Dirigida , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Apoptosis , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Proliferación Celular , Femenino , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/metabolismo , Histona Desacetilasas/química , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa 2/genética , MAP Quinasa Quinasa 2/metabolismo , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Piridonas/farmacología , Pirimidinonas/farmacología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Nat Cell Biol ; 22(4): 389-400, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32231305

RESUMEN

In mouse embryonic stem cells (mESCs), chemical blockade of Gsk3α/ß and Mek1/2 (2i) instructs a self-renewing ground state whose endogenous inducers are unknown. Here we show that the axon guidance cue Netrin-1 promotes naive pluripotency by triggering profound signalling, transcriptomic and epigenetic changes in mESCs. Furthermore, we demonstrate that Netrin-1 can substitute for blockade of Gsk3α/ß and Mek1/2 to sustain self-renewal of mESCs in combination with leukaemia inhibitory factor and regulates the formation of the mouse pluripotent blastocyst. Mechanistically, we reveal how Netrin-1 and the balance of its receptors Neo1 and Unc5B co-regulate Wnt and MAPK pathways in both mouse and human ESCs. Netrin-1 induces Fak kinase to inactivate Gsk3α/ß and stabilize ß-catenin while increasing the phosphatase activity of a Ppp2r2c-containing Pp2a complex to reduce Erk1/2 activity. Collectively, this work identifies Netrin-1 as a regulator of pluripotency and reveals that it mediates different effects in mESCs depending on its receptor dosage, opening perspectives for balancing self-renewal and lineage commitment.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Receptores de Netrina/genética , Netrina-1/genética , Receptores de Superficie Celular/genética , Vía de Señalización Wnt/genética , Animales , Línea Celular , Embrión de Mamíferos , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Factor Inhibidor de Leucemia/genética , Factor Inhibidor de Leucemia/metabolismo , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa 2/genética , MAP Quinasa Quinasa 2/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones SCID , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Netrina/metabolismo , Netrina-1/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Receptores de Superficie Celular/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
15.
Kaohsiung J Med Sci ; 36(7): 501-507, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32196955

RESUMEN

The ubiquitin conjugating enzyme E2 N (UBE2N) has been reported to be involved in the tumorigenesis of several tumors, but its function in cervical carcinoma has not been investigated yet. In the present study, UBE2N was found elevated in cervical carcinoma, and patients with high UBE2N had a shorter overall survival than patients with low expression. Additionally, knockdown of UBE2N decreased the activation of MEK1/2 and p38 in cervical carcinoma cells, and UBE2N knockdown also markedly inhibited cervical carcinoma cell growth. Our further studies found that microRNA-590-3p (miR-590-3p) was significantly decreased in cervical carcinoma, and patients with high miR-590-3p had a longer overall survival than patients with low expression. Moreover, miR-590-3p expression was found negatively correlated with UBE2N expression in cervical carcinoma, and our further studies showed that miR-590-3p targeted UBE2N and inhibited its expression in cervical carcinoma. Overexpression of miR-590-3p could inhibit cervical carcinoma cell growth, but enhanced UBE2N could rescue miR-590-3p-induced cell growth inhibition in cervical carcinoma. This study indicated that targeting miR-590-3p/UBE2N axis could be a potential strategy for the treatment of cervical carcinoma.


Asunto(s)
Carcinogénesis/genética , Carcinoma/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Enzimas Ubiquitina-Conjugadoras/genética , Neoplasias del Cuello Uterino/genética , Apoptosis/genética , Emparejamiento Base , Secuencia de Bases , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma/metabolismo , Carcinoma/mortalidad , Carcinoma/patología , Movimiento Celular , Proliferación Celular , Femenino , Genes Reporteros , Células HEK293 , Células HeLa , Humanos , Luciferasas/genética , Luciferasas/metabolismo , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/genética , MAP Quinasa Quinasa 2/metabolismo , MicroARNs/agonistas , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Imitación Molecular , Oligorribonucleótidos/genética , Oligorribonucleótidos/metabolismo , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Análisis de Supervivencia , Enzimas Ubiquitina-Conjugadoras/antagonistas & inhibidores , Enzimas Ubiquitina-Conjugadoras/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/mortalidad , Neoplasias del Cuello Uterino/patología
16.
Oncogene ; 39(15): 3218-3225, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32051554

