Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 752
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2402872121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968126

RESUMEN

Bioengineering of plant immune receptors has emerged as a key strategy for generating novel disease resistance traits to counteract the expanding threat of plant pathogens to global food security. However, current approaches are limited by rapid evolution of plant pathogens in the field and may lack durability when deployed. Here, we show that the rice nucleotide-binding, leucine-rich repeat (NLR) immune receptor Pik-1 can be engineered to respond to a conserved family of effectors from the multihost blast fungus pathogen Magnaporthe oryzae. We switched the effector binding and response profile of the Pik NLR from its cognate rice blast effector AVR-Pik to the host-determining factor pathogenicity toward weeping lovegrass 2 (Pwl2) by installing a putative host target, OsHIPP43, in place of the native integrated heavy metal-associated domain (generating Pikm-1OsHIPP43). This chimeric receptor also responded to other PWL alleles from diverse blast isolates. The crystal structure of the Pwl2/OsHIPP43 complex revealed a multifaceted, robust interface that cannot be easily disrupted by mutagenesis, and may therefore provide durable, broad resistance to blast isolates carrying PWL effectors in the field. Our findings highlight how the host targets of pathogen effectors can be used to bioengineer recognition specificities that have more robust properties compared to naturally evolved disease resistance genes.


Asunto(s)
Proteínas Fúngicas , Proteínas NLR , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Oryza/microbiología , Oryza/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas NLR/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/inmunología , Proteínas de Plantas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/inmunología , Interacciones Huésped-Patógeno/inmunología , Resistencia a la Enfermedad/inmunología , Inmunidad de la Planta , Bioingeniería/métodos , Magnaporthe/inmunología , Magnaporthe/genética , Magnaporthe/metabolismo , Unión Proteica , Receptores Inmunológicos/metabolismo , Ascomicetos
2.
Mol Plant Pathol ; 25(7): e13493, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39034619

RESUMEN

The cell wall is the first barrier against external adversity and plays roles in maintaining normal physiological functions of fungi. Previously, we reported a nucleosome assembly protein, MoNap1, in Magnaporthe oryzae that plays a role in cell wall integrity (CWI), stress response, and pathogenicity. Moreover, MoNap1 negatively regulates the expression of MoSMI1 encoded by MGG_03970. Here, we demonstrated that deletion of MoSMI1 resulted in a significant defect in appressorium function, CWI, cell morphology, and pathogenicity. Further investigation revealed that MoSmi1 interacted with MoOsm1 and MoMps1 and affected the phosphorylation levels of MoOsm1, MoMps1, and MoPmk1, suggesting that MoSmi1 regulates biological functions by mediating mitogen-activated protein kinase (MAPK) signalling pathway in M. oryzae. In addition, transcriptome data revealed that MoSmi1 regulates many infection-related processes in M. oryzae, such as membrane-related pathway and oxidation reduction process. In conclusion, our study demonstrated that MoSmi1 regulates CWI by mediating the MAPK pathway to affect development and pathogenicity of M. oryzae.


Asunto(s)
Proteínas Fúngicas , Proteínas Quinasas Activadas por Mitógenos , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Virulencia/genética , Regulación Fúngica de la Expresión Génica , Enfermedades de las Plantas/microbiología , Pared Celular/metabolismo , Sistema de Señalización de MAP Quinasas , Oryza/microbiología , Fosforilación , Magnaporthe/patogenicidad , Magnaporthe/genética , Ascomicetos
3.
Pestic Biochem Physiol ; 203: 105990, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084767

