Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 375, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195640

RESUMEN

Selective autophagy is an essential process to maintain cellular homeostasis through the constant recycling of damaged or superfluous components. Over a dozen selective autophagy pathways mediate the degradation of diverse cellular substrates, but whether these pathways can influence one another remains unknown. We address this question using pexophagy, the autophagic degradation of peroxisomes, as a model. We show in cells that upregulated pexophagy impairs the selective autophagy of both mitochondria and protein aggregates by exhausting the autophagy initiation factor, ULK1. We confirm this finding in cell models of the pexophagy-mediated form of Zellweger Spectrum Disorder, a disease characterized by peroxisome dysfunction. Further, we extend the generalizability of limited selective autophagy by determining that increased protein aggregate degradation reciprocally reduces pexophagy using cell models of Parkinson's Disease and Huntington's Disease. Our findings suggest that the degradative capacity of selective autophagy can become limited by an increase in one substrate.


Asunto(s)
Enfermedad de Huntington , Enfermedad de Parkinson , Humanos , Macroautofagia/genética , Autofagia/genética , Enfermedad de Huntington/genética , Mitocondrias/genética , Enfermedad de Parkinson/genética
2.
J Cell Biol ; 222(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37796195

RESUMEN

Cells harness multiple pathways to maintain lysosome integrity, a central homeostatic process. Damaged lysosomes can be repaired or targeted for degradation by lysophagy, a selective autophagy process involving ATG8/LC3. Here, we describe a parallel ATG8/LC3 response to lysosome damage, mechanistically distinct from lysophagy. Using a comprehensive series of biochemical, pharmacological, and genetic approaches, we show that lysosome damage induces non-canonical autophagy and Conjugation of ATG8s to Single Membranes (CASM). Following damage, ATG8s are rapidly and directly conjugated onto lysosome membranes, independently of ATG13/WIPI2, lipidating to PS (and PE), a molecular hallmark of CASM. Lysosome damage drives V-ATPase V0-V1 association, direct recruitment of ATG16L1 via its WD40-domain/K490A, and is sensitive to Salmonella SopF. Lysosome damage-induced CASM is associated with formation of dynamic, LC3A-positive tubules, and promotes robust LC3A engagement with ATG2, a lipid transfer protein central to lysosome repair. Together, our data identify direct ATG8 conjugation as a rapid response to lysosome damage, with important links to lipid transfer and dynamics.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia , Autofagia , Lisosomas , Autofagia/genética , Lisosomas/genética , Lisosomas/metabolismo , Macroautofagia/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Salmonella , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo
3.
PLoS Genet ; 18(6): e1010264, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35771772

RESUMEN

Autophagy is an indispensable process that degrades cytoplasmic materials to maintain cellular homeostasis. During autophagy, double-membrane autophagosomes surround cytoplasmic materials and either fuse with endosomes (called amphisomes) and then lysosomes, or directly fuse with lysosomes, in both cases generating autolysosomes that degrade their contents by lysosomal hydrolases. However, it remains unclear if there are specific mechanisms and/or conditions which distinguish these alternate routes. Here, we identified PACSIN1 as a novel autophagy regulator. PACSIN1 deletion markedly decreased autophagic activity under basal nutrient-rich conditions but not starvation conditions, and led to amphisome accumulation as demonstrated by electron microscopic and co-localization analysis, indicating inhibition of lysosome fusion. PACSIN1 interacted with SNAP29, an autophagic SNARE, and was required for proper assembly of the STX17 and YKT6 complexes. Moreover, PACSIN1 was required for lysophagy, aggrephagy but not mitophagy, suggesting cargo-specific fusion mechanisms. In C. elegans, deletion of sdpn-1, a homolog of PACSINs, inhibited basal autophagy and impaired clearance of aggregated protein, implying a conserved role of PACSIN1. Taken together, our results demonstrate the amphisome-lysosome fusion process is preferentially regulated in response to nutrient state and stress, and PACSIN1 is a key to specificity during autophagy.