RESUMEN

TAFRO syndrome, a clinical subtype of idiopathic multicentric Castleman disease (iMCD), consists of a constellation of symptoms/signs including thrombocytopenia, anasarca, fever, reticulin fibrosis/renal dysfunction, and organomegaly. The etiology of iMCD-TAFRO and the basis for cytokine hypersecretion commonly seen in iMCD-TAFRO patients has not been elucidated. Here, we identified a somatic MEK2P128L mutation and a germline RUNX1G60C mutation in two patients with iMCD-TAFRO, respectively. The MEK2P128L mutation, which has been identified previously in solid tumor and histiocytosis patients, caused hyperactivated MAP kinase signaling, conferred IL-3 hypersensitivity and sensitized the cells to various MEK inhibitors. The RUNX1G60C mutation abolished the transcriptional activity of wild-type RUNX1 and functioned as a dominant negative form of RUNX1, resulting in enhanced self-renewal activity in hematopoietic stem/progenitor cells. Interestingly, ERK was heavily activated in both patients, highlighting a potential role for activation of MAPK signaling in iMCD-TAFRO pathogenesis and a rationale for exploring inhibition of the MAPK pathway as a therapy for iMCD-TAFRO. Moreover, these data suggest that iMCD-TAFRO might share pathogenetic features with clonal inflammatory disorders bearing MEK and RUNX1 mutations such as histiocytoses and myeloid neoplasms.


Asunto(s)
Enfermedad de Castleman/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , MAP Quinasa Quinasa 2/genética , Adulto , Enfermedad de Castleman/patología , Preescolar , Análisis Mutacional de ADN , Humanos , Ganglios Linfáticos/patología , Sistema de Señalización de MAP Quinasas/genética , Masculino , Adulto Joven
17.
FASEB J ; 34(2): 1958-1969, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31907980

RESUMEN

Loss of tumor suppressor activity and upregulation of oncogenic pathways simultaneously contribute to tumorigenesis. Expression of the tumor suppressor, GCIP (Grap2- and cyclin D1-interacting protein), is usually reduced or lost in advanced cancers, as seen in both mouse tumor models and human cancer patients. However, no previous study has examined how cancer cells down-regulate GCIP expression. In this study, we first validate the tumor suppressive function of GCIP using clinical gastric cancer tissues and online database analysis. We then reveal a novel mechanism whereby MEK2 directly interacts with and phosphorylates GCIP at its Ser313 and Ser356 residues to promote the turnover of GCIP by ubiquitin-mediated proteasomal degradation. We also reveal that decreased GCIP stability enhances cell proliferation and promotes cancer cell migration and invasion. Taken together, these findings provide a more comprehensive view of GCIP in tumorigenesis and suggest that the oncogenic MEK/ERK signaling pathway negatively regulates the protein level of GCIP to promote cell proliferation and migration.


Asunto(s)
Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , MAP Quinasa Quinasa 2/metabolismo , Sistema de Señalización de MAP Quinasas , Factores de Transcripción/biosíntesis , Proteínas Supresoras de Tumor/biosíntesis , Células A549 , Humanos , MAP Quinasa Quinasa 2/genética , Estabilidad Proteica , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
18.
J Cell Physiol ; 235(4): 3657-3668, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31583713

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) responds poorly to treatment. Efforts have been exerted to prolong the survival time of PDA, but the 5-year survival rates remain disappointing. Understanding the molecular mechanisms of PDA development is significant. MEK/ERK pathway signaling has been proven to be important in PDA. lncRNA-mRNA networks have become a vital part of molecular mechanisms in the MEK/ERK pathway. Herein, weighted gene coexpression network analysis was used to investigate the coexpressed lncRNA-mRNA networks in the MEK/ERK pathway based on GSE45765. Differently expressed long noncoding RNA (lncRNA) and messenger RNA (mRNA) were found and 10 modules were identified based on coexpression profiles. Gene ontology and Kyoto Encyclopedia of Genes and Genomes were then performed to analyze the coexpressed lncRNA and mRNA in different modules. PDA cells and tissues were used to validate the analysis results. Finally, we found that NONHSAT185150.1 and B4GALT6 were negatively correlated with MEK1/2. By analyzing GSE45765, the genome-wide profiles of lncRNA-mRNA network after MEK1/2 was established, which might aid the development of drug-targeting MEK1/2 and the investigation of diagnostic markers.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Adenocarcinoma/patología , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Ontología de Genes/estadística & datos numéricos , Redes Reguladoras de Genes/genética , Humanos , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 2/genética , Sistema de Señalización de MAP Quinasas/genética , Masculino , ARN Largo no Codificante/clasificación
19.
J Hum Genet ; 65(2): 181-186, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31645653