RESUMEN

Rice blast, caused by Magnaporthe oryzae, is a devastating fungal disease worldwide. Pydiflumetofen (Pyd) is a new succinate dehydrogenase inhibitor (SDHI) that exhibited anti-fungal activity against M. oryzae. However, control of rice blast by Pyd and risk of resistance to Pyd are not well studied in this pathogen. The baseline sensitivity of 109 M. oryzae strains to Pyd was determined using mycelial growth rate assay, with EC50 values ranging from 0.291 to 2.1313 µg/mL, and an average EC50 value of 1.1005 ± 0.3727 µg/mL. Totally 28 Pyd-resistant (PydR) mutants with 15 genotypes of point mutations in succinate dehydrogenase (SDH) complex were obtained, and the resistance level could be divided into three categories of very high resistance (VHR), high resistance (HR) and moderate resistance (MR) with the resistance factors (RFs) of >1000, 105.74-986.13 and 81.92-99.48, respectively. Molecular docking revealed that all 15 mutations decreased the binding-force score for the affinity between Pyd and target subunits, which further confirmed that these 15 genotypes of point mutations were responsible for the resistance to Pyd in M. oryzae. There was positive cross resistance between Pyd and other SDHIs, such as fluxapyroxad, penflufen or carboxin, while there was no cross-resistance between Pyd and carbendazim, prochloraz or azoxystrobin in M. oryzae, however, PydR mutants with SdhBP198Q, SdhCL66F or SdhCL66R genotype were still sensitive to the other 3 SDHIs, indicating lack of cross resistance. The results of fitness study revealed that the point mutations in MoSdhB/C/D genes might reduce the hyphae growth and sporulation, but could improve the pathogenicity in M. oryzae. Taken together, the risk of resistance to Pyd might be moderate to high, and it should be used as tank-mixtures with other classes of fungicides to delay resistance development when it is used for the control of rice blast in the field.


Asunto(s)
Sustitución de Aminoácidos , Farmacorresistencia Fúngica , Fungicidas Industriales , Succinato Deshidrogenasa , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/metabolismo , Farmacorresistencia Fúngica/genética , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Simulación del Acoplamiento Molecular , Magnaporthe/efectos de los fármacos , Magnaporthe/genética , Mutación Puntual , Oryza/microbiología , Ascomicetos
4.
Pestic Biochem Physiol ; 203: 106027, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084785

RESUMEN

Magnaporthe oryzae is a rice blast pathogen that seriously threatens rice yield. Benzovindiflupyr is a succinate dehydrogenase inhibitor (SDHI) fungicide that effectively controls many crop diseases. Benzovindiflupyr has a strong inhibitory effect on M. oryzae; however, control of rice blast by benzovindiflupyr and risk of resistance to benzovindiflupyr are not well studied in this pathogen. In this study, six benzovindiflupyr-resistant strains were obtained by domestication induced in the laboratory. The MoSdhBH245D mutation was the cause of M. oryzae resistance to benzovindiflupyr, which was verified through succinate dehydrogenase (SDH) activity assays, molecular docking, and site-specific mutations. Survival fitness analysis showed no significant difference between the benzovindiflupyr-resistant and parent strains. Positive cross-resistance to benzovindiflupyr and other SDHIs and negative cross-resistance to azoxystrobin were observed. Therefore, the risk of benzovindiflupyr resistance in M. oryzae might be medium to high. It should be combined with other classes of fungicides (tebuconazole and azoxystrobin) to slow the development of resistance.


Asunto(s)
Farmacorresistencia Fúngica , Fungicidas Industriales , Mutación , Succinato Deshidrogenasa , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/antagonistas & inhibidores , Fungicidas Industriales/farmacología , Farmacorresistencia Fúngica/genética , Enfermedades de las Plantas/microbiología , Magnaporthe/efectos de los fármacos , Magnaporthe/genética , Simulación del Acoplamiento Molecular , Oryza/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Estrobilurinas/farmacología , Ascomicetos
5.
PLoS Pathog ; 20(6): e1012277, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38885263

RESUMEN

Filamentous plant pathogens deliver effector proteins into host cells to suppress host defence responses and manipulate metabolic processes to support colonization. Understanding the evolution and molecular function of these effectors provides knowledge about pathogenesis and can suggest novel strategies to reduce damage caused by pathogens. However, effector proteins are highly variable, share weak sequence similarity and, although they can be grouped according to their structure, only a few structurally conserved effector families have been functionally characterized to date. Here, we demonstrate that Zinc-finger fold (ZiF) secreted proteins form a functionally diverse effector family in the blast fungus Magnaporthe oryzae. This family relies on the Zinc-finger motif for protein stability and is ubiquitously present in blast fungus lineages infecting 13 different host species, forming different effector tribes. Homologs of the canonical ZiF effector, AVR-Pii, from rice infecting isolates are present in multiple M. oryzae lineages. Wheat infecting strains of the fungus also possess an AVR-Pii like allele that binds host Exo70 proteins and activates the immune receptor Pii. Furthermore, ZiF tribes may vary in the proteins they bind to, indicating functional diversification and an intricate effector/host interactome. Altogether, we uncovered a new effector family with a common protein fold that has functionally diversified in lineages of M. oryzae. This work expands our understanding of the diversity of M. oryzae effectors, the molecular basis of plant pathogenesis and may ultimately facilitate the development of new sources for pathogen resistance.