Asunto(s)
Caenorhabditis elegans , Macroautofagia , Animales , Autofagosomas/metabolismo , Autofagia/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Lisosomas/metabolismo , Macroautofagia/genética , Proteínas SNARE/metabolismo
4.
FEBS J ; 289(1): 75-89, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33730405

RESUMEN

Autophagy is a highly conserved catabolic process cells use to maintain their homeostasis by degrading misfolded, damaged and excessive proteins, nonfunctional organelles, foreign pathogens and other cellular components. Hence, autophagy can be nonselective, where bulky portions of the cytoplasm are degraded upon stress, or a highly selective process, where preselected cellular components are degraded. To distinguish between different cellular components, autophagy employs selective autophagy receptors, which will link the cargo to the autophagy machinery, thereby sequestering it in the autophagosome for its subsequent degradation in the lysosome. Autophagy receptors undergo post-translational and structural modifications to fulfil their role in autophagy, or upon executing their role, for their own degradation. We highlight the four most prominent protein modifications - phosphorylation, ubiquitination, acetylation and oligomerisation - that are essential for autophagy receptor recruitment, function and turnover. Understanding the regulation of selective autophagy receptors will provide deeper insights into the pathway and open up potential therapeutic avenues.


Asunto(s)
Autofagosomas/genética , Autofagia/genética , Lisosomas/genética , Procesamiento Proteico-Postraduccional/genética , Acetilación , Homeostasis , Humanos , Macroautofagia/genética , Fosforilación/genética , Proteómica , Ubiquitinación/genética
5.
Aging Cell ; 20(11): e13481, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34674371

RESUMEN

As organisms age, they often accumulate protein aggregates that are thought to be toxic, potentially leading to age-related diseases. This accumulation of protein aggregates is partially attributed to a failure to maintain protein homeostasis. A variety of genetic factors have been linked to longevity, but how these factors also contribute to protein homeostasis is not completely understood. In order to understand the relationship between aging and protein aggregation, we tested how a gene that regulates lifespan and age-dependent locomotor behaviors, p38 MAPK (p38Kb), influences protein homeostasis as an organism ages. We find that p38Kb regulates age-dependent protein aggregation through an interaction with starvin, a regulator of muscle protein homeostasis. Furthermore, we have identified Lamin as an age-dependent target of p38Kb and starvin.


Asunto(s)
Envejecimiento/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Longevidad/genética , Sistema de Señalización de MAP Quinasas/genética , Proteostasis/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Envejecimiento/genética , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Eliminación de Gen , Laminas/metabolismo , Locomoción/genética , Macroautofagia/genética , Músculos/metabolismo , Estrés Oxidativo/genética , Fenotipo , Proteolisis , Interferencia de ARN , Proteínas Quinasas p38 Activadas por Mitógenos/genética
6.
Viruses ; 13(5)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062931

RESUMEN

Selective autophagy has emerged as a key mechanism of quality and quantity control responsible for the autophagic degradation of specific subcellular organelles and materials. In addition, a specific type of selective autophagy (xenophagy) is also activated as a line of defense against invading intracellular pathogens, such as viruses. However, viruses have evolved strategies to counteract the host's antiviral defense and even to activate some proviral types of selective autophagy, such as mitophagy, for their successful infection and replication. This review discusses the current knowledge on the regulation of selective autophagy by human herpesviruses.


Asunto(s)
Autofagia/genética , Regulación de la Expresión Génica , Herpesviridae/genética , Interacciones Huésped-Patógeno/genética , Herpesviridae/patogenicidad , Humanos , Macroautofagia/genética , Mitofagia/genética
7.
Nat Commun ; 12(1): 3258, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059679

RESUMEN

Autophagy can selectively target protein aggregates, pathogens, and dysfunctional organelles for the lysosomal degradation. Aberrant regulation of autophagy promotes tumorigenesis, while it is far less clear whether and how tumor-specific alterations result in autophagic aberrance. To form a link between aberrant autophagy selectivity and human cancer, we establish a computational pipeline and prioritize 222 potential LIR (LC3-interacting region) motif-associated mutations (LAMs) in 148 proteins. We validate LAMs in multiple proteins including ATG4B, STBD1, EHMT2 and BRAF that impair their interactions with LC3 and autophagy activities. Using a combination of transcriptomic, metabolomic and additional experimental assays, we show that STBD1, a poorly-characterized protein, inhibits tumor growth via modulating glycogen autophagy, while a patient-derived W203C mutation on LIR abolishes its cancer inhibitory function. This work suggests that altered autophagy selectivity is a frequently-used mechanism by cancer cells to survive during various stresses, and provides a framework to discover additional autophagy-related pathways that influence carcinogenesis.