RESUMEN

Interstitial microdeletions at chromosome 19p13.3 are frequently associated with a constellation of clinical features including macrocephaly, characteristic face, intellectual disability, and sleep apnea. Previous studies in 25 patients with 19p13.3 microdeletions have revealed loss of MAP2K2 in 24 patients and that of PIAS4 and ZBTB7A in 23 patients, suggesting that these three adjacent genes are candidate genes for the phenotypic development in 19p13.3 microdeletions. We identified a de novo likely pathogenic heterozygous missense variant of ZBTB7A (NM_015898.3:c.1152C>G, p.(Cys384Trp)) in a Japanese boy with macrocephaly, intellectual disability, and sleep apnea. This variant affects the conserved cysteine residue forming the coordinate bond with Zn2+ ion at the first zinc finger domain, and is predicted to exert a dominant-negative effect because of the generation of homo- and hetero-dimers with the wild-type and variant ZBTB7A proteins. The results argue for a critical relevance of ZBTB7A to the development of most, but probably not all, of the 19p13.3 microdeletion phenotype.


Asunto(s)
Anomalías Múltiples/genética , Cromosomas Humanos Par 19/genética , Proteínas de Unión al ADN/genética , Discapacidad Intelectual/genética , MAP Quinasa Quinasa 2/genética , Megalencefalia/genética , Síndromes de la Apnea del Sueño/genética , Factores de Transcripción/genética , Niño , Deleción Cromosómica , Heterocigoto , Humanos , Masculino , Mutación Missense , Fenotipo
20.
Mol Med Rep ; 20(5): 4507-4514, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31702027

RESUMEN

MicroRNA (miR)­125a­5p has shown the potential for suppressing tumorigenesis and development; however, the effects of miR­125a­5p on breast cancer cells remains unknown. The aim of this study was to evaluate the effects and underlying mechanisms of miR­125a­5p in MCF­7 breast cancer cells. MCF­7 cells were transfected with miR­125a­5p mimic or miR­125a­5p small interfering RNA to produce miR­125a­5p overexpressing/knockdown cells. Cell proliferation was assessed by an MTT assay, and cell migration ability was determined by an in vitro scratch assay. Hoechst 33258 staining and flow cytometry were performed to assess the effects of miR­125a­5p on MCF­7 apoptosis. Western blotting and reverse transcription­quantitative polymerase chain reaction were used for measuring phosphatase and tensin homolog (PTEN), phosphorylated (p)­mitogen­activated protein kinase kinase (MEK1/2)/MEK1/2, p­ERK1/2/ERK1/2, B­cell lymphoma­2 (Bcl­2), cleaved caspase­3, and miR­125a­5p expression. miR­125a­5p overexpression inhibited the proliferation and migration, but promoted the apoptosis of MCF­7 cells. These effects were associated with increases in PTEN and cleaved caspase­3 expression, and decreases in p­MEK1/2/MEK1/2, p­ERK1/2/ERK1/2, and Bcl­2. Silencing of miR­125a­5p exhibited opposing effects on MCF­7 cells. These observations suggested that miR­125a­5p participates in the regulation of multiple functions of MCF­7 cells by promoting the expression of PTEN tumor suppressor genes, activating MEK1/2/ERK1/2 signaling, and regulating caspase­3/Bcl­2 signaling. Thus, it may be a suitable target for breast cancer gene therapy.


Asunto(s)
Apoptosis , Neoplasias de la Mama/metabolismo , Movimiento Celular , Proliferación Celular , Sistema de Señalización de MAP Quinasas , MicroARNs/metabolismo , ARN Neoplásico/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Humanos , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/genética , MAP Quinasa Quinasa 2/metabolismo , Células MCF-7 , MicroARNs/genética , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , ARN Neoplásico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...