Asunto(s)
Proteínas Fúngicas , Enfermedades de las Plantas , Dedos de Zinc , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno , Oryza/microbiología , Ascomicetos/genética , Ascomicetos/metabolismo , Magnaporthe/genética , Magnaporthe/metabolismo , Filogenia
6.
Mol Plant Pathol ; 25(5): e13460, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38695626

RESUMEN

Reverse genetic approaches are common tools in genomics for elucidating gene functions, involving techniques such as gene deletion followed by screening for aberrant phenotypes. If the generation of gene deletion mutants fails, the question arises whether the failure stems from technical issues or because the gene of interest (GOI) is essential, meaning that the deletion causes lethality. In this report, we introduce a novel method for assessing gene essentiality using the phytopathogenic ascomycete Magnaporthe oryzae. The method is based on the observation that telomere vectors are lost in transformants during cultivation without selection pressure. We tested the hypothesis that essential genes can be identified in deletion mutants co-transformed with a telomere vector. The M. oryzae gene MoPKC, described in literature as essential, was chosen as GOI. Using CRISPR/Cas9 technology transformants with deleted GOI were generated and backed up by a telomere vector carrying a copy of the GOI and conferring fenhexamid resistance. Transformants in which the GOI deletion in the genome was not successful lost the telomere vector on media without fenhexamid. In contrast, transformants with confirmed GOI deletion retained the telomere vector even in absence of fenhexamid selection. In the latter case, the maintenance of the telomere indicates that the GOI is essential for the surveillance of the fungi, as it would have been lost otherwise. The method presented here allows to test for essentiality of genes when no mutants can be obtained from gene deletion approaches, thereby expanding the toolbox for studying gene function in ascomycetes.


Asunto(s)
Ascomicetos , Genes Esenciales , Vectores Genéticos , Fenotipo , Telómero , Telómero/genética , Vectores Genéticos/genética , Sistemas CRISPR-Cas/genética , Genes Fúngicos/genética , Eliminación de Gen , Magnaporthe/genética , Magnaporthe/patogenicidad
7.
Arch Virol ; 169(6): 128, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38802709

RESUMEN

A novel negative-sense single-stranded RNA mycovirus, designated as "Magnaporthe oryzae mymonavirus 1" (MoMNV1), was identified in the rice blast fungus Magnaporthe oryzae isolate NJ39. MoMNV1 has a single genomic RNA segment consisting of 10,515 nucleotides, which contains six open reading frames. The largest open reading frame contains 5837 bases and encodes an RNA replicase. The six open reading frames have no overlap and are arranged linearly on the genome, but the spacing of the genes is small, with a maximum of 315 bases and a minimum of 80 bases. Genome comparison and phylogenetic analysis indicated that MoMNV1 is a new member of the genus Penicillimonavirus of the family Mymonaviridae.


Asunto(s)
Virus Fúngicos , Genoma Viral , Sistemas de Lectura Abierta , Oryza , Filogenia , Enfermedades de las Plantas , Virus ARN , ARN Viral , Virus ARN/genética , Virus ARN/aislamiento & purificación , Virus ARN/clasificación , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Virus Fúngicos/clasificación , Oryza/microbiología , Oryza/virología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , ARN Viral/genética , Ascomicetos/virología , Ascomicetos/genética , Proteínas Virales/genética , Magnaporthe/virología , Magnaporthe/genética
8.
Int J Biol Macromol ; 268(Pt 1): 131867, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670181