Asunto(s)
Carcinogénesis/genética , Macroautofagia/genética , Proteínas de la Membrana/genética , Modelos Genéticos , Proteínas Musculares/genética , Neoplasias/genética , Algoritmos , Animales , Carcinogénesis/patología , Línea Celular Tumoral , Simulación por Computador , Análisis Mutacional de ADN , Conjuntos de Datos como Asunto , Técnicas de Silenciamiento del Gen , Glucógeno/metabolismo , Humanos , Estimación de Kaplan-Meier , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Musculares/metabolismo , Mutación , Neoplasias/mortalidad , Neoplasias/patología , Vía de Pentosa Fosfato/genética , Dominios y Motivos de Interacción de Proteínas/genética , Proteoma/genética , RNA-Seq , Análisis de Matrices Tisulares , Efecto Warburg en Oncología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Elife ; 102021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34085929

RESUMEN

Sleep is a conserved and essential behavior, but its mechanistic and functional underpinnings remain poorly defined. Through unbiased genetic screening in Drosophila, we discovered a novel short-sleep mutant we named argus. Positional cloning and subsequent complementation, CRISPR/Cas9 knock-out, and RNAi studies identified Argus as a transmembrane protein that acts in adult peptidergic neurons to regulate sleep. argus mutants accumulate undigested Atg8a(+) autophagosomes, and genetic manipulations impeding autophagosome formation suppress argus sleep phenotypes, indicating that autophagosome accumulation drives argus short-sleep. Conversely, a blue cheese neurodegenerative mutant that impairs autophagosome formation was identified independently as a gain-of-sleep mutant, and targeted RNAi screens identified additional genes involved in autophagosome formation whose knockdown increases sleep. Finally, autophagosomes normally accumulate during the daytime and nighttime sleep deprivation extends this accumulation into the following morning, while daytime gaboxadol feeding promotes sleep and reduces autophagosome accumulation at nightfall. In sum, our results paradoxically demonstrate that wakefulness increases and sleep decreases autophagosome levels under unperturbed conditions, yet strong and sustained upregulation of autophagosomes decreases sleep, whereas strong and sustained downregulation of autophagosomes increases sleep. The complex relationship between sleep and autophagy suggested by our findings may have implications for pathological states including chronic sleep disorders and neurodegeneration, as well as for integration of sleep need with other homeostats, such as under conditions of starvation.


Asunto(s)
Autofagosomas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Mutación con Ganancia de Función , Macroautofagia/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Neuronas , Sueño/genética , Animales , Animales Modificados Genéticamente , Autofagosomas/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Genotipo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Fenotipo , Factores de Tiempo , Vigilia
9.
FEBS J ; 288(10): 3164-3185, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33830641

RESUMEN

CD4+ T cells recognize peptides presented by major histocompatibility complex class II molecules (MHC-II). These peptides are generally derived from exogenous antigens. Macroautophagy has been reported to promote endogenous antigen presentation in viral infections. However, whether influenza A virus (IAV) infection-induced macroautophagy also leads to endogenous antigen presentation through MHC-II is still debated. In this study, we show that IAV infection leads to endogenous presentation of an immunodominant viral epitope NP311-325 by MHC-II to CD4+ T cells. Mechanistically, such MHC-II-restricted endogenous IAV antigen presentation requires de novo protein synthesis as it is inhibited by the protein synthesis inhibitor cycloheximide, and a functional ER-Golgi network as it is totally blocked by Brefeldin A. These results indicate that MHC-II-restricted endogenous IAV antigen presentation is dependent on de novo antigen and/or MHC-II synthesis, and transportation through the ER-Golgi network. Furthermore, such endogenous IAV antigen presentation by MHC-II is enhanced by TAP deficiency, indicating some antigenic peptides are of cytosolic origin. Most importantly, the bulk of such MHC-II-restricted endogenous IAV antigen presentation is blocked by autophagy inhibitors (3-MA and E64d) and deletion of autophagy-related genes, such as Beclin1 and Atg7. We have further demonstrated that in dendritic cells, IAV infection prevents autophagosome-lysosome fusion and promotes autophagosome fusion with MHC class II compartment (MIIC), which likely promotes endogenous IAV antigen presentation by MHC-II. Our results provide strong evidence that IAV infection-induced autophagosome formation facilitates endogenous IAV antigen presentation by MHC-II to CD4+ T cells. The implication for influenza vaccine design is discussed.


