Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 661: 223-37, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20811986

RESUMEN

MAPK cascade components have been the subject of structural analysis, advancing our understanding of how these enzymes are activated and how they interact. A surprising finding has been that unique inactive conformers are adopted by many of these kinases. These inactive conformers are interesting and often require experimental phases to determine their crystal structures because molecular replacement techniques are not successful. Here, we describe the preparation of MAP2K MEK6 and MAP3K TAO2 substituted with selenomethionine (SeMet) for de novo phasing. TAO2 and SeMet TAO2 were expressed in insect cells.


Asunto(s)
MAP Quinasa Quinasa 6/química , MAP Quinasa Quinasa 6/metabolismo , Quinasas Quinasa Quinasa PAM/química , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Animales , Línea Celular , Cristalización , Escherichia coli/genética , Humanos , MAP Quinasa Quinasa 6/genética , MAP Quinasa Quinasa 6/aislamiento & purificación , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/aislamiento & purificación , Ratones , Fosforilación , Ratas , Selenometionina/metabolismo
2.
Biochemistry ; 49(19): 4094-102, 2010 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-20364819

RESUMEN

Apoptosis signal-regulating kinase 1 (ASK1) is a serine/threonine kinase that responds to a plethora of stress-inducing signals. In turn, activation of ASK1 is associated with a number of human pathological conditions, including neurodegenerative disease, inflammation, and heart failure. In response to oxidative stress, ASK1 activates the cell death-associated p38 MAPK pathway by phosphorylating MKK6. Here, we investigated the regulation of oxidative stress-induced ASK1-catalyzed phosphorylation of MKK6. MKK6 phosphorylation levels increased immediately after H(2)O(2) treatment in intact cells and decreased following treatment for 30 min. When expressed in HEK293T cells, ASK1 was reproducibly purified within a high-molecular mass complex ( approximately 1500 kDa) known as the ASK1 signalosome. Measurement of the in vitro kinetic parameters revealed that the catalytic efficiency (k(cat)/K(m)) of ASK1 was 4000-fold greater in cells treated with H(2)O(2) for 3 min than in untreated cells. Interestingly, although the K(m(ATP)) values were found to be unchanged, the K(m(MKK6)) was dramatically decreased ( approximately 1000-fold). The increased affinity was specific for MKK6 and short-lived, as the K(m(MKK6)) returned to basal levels 30 min after treatment. Consistently, endogenous MKK6 was found within the ASK1 signalosome in intact cells and in addition copurified with ASK1 following treatment for 3 min. In contrast, proteins modulating ASK1 activity and degradation were found to interact with the ASK1 signalosome once MKK6 activation was completed. Taken together, these data suggest that oxidative stress rapidly increases ASK1 catalytic efficiency for MKK6 phosphorylation by increasing MKK6 binding affinity within the ASK1 signalosome prior to induction of inactivation and degradation of the complex.


Asunto(s)
MAP Quinasa Quinasa 6/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Estrés Oxidativo/fisiología , Catálisis , Células Cultivadas , Humanos , Cinética , MAP Quinasa Quinasa 6/genética , MAP Quinasa Quinasa 6/aislamiento & purificación , MAP Quinasa Quinasa Quinasa 5/genética , MAP Quinasa Quinasa Quinasa 5/aislamiento & purificación , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...