RESUMEN

Polarized growth is critical for the development of filamentous phytopathogens, and the CHY-type zinc finger protein Chy1 regulates microtubule assembly to influence polarized growth and thereby affect plant infections. However, the biological role of a Chy1 homolog MoChy1 remains unknown in Magnaporthe oryzae. We found here that the MoChy1-GFP was distributed in the cytoplasm outside the vacuole in hyphae and localized mainly to the vacuole compartments as the appressorium matured. The Mochy1 mutants showed an extremely slow growth rate, curved and branched mycelium, reduced conidiation, and a smaller size in the appressorium. Meanwhile, the Mochy1 mutants showed increased sensitivity to benomyl, damaged microtubule cytoskeleton, and mislocalized polarisome protein MoSpa2 and chitin synthase MoChs6 in hyphae. Compared to Guy11, the Mochy1 mutants exhibited increased sensitivity to H2O2, impaired ability to eliminate host-derived ROS and reduced penetration into host plants, resulting in a strong reduction in pathogenicity of Mochy1 mutants. Furthermore, the Mochy1 mutants also exhibited defects in chitin distribution, osmotic stress tolerance, and septin ring organization during appressorium differentiation and fungal development. Nonselective autophagy was negatively regulated in Mochy1 mutants compared to Guy11. In summary, MoChy1 plays multiple roles in fungal polar growth and full virulence of M. oryzae.


Asunto(s)
Autofagia , Proteínas Fúngicas , Esporas Fúngicas , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/genética , Mutación , Dedos de Zinc , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Virulencia/genética , Magnaporthe/patogenicidad , Magnaporthe/genética , Magnaporthe/crecimiento & desarrollo , Magnaporthe/metabolismo , Enfermedades de las Plantas/microbiología , Oryza/microbiología , Regulación Fúngica de la Expresión Génica , Ascomicetos
9.
PLoS One ; 19(3): e0299999, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38451992

RESUMEN

Rice blast, caused by rice blast fungus (Magnaporthe oryzae), is a global threat to food security, with up to 50% yield losses. Panicle blast is a severe form of rice blast, and disease responses vary between cultivars with different genotypes. Reactive oxygen species (ROS)-mediated signaling reactions and the phenylpropanoid pathway are important defense mechanisms involved in recognizing and resisting against fungal infection. To understand rice-M. oryzae interactions in resistant and susceptible cultivars, we determined dynamic changes in the activities of five defense-related enzymes in resistant cultivar jingsui 18 and susceptible cultivar jinyuan 899 infected with M. oryzae from 4 to 25 days after infection. We then performed untargeted metabolomics analyses to profile the metabolomes of the cultivars under infected and non-infected conditions. Dynamic changes in the activities of five defense-related enzymes were closely related to panicle blast resistance in rice. Metabolome data analysis identified 634 differentially accumulated metabolites (DAMs) between resistant and susceptible cultivars following infection, potentially explaining differences in disease response between varieties. The most enriched DAMs were associated with lipids and lipid-like molecules, phenylpropanoids and polyketides, organoheterocyclic compounds, organic acids and derivatives, and lignans, neolignans, and related compounds. Multiple metabolic pathways are involved in resistance to panicle blast in rice, including biosynthesis of other secondary metabolites, amino acid metabolism, lipid metabolism, phenylpropanoid biosynthesis, arachidonic acid metabolism, arginine biosynthesis, tyrosine metabolism, tryptophan metabolism, tyrosine and tryptophan biosynthesis, lysine biosynthesis, and oxidative phosphorylation.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Resistencia a la Enfermedad/genética , Oryza/genética , Magnaporthe/genética , Triptófano/metabolismo , Tirosina/metabolismo , Enfermedades de las Plantas/microbiología
10.
mBio ; 15(5): e0008624, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38534157