Asunto(s)
Presentación de Antígeno/genética , Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase II/genética , Interacciones Huésped-Patógeno/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Macroautofagia/genética , Animales , Antígenos Virales/química , Antígenos Virales/genética , Antígenos Virales/inmunología , Proteína 7 Relacionada con la Autofagia/deficiencia , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/inmunología , Beclina-1/deficiencia , Beclina-1/genética , Beclina-1/inmunología , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/virología , Brefeldino A/farmacología , Linfocitos T CD4-Positivos/virología , Células Dendríticas/virología , Femenino , Expresión Génica , Células HEK293 , Antígenos de Histocompatibilidad Clase II/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Epítopos Inmunodominantes/química , Epítopos Inmunodominantes/genética , Epítopos Inmunodominantes/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Macroautofagia/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Plásmidos/química , Plásmidos/metabolismo , Transfección
10.
Commun Biol ; 4(1): 454, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846551

RESUMEN

Nε-lysine acetylation in the ER lumen is a recently discovered quality control mechanism that ensures proteostasis within the secretory pathway. The acetyltransferase reaction is carried out by two type-II membrane proteins, ATase1/NAT8B and ATase2/NAT8. Prior studies have shown that reducing ER acetylation can induce reticulophagy, increase ER turnover, and alleviate proteotoxic states. Here, we report the generation of Atase1-/- and Atase2-/- mice and show that these two ER-based acetyltransferases play different roles in the regulation of reticulophagy and macroautophagy. Importantly, knockout of Atase1 alone results in activation of reticulophagy and rescue of the proteotoxic state associated with Alzheimer's disease. Furthermore, loss of Atase1 or Atase2 results in widespread adaptive changes in the cell acetylome and acetyl-CoA metabolism. Overall, our study supports a divergent role of Atase1 and Atase2 in cellular biology, emphasizing ATase1 as a valid translational target for diseases characterized by toxic protein aggregation in the secretory pathway.


Asunto(s)
Acetilcoenzima A/metabolismo , Acetiltransferasas/genética , Autofagia/genética , Retículo Endoplásmico/fisiología , Acetiltransferasas/metabolismo , Animales , Femenino , Macroautofagia/genética , Masculino , Ratones , Ratones Noqueados
11.
Biochem Biophys Res Commun ; 545: 69-74, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33545634

RESUMEN

Peroxisomes play an essential role in cellular homeostasis by regulating lipid metabolism and the conversion of reactive oxygen species (ROS). Several peroxisomal proteins, known as peroxins (PEXs), control peroxisome biogenesis and degradation. Various mutations in the PEX genes are genetic causes for the development of inheritable peroxisomal-biogenesis disorders, such as Zellweger syndrome. Among the peroxins, PEX1 defects are the most common mutations in Zellweger syndrome. PEX1 is an AAA-ATPase that regulates the recycling of PEX5, which is essential for importing peroxisome matrix proteins. However, the post-transcriptional regulation of PEX1 is largely unknown. Here, we showed that heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) controls PEX1 expression. In addition, we found that depletion of HNRNPA1 induces autophagic degradation of peroxisome, which is blocked in ATG5-knockout cells. In addition, depletion of HNRNPA1 increased peroxisomal ROS levels. Inhibition of the generation of peroxisomal ROS by treatment with NAC significantly suppressed pexophagy in HNRNPA1-deficient cells. Taken together, our results suggest that depletion of HNRNPA1 increases peroxisomal ROS and pexophagy by downregulating PEX1 expression.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Macroautofagia/fisiología , Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteína 5 Relacionada con la Autofagia/antagonistas & inhibidores , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Células Cultivadas , Regulación hacia Abajo , Técnicas de Inactivación de Genes , Células HCT116 , Células HeLa , Ribonucleoproteína Nuclear Heterogénea A1/deficiencia , Ribonucleoproteína Nuclear Heterogénea A1/genética , Humanos , Macroautofagia/genética , Proteínas de la Membrana/genética , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Síndrome de Zellweger/genética , Síndrome de Zellweger/metabolismo
12.
Autophagy ; 17(11): 3461-3474, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33509017

RESUMEN

Macroautophagy/autophagy plays an important role in the control of viral infections and viruses have evolved multiple strategies to interfere with autophagy to avoid destruction and promote their own replication and spread. Here we report that the deubiquitinase encoded in the N-terminal domain of the Epstein-Barr virus (EBV) large tegument protein, BPLF1, regulates selective autophagy. Mass spectrometry analysis identified several vesicular traffic and autophagy related proteins as BPLF1 interactors and potential substrates, suggesting that the viral protein targets this cellular defense during productive infection. Direct binding of BPLF1 to the autophagy receptor SQSTM1/p62 (sequestosome 1) was confirmed by co-immunoprecipitation of transfected BPLF1 and by in vitro affinity isolation of bacterially expressed proteins. Expression of the catalytically active BPLF1 was associated with decreased SQSTM1/p62 ubiquitination and failure to recruit LC3 to SQSTM1/p62-positive aggregates. Selective autophagy was inhibited as illustrated by the accumulation of large protein aggregates in BPLF1-positive cells co-transfected with an aggregate-prone HTT (huntingtin)-Q109 construct, and by a slower autophagy-dependent clearance of protein aggregates upon transfection of BPLF1 in cells expressing a tetracycline-regulated HTT-Q103. The inhibition of aggregate clearance was restored by overexpression of a SQSTM1/p62[E409A,K420R] mutant that does not require ubiquitination of Lys420 for cargo loading. These findings highlight a previously unrecognized role of the viral deubiquitinase in the regulation of selective autophagy, which may promote infection and the production of infectious virus.Abbreviations: BPLF1, BamH1 fragment left open reading frame-1; EBV, Epstein-Barr virus; GFP, green fluorescent protein; HTT, huntingtin; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; PB1, Phox and Bem1 domain; PE, phosphatidylethanolamine; SQSTM1/p62, sequestosome 1; UBA, ubiquitin-associated domain.


Asunto(s)
Autofagia/fisiología , Enzimas Desubicuitinizantes/fisiología , Herpesvirus Humano 4/fisiología , Proteína Sequestosoma-1/fisiología , Proteínas Reguladoras y Accesorias Virales/fisiología , Autofagia/genética , Enzimas Desubicuitinizantes/genética , Infecciones por Virus de Epstein-Barr/patología , Infecciones por Virus de Epstein-Barr/virología , Células HeLa , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidad , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Macroautofagia/genética , Macroautofagia/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Agregado de Proteínas/genética , Agregado de Proteínas/fisiología , Proteína Sequestosoma-1/genética , Transfección , Ubiquitinación , Proteínas Reguladoras y Accesorias Virales/genética
13.
Oncol Rep ; 45(1): 202-216, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33416133

RESUMEN

Long non­coding RNA growth arrest specific 5 (GAS5) exerts inhibitory effects through the modulation of several target microRNAs (miRs) in cancer. However, its potential roles and underlying relationship during colorectal cancer (CRC) progression are unclear. Therefore, we explored the role of the negative feedback loop formed by the GAS5/miR­34a axis and mammalian target of rapamycin/sirtuin 1 (mTOR/SIRT1) pathway on macroautophagy and apoptosis in CRC. Expression of GAS5, miR­34a, SIRT1 and mTOR in CRC patients and cell lines was detected by quantitative reverse transcription polymerase chain reaction. Online bioinformatic analysis was used to predict the downstream miRs of GAS5. Luciferase assay and western blotting were performed to demonstrate miR­34a as a downstream target gene of GAS5 in CRC cells. The effects of the GAS5/miR­34a axis on apoptosis, macroautophagy, and the mTOR/SIRT1 pathway were assessed by flow cytometry, transmission electron microscopy and western blotting, respectively. Our results suggested that GAS5 was downregulated and acted as a molecular sponge of miR­34a during CRC progression. miR­34a participated in regulating GAS5­suppressed CRC cell macroautophagy and induced apoptosis through the mTOR/SIRT1 pathway. GAS5­mediated macroautophagy was maintained in an equilibrium state that might have a protective effect on CRC cell apoptosis. The mTOR signaling pathway suppressed GAS5 expression and formed a negative regulation feedback loop with miR­34a in CRC cells. Our results suggested that the GAS5/miR­34a/SIRT1/mTOR negative regulatory feedback loop mediated CRC cell macroautophagy, and maintained the cells in an autonomous equilibrium state, but not excessive activation state, which functions as a strong antiapoptotic phenotype during human CRC progression.