RESUMEN

Dynamic transposition of transposable elements (TEs) in fungal pathogens has significant impact on genome stability, gene expression, and virulence to the host. In Magnaporthe oryzae, genome plasticity resulting from TE insertion is a major driving force leading to the rapid evolution and diversification of this fungus. Despite their importance in M. oryzae population evolution and divergence, our understanding of TEs in this context remains limited. Here, we conducted a genome-wide analysis of TE transposition dynamics in the 11 most abundant TE families in M. oryzae populations. Our results show that these TEs have specifically expanded in recently isolated M. oryzae rice populations, with the presence/absence polymorphism of TE insertions highly concordant with population divergence on Geng/Japonica and Xian/Indica rice cultivars. Notably, the genes targeted by clade-specific TEs showed clade-specific expression patterns and are involved in the pathogenic process, suggesting a transcriptional regulation of TEs on targeted genes. Our study provides a comprehensive analysis of TEs in M. oryzae populations and demonstrates a crucial role of recent TE bursts in adaptive evolution and diversification of the M. oryzae rice-infecting lineage. IMPORTANCE: Magnaporthe oryzae is the causal agent of the destructive blast disease, which caused massive loss of yield annually worldwide. The fungus diverged into distinct clades during adaptation toward the two rice subspecies, Xian/Indica and Geng/Japonica. Although the role of TEs in the adaptive evolution was well established, mechanisms underlying how TEs promote the population divergence of M. oryzae remain largely unknown. In this study, we reported that TEs shape the population divergence of M. oryzae by differentially regulating gene expression between Xian/Indica-infecting and Geng/Japonica-infecting populations. Our results revealed a TE insertion-mediated gene expression adaption that led to the divergence of M. oryzae population infecting different rice subspecies.


Asunto(s)
Elementos Transponibles de ADN , Evolución Molecular , Genoma Fúngico , Oryza , Enfermedades de las Plantas , Elementos Transponibles de ADN/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Virulencia/genética , Variación Genética , Ascomicetos/genética , Ascomicetos/clasificación , Ascomicetos/patogenicidad , Magnaporthe/genética , Magnaporthe/patogenicidad , Magnaporthe/clasificación
11.
J Genet Genomics ; 51(7): 723-734, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38490361

RESUMEN

The fungal disease caused by Magnaporthe oryzae is one of the most devastating diseases that endanger many crops worldwide. Evidence shows that sexual reproduction can be advantageous for fungal diseases as hybridization facilitates host-jumping. However, the pervasive clonal lineages of M. oryzae observed in natural fields contradict this expectation. A better understanding of the roles of recombination and the fungi-specific repeat-induced point mutation (RIP) in shaping its evolutionary trajectory is essential to bridge this knowledge gap. Here we systematically investigate the RIP and recombination landscapes in M. oryzae using a whole genome sequencing data from 252 population samples and 92 cross progenies. Our data reveal that the RIP can robustly capture the population history of M. oryzae, and we provide accurate estimations of the recombination and RIP rates across different M. oryzae clades. Significantly, our results highlight a parent-of-origin bias in both recombination and RIP rates, tightly associating with their sexual potential and variations of effector proteins. This bias suggests a critical trade-off between generating novel allelic combinations in the sexual cycle to facilitate host-jumping and stimulating transposon-associated diversification of effectors in the asexual cycle to facilitate host coevolution. These findings provide unique insights into understanding the evolution of blast fungus.


Asunto(s)
Mutación Puntual , Recombinación Genética , Reproducción Asexuada , Recombinación Genética/genética , Mutación Puntual/genética , Reproducción Asexuada/genética , Evolución Molecular , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Genoma Fúngico/genética , Magnaporthe/genética , Magnaporthe/fisiología , Magnaporthe/patogenicidad , Ascomicetos
12.
Genetics ; 226(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38290434

RESUMEN

Fungi use the accessory gene content of their pangenomes to adapt to their environments. While gene presence-absence variation contributes to shaping accessory gene reservoirs, the genomic contexts that shape these events remain unclear. Since pangenome studies are typically species-wide and do not analyze different populations separately, it is yet to be uncovered whether presence-absence variation patterns and mechanisms are consistent across populations. Fungal plant pathogens are useful models for studying presence-absence variation because they rely on it to adapt to their hosts, and members of a species often infect distinct hosts. We analyzed gene presence-absence variation in the blast fungus, Magnaporthe oryzae (syn. Pyricularia oryzae), and found that presence-absence variation genes involved in host-pathogen and microbe-microbe interactions may drive the adaptation of the fungus to its environment. We then analyzed genomic and epigenomic features of presence-absence variation and observed that proximity to transposable elements, gene GC content, gene length, expression level in the host, and histone H3K27me3 marks were different between presence-absence variation genes and conserved genes. We used these features to construct a model that was able to predict whether a gene is likely to experience presence-absence variation with high precision (86.06%) and recall (92.88%) in M. oryzae. Finally, we found that presence-absence variation genes in the rice and wheat pathotypes of M. oryzae differed in their number and their genomic context. Our results suggest that genomic and epigenomic features of gene presence-absence variation can be used to better understand and predict fungal pangenome evolution. We also show that substantial intra-species variation can exist in these features.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Magnaporthe/genética , Genómica , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
13.
Microbiol Res ; 279: 127554, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056173