Asunto(s)
Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica/inmunología , Macroautofagia/genética , MicroARNs/genética , ARN Largo no Codificante/metabolismo , Anciano , Animales , Azoximetano/administración & dosificación , Azoximetano/toxicidad , Línea Celular Tumoral , Colon/inmunología , Colon/patología , Colon/cirugía , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/cirugía , Retroalimentación Fisiológica , Femenino , Humanos , Macroautofagia/efectos de los fármacos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Neoplasias Experimentales/inducido químicamente , Neoplasias Experimentales/genética , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , ARN Largo no Codificante/genética , Ratas , Transducción de Señal/genética , Sirolimus/farmacología , Sirtuina 1/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
14.
Autophagy ; 17(11): 3297-3305, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33228439

RESUMEN

Selective autophagy is a specific elimination of certain intracellular substrates by autophagic pathways. The most studied macroautophagy pathway involves tagging and recognition of a specific cargo by the autophagic membrane (phagophore) followed by the complete sequestration of targeted cargo from the cytosol by the double-membrane vesicle, autophagosome. Until recently, the knowledge about selective macroautophagy was minimal, but now there is a panoply of links elucidating how phagophores engulf their substrates selectively. The studies of selective autophagy processes have further stressed the importance of using the in vivo models to validate new in vitro findings and discover the physiologically relevant mechanisms. However, dissecting how the selective autophagy occurs yet remains difficult in living organisms, because most of the organelles are relatively inaccessible to observation and experimental manipulation in mammals. In recent years, zebrafish (Danio rerio) is widely recognized as an excellent model for studying autophagic processes in vivo because of its optical accessibility, genetic manipulability and translational potential. Several selective autophagy pathways, such as mitophagy, xenophagy, lipophagy and aggrephagy, have been investigated using zebrafish and still need to be studied further, while other selective autophagy pathways, such as pexophagy or reticulophagy, could also benefit from the use of the zebrafish model. In this review, we shed light on how zebrafish contributed to our understanding of these selective autophagy processes by providing the in vivo platform to study them at the organismal level and highlighted the versatility of zebrafish model in the selective autophagy field.Abbreviations: AD: Alzheimer disease; ALS: amyotrophic lateral sclerosis; Atg: autophagy-related; CMA: chaperone-mediated autophagy; CQ: chloroquine; HsAMBRA1: human AMBRA1; KD: knockdown; KO: knockout; LD: lipid droplet; MMA: methylmalonic acidemia; PD: Parkinson disease; Tg: transgenic.


Asunto(s)
Autofagia/fisiología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Autofagia/genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Gotas Lipídicas/fisiología , Macroautofagia/genética , Macroautofagia/fisiología , Mitofagia/genética , Mitofagia/fisiología , Modelos Animales , Modelos Biológicos , Agregado de Proteínas/genética , Agregado de Proteínas/fisiología , Pez Cebra/genética
15.
JCI Insight ; 5(20)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32931479

RESUMEN

A critical response to lysosomal membrane permeabilization (LMP) is the clearance of damaged lysosomes through a selective form of macroautophagy known as lysophagy. Although regulators of this process are emerging, whether organ- and cell-specific components contribute to the control of lysophagy remains incompletely understood. Here, we examined LMP and lysophagy in Niemann-Pick type C (NPC) disease, an autosomal recessive disorder characterized by the accumulation of unesterified cholesterol within late endosomes and lysosomes, leading to neurodegeneration and early death. We demonstrated that NPC human fibroblasts show enhanced sensitivity to lysosomal damage as a consequence of lipid storage. Moreover, we described a role for the glycan-binding F-box protein 2 (Fbxo2) in CNS lysophagy. Fbxo2 functions as a component of the S phase kinase-associated protein 1-cullin 1-F-box protein (SKP1-CUL1-SCF) ubiquitin ligase complex. Loss of Fbxo2 in mouse primary cortical cultures delayed clearance of damaged lysosomes and decreased viability after lysosomal damage. Moreover, Fbxo2 deficiency in a mouse model of NPC exacerbated deficits in motor function, enhanced neurodegeneration, and reduced survival. Collectively, our data identified a role for Fbxo2 in CNS lysophagy and establish its functional importance in NPC.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas F-Box/genética , Macroautofagia/genética , Degeneración Nerviosa/genética , Proteínas del Tejido Nervioso/genética , Enfermedad de Niemann-Pick Tipo C/genética , Autofagia/genética , Encéfalo/patología , Permeabilidad de la Membrana Celular , Colesterol/metabolismo , Endosomas/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Lisosomas/genética , Degeneración Nerviosa/patología , Enfermedad de Niemann-Pick Tipo C/patología , Proteínas Ligasas SKP Cullina F-box/genética
16.
Exp Cell Res ; 396(1): 112276, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32918896

RESUMEN

Autophagy is an evolutionary conserved catabolic process devoted to the removal of unnecessary and harmful cellular components. In its general form, autophagy governs cellular lifecycle through the formation of double membrane vesicles, termed autophagosomes, that enwrap and deliver unwanted intracellular components to lysosomes. In addition to this omniscient role, forms of selective autophagy, relying on specialized receptors for cargo recognition, exert fine-tuned control over cellular homeostasis. In this regard, xenophagy plays a pivotal role in restricting the replication of intracellular pathogens, thus acting as an ancient innate defense system against infections. Recently, selective autophagy of the endoplasmic reticulum (ER), more simply ER-phagy, has been uncovered as a critical mechanism governing ER network shape and function. Six ER-resident proteins have been characterized as ER-phagy receptors and their orchestrated function enables ER homeostasis and turnover overtime. Unfortunately, ER is also the preferred site for viral replication and several viruses hijack ER machinery for their needs. Thus, it is not surprising that some ER-phagy receptors can act to counteract viral replication and minimize the spread of infection throughout the organism. On the other hand, evolutionary pressure has armed pathogens with strategies to evade and subvert xenophagy and ER-phagy. Although ER-phagy biology is still in its infancy, the present review aims to summarize recent ER-phagy literature, with a special focus on its role in counteracting viral infections. Moreover, we aim to offer some hints for future targeted approaches to counteract host-pathogen interactions by modulating xenophagy and ER-phagy pathways.


Asunto(s)
Autofagosomas/inmunología , Infecciones Bacterianas/inmunología , Retículo Endoplásmico/inmunología , Interacciones Huésped-Patógeno/inmunología , Macroautofagia/inmunología , Virosis/inmunología , Autofagosomas/metabolismo , Bacterias/inmunología , Infecciones Bacterianas/genética , Infecciones Bacterianas/microbiología , Retículo Endoplásmico/genética , Retículo Endoplásmico/microbiología , Retículo Endoplásmico/virología , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/inmunología , Homeostasis/genética , Homeostasis/inmunología , Interacciones Huésped-Patógeno/genética , Humanos , Inmunidad Innata , Lisosomas/inmunología , Lisosomas/metabolismo , Macroautofagia/genética , Virosis/genética , Virosis/virología , Virus/inmunología
17.
Expert Rev Proteomics ; 17(7-8): 561-579, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32772586

RESUMEN

INTRODUCTION: Autophagy is an evolutionarily conserved cellular clearance process, by which cytosolic components are delivered to autolysosomes for breakdown and recycling to maintain cellular homeostasis. During the past decades, autophagy has been found to be tightly implicated in various physiological and pathological progresses. Unraveling the regulatory mechanisms of the autophagy process will contribute to the development of emerging autophagy-targeting strategies for the treatment of various diseases. Recently, the rapid development of proteomics approaches has enabled the use of large-scale unbiased strategies to unravel autophagy machinery. AREAS COVERED: In this review, we will highlight the recent contributions of proteomics strategies in clarifying the autophagy machinery, with an emphasis on the three different types of autophagy (namely macroautophagy, microautophagy, and chaperone-mediated autophagy). We will also discuss the emerging role of proteomics approaches in investigating the mechanism of the autophagy-based unconventional secretory pathway (secretory autophagy). EXPERT OPINION: Proteomics has provided an effective strategy for the comprehensive analysis of the autophagy process, which will broaden our understanding of autophagy machinery, and holds great promise for developing clinical therapies targeting autophagy.