RESUMEN

Rice blast, caused by the plant pathogenic fungus Magnaporthe oryzae, is a destructive disaster all over the earth that causes enormous losses in crop production. Sphingolipid, an important biological cell membrane lipid, is an essential structural component in the plasma membrane (PM) and has several biological functions, including cell mitosis, apoptosis, stress resistance, and signal transduction. Previous studies have suggested that sphingolipid and its derivatives play essential roles in the virulence of plant pathogenic fungi. However, the functions of sphingolipid biosynthesis-related proteins are not fully understood. In this article, we identified a key sphingolipid synthesis enzyme, MoDes1, and found that it is engaged in cell development and pathogenicity in M. oryzae. Deletion of MoDES1 gave rise to pleiotropic defects in vegetative growth, conidiation, plant penetration, and pathogenicity. MoDes1 is also required for lipid homeostasis and participates in the cell wall integrity (CWI) and Osm1-MAPK pathways. Notably, our results showed that there is negative feedback in the TORC2 signaling pathway to compensate for the decreased sphingolipid level due to the knockout of MoDES1 by regulating the phosphorylated Ypk1 level and PM tension. Furthermore, protein structure building has shown that MoDes1 is a potential drug target. These findings further refine the function of Des1 and deepen our understanding of the sphingolipid biosynthesis pathway in M. oryzae, laying a foundation for developing novel and specific drugs for rice blast control.


Asunto(s)
Magnaporthe , Oryza , Virulencia/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Esfingolípidos/metabolismo , Oryza/microbiología , Magnaporthe/genética , Membrana Celular/metabolismo , Enfermedades de las Plantas/microbiología , Esporas Fúngicas , Regulación Fúngica de la Expresión Génica
14.
New Phytol ; 241(3): 1266-1276, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37984076

RESUMEN

The fungal pathogen, Magnaporthe oryzae Triticum pathotype, causing wheat blast disease was first identified in South America and recently spread across continents to South Asia and Africa. Here, we studied the genetic relationship among isolates found on the three continents. Magnaporthe oryzae strains closely related to a South American field isolate B71 were found to have caused the wheat blast outbreaks in South Asia and Africa. Genomic variation among isolates from the three continents was examined using an improved B71 reference genome and whole-genome sequences. We found strong evidence to support that the outbreaks in Bangladesh and Zambia were caused by the introductions of genetically separated isolates, although they were all close to B71 and, therefore, collectively referred to as the B71 branch. In addition, B71 branch strains carried at least one supernumerary mini-chromosome. Genome assembly of a Zambian strain revealed that its mini-chromosome was similar to the B71 mini-chromosome but with a high level of structural variation. Our findings show that while core genomes of the multiple introductions are highly similar, the mini-chromosomes have undergone marked diversification. The maintenance of the mini-chromosome and rapid genomic changes suggest the mini-chromosomes may serve important virulence or niche adaptation roles under diverse environmental conditions.


Asunto(s)
Ascomicetos , Magnaporthe , Triticum , Triticum/genética , Bangladesh/epidemiología , Zambia/epidemiología , Magnaporthe/genética , Cromosomas , Enfermedades de las Plantas/microbiología
15.
Artículo en Inglés | MEDLINE | ID: mdl-38153818

RESUMEN

Rice blast, caused by Magnaporthe oryzae(M.oryzae), is a destructive rice disease that reduces rice yield by 10% to 30% annually. It also affects other cereal crops such as barley, wheat, rye, millet, sorghum, and maize. Small RNAs (sRNAs) play an essential regulatory role in fungus-plant interaction during the fungal invasion, but studies on pathogenic sRNAs during the fungal invasion of plants based on multi-omics data integration are rare. This paper proposes a novel approach called Graph Embedding combined with Random Walk with Restart (GERWR) to identify pathogenic sRNAs based on multi-omics data integration during M.oryzae invasion. By constructing a multi-omics network (MRMO), we identified 29 pathogenic sRNAs of rice blast fungus. Further analysis revealed that these sRNAs regulate rice genes in a many-to-many relationship, playing a significant regulatory role in the pathogenesis of rice blast disease. This paper explores the pathogenic factors of rice blast disease from the perspective of multi-omics data analysis, revealing the inherent connection between pathogenic factors of different omics. It has essential scientific significance for studying the pathogenic mechanism of rice blast fungus, the rice blast fungus-rice model system, and the pathogen-host interaction in related fields.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Oryza/genética , Oryza/microbiología , Magnaporthe/genética , Virulencia
16.
Mol Biol Cell ; 35(1): br2, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37903237

RESUMEN

The differentiation of specialized infection cells, called appressoria, from polarized germ tubes of the blast fungus Magnaporthe oryzae, requires remarkable remodeling of cell polarity and architecture, yet our understanding of this process remains incomplete. Here we investigate the behavior and role of cell-end marker proteins in appressorium remodeling and hyphal branch emergence. We show that the SH3 domain-containing protein Tea4 is required for the normal formation of an F-actin ring at Tea1-GFP-labeled polarity nodes, which contributes to the remodeling of septin structures and repolarization of the appressorium. Further, we show that Tea1 localizes to a cortical structure during hyphal septation which, unlike contractile septin rings, persists after septum formation, and, in combination with other polarity determinants, likely spatially regulates branch emergence. Genetic loss of Tea4 leads to mislocalization of Tea1 at the hyphal apex and with it, impaired growth directionality. In contrast, Tea1 is largely depleted from septation events in Δtea4 mutants and branching and septation are significantly reduced. Together, our data provide new insight into polarity remodeling during infection-related and vegetative growth by the blast fungus.


Asunto(s)
Ascomicetos , Magnaporthe , Septinas/metabolismo , Magnaporthe/genética , Ascomicetos/metabolismo , Hifa , Proteínas Fúngicas/metabolismo
17.
Lett Appl Microbiol ; 76(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38086617

RESUMEN

Our study focuses on hydroxamate-type siderophores from Pseudomonas putida BP25, known for chelating ferric iron and aiding microbial growth in iron-deficient environments. Confirmed through CAS-agar and tetrazolium tests, a purified siderophore extract was obtained via ion-exchange chromatography. Applying varying concentrations of this siderophore to rice seedlings demonstrated concentration-dependent effects on shoot and root phenotypes. Prophylactic application on rice leaves significantly reduced blast severity (68.7%-97.0%), surpassing curative application (47.5%-86.87%). Additionally, the siderophore treatment elevated peroxidase, polyphenol oxidase, and total phenols in rice plants. Defense-related genes linked to salicylic acid (OsPR1.1, OsNPR1, and OsPDF2.2), and other pathways (Oshox24, OsCLE, and OsGLP3-3, OsEIN2.4, and OsCSE) promoting blast suppression showed upregulation. However, the OsACS6 gene associated with ethylene-induced internodal elongation was significantly downregulated. Overall, our findings propose that the siderophore from P. putida BP25 induces defense gene transcription, offering potential for sustainable rice production via bio-formulation.


Asunto(s)
Magnaporthe , Oryza , Pseudomonas putida , Sideróforos/metabolismo , Oryza/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Magnaporthe/genética , Magnaporthe/metabolismo , Hierro/metabolismo , Enfermedades de las Plantas
18.
Nat Commun ; 14(1): 8399, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110425

RESUMEN

Fungal pathogens typically use secreted effector proteins to suppress host immune activators to facilitate invasion. However, there is rarely evidence supporting the idea that fungal secretory proteins contribute to pathogenesis by transactivating host genes that suppress defense. We previously found that pathogen Magnaporthe oryzae induces rice Bsr-d1 to facilitate infection and hypothesized that a fungal effector mediates this induction. Here, we report that MoSPAB1 secreted by M. oryzae directly binds to the Bsr-d1 promoter to induce its expression, facilitating pathogenesis. Amino acids 103-123 of MoSPAB1 are required for its binding to the Bsr-d1 promoter. Both MoSPAB1 and rice MYBS1 compete for binding to the Bsr-d1 promoter to regulate Bsr-d1 expression. Furthermore, MoSPAB1 homologues are highly conserved among fungi. In particular, Colletotrichum fructicola CfSPAB1 and Colletotrichum sublineola CsSPAB1 activate kiwifruit AcBsr-d1 and sorghum SbBsr-d1 respectively, to facilitate pathogenesis. Taken together, our findings reveal a conserved module that may be widely utilized by fungi to enhance pathogenesis.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Oryza/genética , Magnaporthe/genética , Ascomicetos/metabolismo , Transporte Biológico , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
19.
Sci Rep ; 13(1): 18683, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907574

RESUMEN

The Vietnamese indica landrace 'Tetep' is known worldwide for its durable and broad spectrum-resistance to blast. We performed genetic and molecular analyses of leaf blast resistance in a Tetep derived recombinant inbred line 'RIL4' which is resistant to both leaf and neck blast. Phenotypic analysis of segregating F2 progenies suggested that leaf blast resistance in RIL4 was controlled by a dominant gene tentatively designated as Pi-l(t). The gene was mapped to a 2.4 cm region close to the centromere of chromosome 12. The search for the gene content in the equivalent genomic region of reference cv. Nipponbare revealed the presence of five NBS-LRR genes, two of which corresponded to the alleles of Pita and Pi67 genes previously identified from Tetep. The two other genes, LOC_Os12g17090, and LOC_Os12g17490 represented the homologs of stripe rust resistance gene Yr10. The allelic tests with Pita2 and Pi67 lines suggested that the leaf blast resistance gene in RIL4 is either allelic or tightly linked to these genes. The genomic position of the leaf blast resistance gene in RIL4 perfectly coincided with the genomic position of a neck blast resistance gene Pb2 previously identified from this line suggesting that the same gene confers resistance to leaf and neck blast. The present results were discussed in juxtaposition with past studies on the genes of Pita/Pita2 resistance gene complex.


Asunto(s)
Magnaporthe , Oryza , Mapeo Cromosómico , Genes de Plantas , Alelos , Hojas de la Planta/genética , Vietnam , Enfermedades de las Plantas/genética , Oryza/genética , Magnaporthe/genética
20.
Genome Biol Evol ; 15(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37975814

RESUMEN

Transposable elements (TEs) contribute to intraspecific variation and play important roles in the evolution of fungal genomes. However, our understanding of the processes that shape TE landscapes is limited, as is our understanding of the relationship between TE content, population structure, and evolutionary history of fungal species. Fungal plant pathogens, which often have host-specific populations, are useful systems in which to study intraspecific TE content diversity. Here, we describe TE dynamics in five lineages of Magnaporthe oryzae, the fungus that causes blast disease of rice, wheat, and many other grasses. We identified differences in TE content across these lineages and showed that recent lineage-specific expansions of certain TEs have contributed to overall greater TE content in rice-infecting and Setaria-infecting lineages. We reconstructed the evolutionary histories of long terminal repeat-retrotransposon expansions and found that in some cases they were caused by complex proliferation dynamics of one element and in others by multiple elements from an older population of TEs multiplying in parallel. Additionally, we found evidence suggesting the recent transfer of a DNA transposon between rice- and wheat-infecting M. oryzae lineages and a region showing evidence of homologous recombination between those lineages, which could have facilitated such a transfer. By investigating intraspecific TE content variation, we uncovered key differences in the proliferation dynamics of TEs in various pathotypes of a fungal plant pathogen, giving us a better understanding of the evolutionary history of the pathogen itself.


Asunto(s)
Magnaporthe , Oryza , Elementos Transponibles de ADN/genética , Magnaporthe/genética , Genoma Fúngico , Poaceae/genética , Retroelementos , Oryza/genética , Oryza/microbiología , Triticum/genética , Evolución Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...