Asunto(s)
Autofagia/genética , Autofagia Mediada por Chaperones/genética , Proteoma/genética , Proteómica , Homeostasis , Humanos , Lisosomas/genética , Macroautofagia/genética , Microautofagia/genética
18.
Vet Res ; 51(1): 104, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811532

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) is one of the most severe swine diseases that affects almost all swine-breeding countries. Nonstructural protein 2 (NSP2) is one of the most important viral proteins in the PRRSV life cycle. Our previous study showed that PRRSV NSP2 could induce the formation of aggresomes. In this study we explored the effects of aggresome formation on cells and found that NSP2 could induce autophagy, which depended on aggresome formation to activate aggrephagy. The transmembrane and tail domains of NSP2 contributed to aggrephagy and the cellular protein 14-3-3ε played an important role in NSP2-induced autophagy by binding the tail domain of NSP2. These findings provide information on the function of the C-terminal domain of NSP2, which will help uncover the function of NSP2 during PRRSV infection.


Asunto(s)
Proteínas 14-3-3/metabolismo , Macroautofagia/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Animales , Síndrome Respiratorio y de la Reproducción Porcina/microbiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Dominios Proteicos , Sus scrofa , Porcinos
19.
Molecules ; 25(10)2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32443527

RESUMEN

Protein degradation is tightly regulated inside cells because of its utmost importance for protein homeostasis (proteostasis). The two major intracellular proteolytic pathways are the ubiquitin-proteasome and the autophagy-lysosome systems which ensure the fate of proteins when modified by various members of the ubiquitin family. These pathways are tightly interconnected by receptors and cofactors that recognize distinct chain architectures to connect with either the proteasome or autophagy under distinct physiologic and pathologic situations. The degradation of proteasome by autophagy, known as proteaphagy, plays an important role in this crosstalk since it favours the activity of autophagy in the absence of fully active proteasomes. Recently described in several biological models, proteaphagy appears to help the cell to survive when proteostasis is broken by the absence of nutrients or the excess of proteins accumulated under various stress conditions. Emerging evidence indicates that proteaphagy could be permanently activated in some types of cancer or when chemoresistance is observed in patients.


Asunto(s)
Autofagia/genética , Lisosomas/genética , Complejo de la Endopetidasa Proteasomal/genética , Ubiquitina/genética , Fenómenos Fisiológicos Celulares/genética , Humanos , Macroautofagia/genética , Proteolisis , Ubiquitinación/genética
20.
Semin Cancer Biol ; 66: 163-170, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32126260

RESUMEN

Macroautophagy (herein autophagy) is an intracellular pathway in which cytoplasmic components are captured by double-membrane vesicles (autophagosomes) that eventually fuse with lysosomes to degrade the cargo. Basal levels of autophagy in all eukaryotic cells maintain cellular homeostasis and under conditions of stress, organelles and proteins not essential for survival are degraded. Apart from these functions, cargoes like aggregated proteins, damaged organelles and intracellular pathogens, which are otherwise harmful to cells, are also selectively captured by autophagy and are destined for degradation. In terms of infectious diseases, pathogens are cleared by a specific form of autophagy known as xenophagy. This lysosomal mediated degradation of pathogens also increases the antigen presentation of cells thereby inducing a further immune response. The process of xenophagy provides a broad spectrum of defense mechanism to capture bacterial, viral and protozoan pathogens. However, pathogens have developed ingenious mechanisms to modulate xenophagy to enhance their intracellular survival. Meanwhile, certain pathogens also induce deleterious effects such as chronic inflammation and overexpression of oncogenes in the host system. This over time can increase the susceptibility of the host for tumorigenesis. Hence targeting tumor through anti-microbial mechanisms like xenophagy could be a novel strategy for combinatorial anti-cancer therapy. The recent developments in understanding the role of xenophagy in combating cancer causing pathogens will be discussed in this review.


Asunto(s)
Macroautofagia/fisiología , Neoplasias/patología , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Humanos , Inmunidad/genética , Lisosomas/genética , Lisosomas/patología , Macroautofagia/genética , Neoplasias/genética , Oncogenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA