Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.078
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39000025

RESUMEN

3,4-disubstituted maleimides find wide applications in various pharmacologically active compounds. This study presents a highly effective approach for synthesizing derivatives of 3,4-disubstituted maleimides through the direct isomerization of α-succinimide-substituted allenoates, followed by a cascade γ'-addition and aryl imines using PR3 as a catalyst. The resulting series of 3,4-disubstituted maleimides exhibited excellent stereoselectivities, achieving yields of up to 86%. To our knowledge, the phosphine-mediated γ'-addition reaction of allenoates is seldom reported.


Asunto(s)
Iminas , Maleimidas , Fosfinas , Succinimidas , Maleimidas/química , Maleimidas/síntesis química , Fosfinas/química , Catálisis , Iminas/química , Succinimidas/química , Estereoisomerismo , Estructura Molecular , Isomerismo
2.
Bioorg Med Chem ; 108: 117786, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38843656

RESUMEN

An efficient protocol for direct coupling of maleimides and indolines at the C7-position was achieved under Rh(III) catalysis. Thirty four novel indoline-maleimide conjugates were prepared in good to excellent yields using this method. All compounds were evaluated for their anti-proliferative effect against colorectal cell lines. Among them, compound 3ab showed the most potent anti-proliferative activity against the CRC cells, and displayed low toxicity in the normal cell. Further investigation indicated that 3ab could effectively suppress the proliferation and migration of CRC cells, along with inducing cell cycle arrest and apoptosis. Mechanistic studies revealed that compound 3ab inhibited the proliferation of CRC cells via suppressing the AKT/GSK-3ß pathway. In vivo evaluation demonstrated remarkable antitumor effect of 3ab (10 mg/kg) in the HCT116 xenograft model with no obvious toxicity, which is superior to that of 5-Fluorouracil (20 mg/kg). Therefore, conjugate 3ab could be considered as a potential CRC therapy agent for further development.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Neoplasias Colorrectales , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Indoles , Maleimidas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Indoles/química , Indoles/farmacología , Indoles/síntesis química , Maleimidas/química , Maleimidas/síntesis química , Maleimidas/farmacología , Proliferación Celular/efectos de los fármacos , Animales , Relación Estructura-Actividad , Apoptosis/efectos de los fármacos , Estructura Molecular , Ratones , Relación Dosis-Respuesta a Droga , Ratones Desnudos , Línea Celular Tumoral , Ratones Endogámicos BALB C , Movimiento Celular/efectos de los fármacos
3.
Bioorg Chem ; 149: 107504, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38850783

RESUMEN

The notable characteristics of recently emerged Antibody-Drug Conjugates (ADCs) encompass the targeting of Human Epidermal growth factor Receptor 2 (HER2) through monoclonal antibodies (mAbs) and a high ratio of drug to antibody (DAR). The achievements of Kadcyla® (T-DM1) and Enhertu® (T-Dxd) have demonstrated that HER2-targeting antibodies, such as trastuzumab, have shown to be competitive in terms of efficacy and price for development. Furthermore, with the arrival of T-Dxd and Trodelvy®, high-DAR (7-8) ADCs, which differ from the moderate DAR (3-4) ADCs that were formerly regarded as conventional, are being acknowledged for their worth. Following this trend of drug development, we endeavored to develop a high-DAR ADC using a straightforward approach involving the utilization of DM1, a highly potent substance, in combination with the widely recognized trastuzumab. To achieve a high DAR, DM1 was conjugated to reduced cysteine through the simple design and synthesis of various dimaleimide linkers with differing lengths. Using LC and MS analysis, we have demonstrated that our synthesis methodology is uncomplicated and efficacious, yielding trastuzumab-based ADCs that exhibit a remarkable degree of uniformity. These ADCs have been experimentally substantiated to exert an inhibitory effect on cancer cells in vitro, thus affirming their value as noteworthy additions to the realm of ADCs.


Asunto(s)
Ado-Trastuzumab Emtansina , Inmunoconjugados , Receptor ErbB-2 , Trastuzumab , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/metabolismo , Ado-Trastuzumab Emtansina/química , Trastuzumab/química , Trastuzumab/farmacología , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Maleimidas/química , Maleimidas/síntesis química , Relación Dosis-Respuesta a Droga , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Maitansina/química , Maitansina/farmacología , Maitansina/síntesis química , Maitansina/análogos & derivados , Línea Celular Tumoral , Antineoplásicos Inmunológicos/química , Antineoplásicos Inmunológicos/síntesis química , Antineoplásicos Inmunológicos/farmacología
4.
Drug Dev Res ; 85(4): e22196, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38812449

RESUMEN

Apigenin, a natural flavonoid compound found in chamomile (Matricaia chamomilla L.) from the Asteraceae family, has been shown in our previous study to possess antimyocardial hypertrophy and anti-cardiac fibrosis effects. However, its effects and mechanisms on the pyroptosis of cardiomyocytes induced by doxorubicin (DOX) are poorly understood. The objective of this study was to investigate the role of GSK-3ß and the effects of apigenin in DOX-induced cardiotoxicity. H9c2 cells stimulated with DOX were treated with SB216763 and apigenin. Additionally, a mouse model of DOX-induced cardiotoxicity was prepared and further treated with apigenin and SB216763 for 30 days. The findings revealed that treatment with SB216763 or apigenin resulted in a significant reduction in the levels of pyroptosis-related factors. Furthermore, the phosphorylation of GSK-3ß was enhanced while the phosphorylation of nuclear factor-kB (NF-κB) p65 was reduced following treatment with either SB216763 or apigenin. Conversely, the effects of apigenin treatment were nullified in siRNA-GSK-3ß-transfected cells. Results from computer simulation and molecular docking analysis supported that apigenin could directly target the regulation of GSK-3ß. Therefore, our study confirmed that the inhibition of GSK-3ß and treatment with apigenin effectively suppressed the pyroptosis of cardiomyocytes in both DOX-stimulated H9c2 cells and mice. These benefits may be attributed in part to the decrease in GSK-3ß expression and subsequent reduction in NF-κB p65 activation. Overall, our findings revealed that the pharmacological targeting of GSK-3ß may offer a promising therapeutic approach for alleviating DOX-induced cardiotoxicity.


Asunto(s)
Apigenina , Doxorrubicina , Glucógeno Sintasa Quinasa 3 beta , Miocitos Cardíacos , Piroptosis , Apigenina/farmacología , Animales , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Piroptosis/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratones , Línea Celular , Masculino , Ratas , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/prevención & control , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Indoles/farmacología , Maleimidas
5.
Carbohydr Polym ; 337: 122144, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710569

RESUMEN

In vivo, cells interact with the extracellular matrix (ECM), which provides a multitude of biophysical and biochemical signals that modulate cellular behavior. Inspired by this, we explored a new methodology to develop a more physiomimetic polysaccharide-based matrix for 3D cell culture. Maleimide-modified alginate (AlgM) derivatives were successfully synthesized using DMTMM to activate carboxylic groups. Thiol-terminated cell-adhesion peptides were tethered to the hydrogel network to promote integrin binding. Rapid and efficient in situ hydrogel formation was promoted by thiol-Michael addition "click" chemistry via maleimide reaction with thiol-flanked protease-sensitive peptides. Alginate derivatives were further ionically crosslinked by divalent ions present in the medium, which led to greater stability and allowed longer cell culture periods. By tailoring alginate's biofunctionality we improved cell-cell and cell-matrix interactions, providing an ECM-like 3D microenvironment. We were able to systematically and independently vary biochemical and biophysical parameters to elicit specific cell responses, creating custom-made 3D matrices. DMTMM-mediated maleimide incorporation is a promising approach to synthesizing AlgM derivatives that can be leveraged to produce ECM-like matrices for a broad range of applications, from in vitro tissue modeling to tissue regeneration.


Asunto(s)
Alginatos , Química Clic , Matriz Extracelular , Hidrogeles , Maleimidas , Compuestos de Sulfhidrilo , Humanos , Alginatos/química , Adhesión Celular/efectos de los fármacos , Reactivos de Enlaces Cruzados/química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Hidrogeles/química , Hidrogeles/síntesis química , Maleimidas/química , Compuestos de Sulfhidrilo/química
6.
J Am Chem Soc ; 146(25): 17334-17347, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38767615

RESUMEN

Manipulation of cell-cell interactions via cell surface modification is crucial in tissue engineering and cell-based therapy. To be able to monitor intercellular interactions, it can also provide useful information for understanding how the cells interact and communicate. We report herein a facile bioorthogonal strategy to promote and monitor cell-cell interactions. It involves the use of a maleimide-appended tetrazine-caged boron dipyrromethene (BODIPY)-based fluorescent probe and a maleimide-substituted bicyclo[6.1.0]non-4-yne (BCN) to modify the membrane of macrophage (RAW 264.7) and cancer (HT29, HeLa, and A431) cells, respectively, via maleimide-thiol conjugation. After modification, the two kinds of cells interact strongly through inverse electron-demand Diels-Alder reaction of the surface tetrazine and BCN moieties. The coupling also disrupts the tetrazine quenching unit, restoring the fluorescence emission of the BODIPY core on the cell-cell interface, and promotes phagocytosis. Hence, this approach can promote and facilitate the detection of intercellular interactions, rendering it potentially useful for macrophage-based immunotherapy.


Asunto(s)
Compuestos de Boro , Comunicación Celular , Colorantes Fluorescentes , Humanos , Compuestos de Boro/química , Ratones , Animales , Colorantes Fluorescentes/química , Células RAW 264.7 , Maleimidas/química , Células HeLa
7.
Cells ; 13(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38607047

RESUMEN

Cohesin is a highly conserved ring-shaped complex involved in topologically embracing chromatids, gene expression regulation, genome compartmentalization, and genome stability maintenance. Genomic analyses have detected mutations in the cohesin complex in a wide array of human tumors. These findings have led to increased interest in cohesin as a potential target in cancer therapy. Synthetic lethality has been suggested as an approach to exploit genetic differences in cancer cells to influence their selective killing. In this study, we show that mutations in ESCO1, NIPBL, PDS5B, RAD21, SMC1A, SMC3, STAG2, and WAPL genes are synthetically lethal with stimulation of WNT signaling obtained following LY2090314 treatment, a GSK3 inhibitor, in several cancer cell lines. Moreover, treatment led to the stabilization of ß-catenin and affected the expression of c-MYC, probably due to the occupancy decrease in cohesin at the c-MYC promoter. Finally, LY2090314 caused gene expression dysregulation mainly involving pathways related to transcription regulation, cell proliferation, and chromatin remodeling. For the first time, our work provides the underlying molecular basis for synthetic lethality due to cohesin mutations and suggests that targeting the WNT may be a promising therapeutic approach for tumors carrying mutated cohesin.


Asunto(s)
Cohesinas , Compuestos Heterocíclicos con 3 Anillos , Maleimidas , Neoplasias , Humanos , Mutaciones Letales Sintéticas/genética , Vía de Señalización Wnt/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Neoplasias/genética , Neoplasias/patología , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética
8.
J Chromatogr A ; 1721: 464861, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38564931

RESUMEN

The covalent attachment of polyoxometalates (POMs) to polymers has been developed as a strategic approach for the advancement of POM-based hybrid materials with versatile applications. In this study, we utilized thiol-maleimide Michael addition to investigate the kinetics and efficacy of the "one-to-one" conjugation between Keggin type POM and polystyrene. We explored the effects of solvent polarity, catalyst, molecular weight of PS and synthetic strategies on the reaction kinetics and efficiency, by means of reverse-phase high-performance liquid chromatography (RP-HPLC). A series of comparative analysis affirmed the superior efficiency of the one-pot method, particularly when facilitated by the addition of a high-polarity solvent and an excess of maleimide. These findings offer valuable insights into the intricate interplay between reaction conditions, kinetics, and selectivity in thiol-maleimide reactions of POMs and polymers. They hold profound implications for advancing the study of POM-based multifunctional materials and the synthesis of complex hybrid molecules.


Asunto(s)
Aniones , Polielectrolitos , Polímeros , Compuestos de Sulfhidrilo , Polímeros/química , Maleimidas/química , Solventes
9.
Adv Healthc Mater ; 13(17): e2303749, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38483042

RESUMEN

The Golgi apparatus (GA) is central in shuttling proteins from the endoplasmic reticulum to different cellular areas. Therefore, targeting the GA to precisely destroy its proteins through local heat could induce apoptosis, offering a potential avenue for effective cancer therapy. Herein, a GA-targeted photothermal agent based on protein anchoring is introduced for enhanced photothermal therapy of tumor through the modification of near-infrared molecular dye with maleimide derivative and benzene sulfonamide. The photothermal agent can actively target the GA and covalently anchor to its sulfhydryl proteins, thereby increasing its retention within the GA. Under laser irradiation, the heat generated by the photothermal agent efficiently disrupts sulfhydryl proteins in situ, leading to GA dysfunction and ultimately inducing cell apoptosis. In vivo experiments demonstrate that the photothermal agent can precisely treat tumors and significantly reduce side effects.


Asunto(s)
Aparato de Golgi , Terapia Fototérmica , Aparato de Golgi/metabolismo , Aparato de Golgi/efectos de los fármacos , Terapia Fototérmica/métodos , Animales , Humanos , Ratones , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Ratones Desnudos , Ratones Endogámicos BALB C , Maleimidas/química , Maleimidas/farmacología
10.
Sci Rep ; 14(1): 5634, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454122

RESUMEN

In these studies, we designed and investigated the potential anticancer activity of five iron(II) cyclopentadienyl complexes bearing different phosphine and phosphite ligands. All complexes were characterized with spectroscopic analysis viz. NMR, FT-IR, ESI-MS, UV-Vis, fluorescence, XRD (for four complexes) and elemental analyses. For biological studies, we used three types of cells-normal peripheral blood mononuclear (PBM) cells, leukemic HL-60 cells and non-small-cell lung cancer A549 cells. We evaluated cell viability and DNA damage after cell incubation with these complexes. We observed that all iron(II) complexes were more cytotoxic for HL-60 cells than for A549 cells. The complex CpFe(CO)(P(OPh)3)(η1-N-maleimidato) 3b was the most cytotoxic with IC50 = 9.09 µM in HL-60 cells, IC50 = 19.16 µM in A549 and IC50 = 5.80 µM in PBM cells. The complex CpFe(CO)(P(Fu)3)(η1-N-maleimidato) 2b was cytotoxic only for both cancer cell lines, with IC50 = 10.03 µM in HL-60 cells and IC50 = 73.54 µM in A549 cells. We also found the genotoxic potential of the complex 2b in both types of cancer cells. However, the complex CpFe(CO)2(η1-N-maleimidato) 1 which we studied previously, was much more genotoxic than complex 2b, especially for A549 cells. The plasmid relaxation assay showed that iron(II) complexes do not induce strand breaks in fully paired ds-DNA. The DNA titration experiment showed no intercalation of complex 2b into DNA. Molecular docking revealed however that complexes CpFe(CO)(PPh3) (η1-N-maleimidato) 2a, 2b, 3b and CpFe(CO)(P(OiPr)3)(η1-N-maleimidato) 3c have the greatest potential to bind to mismatched DNA. Our studies demonstrated that the iron(II) complex 1 and 2b are the most interesting compounds in terms of selective cytotoxic action against cancer cells. However, the cellular mechanism of their anticancer activity requires further research.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Complejos de Coordinación , Neoplasias Pulmonares , Fosfinas , Fosfitos , Humanos , Simulación del Acoplamiento Molecular , Complejos de Coordinación/química , Hierro , Leucocitos Mononucleares/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , ADN/metabolismo , Maleimidas , Compuestos Ferrosos/farmacología , Antineoplásicos/química , Ligandos , Línea Celular Tumoral
11.
N Biotechnol ; 81: 33-42, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38493996

RESUMEN

We report the synthesis of a novel class of metal-complexing peptide-based polymers, which we name HyperMAPs (Hyper-loaded MetAl-complexed Polymers). The controlled solid-phase synthesis of HyperMAPs' scaffold peptide provides our polymer with a well-defined molecular structure that allows for an accurate on-design assembly of a wide variety of metals. The peptide-scaffold features a handle for direct conjugation to antibodies or any other biomolecules by means of a thiol-maleimide-click or aldehyde-oxime reaction, a fluorogenic moiety for biomolecule conjugation tracking, and a well-defined number of functional groups for direct incorporation of metal-chelator complexes. Since metal-chelator complexes are prepared in a separate reaction prior to incorporation to the peptide scaffold, polymers can be designed to contain specific ratios of metal isotopes, providing each polymer with a unique CyTOF spectral fingerprint. We demonstrate the complexing of 21 different metals using two different chelators and provide evidence of the application of HyperMAPs on a 13 parameter CyTOF panel and compare its performance to monoisotopic metal-conjugated antibodies.


Asunto(s)
Complejos de Coordinación , Maleimidas , Polímeros , Polímeros/química , Compuestos de Sulfhidrilo/química , Péptidos/química , Metales/química , Quelantes/química , Anticuerpos
12.
Biomolecules ; 14(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38540772

RESUMEN

The enhancement of bioactivity in materials has become an important focus within the field of bone tissue engineering. Four-dimensional intelligent osteogenic module, an innovative fusion of 3D printing with the time axis, shows immense potential in augmenting the bioactivity of these materials, thereby facilitating autologous bone regeneration efficiently. This study focuses on novel bone repair materials, particularly bioactive scaffolds with a developmental osteogenic microenvironment prepared through 3D bioprinting technology. This research mainly creates a developmental osteogenic microenvironment named "DOME". This is primed by the application of a small amount of the small molecule drug SB216763, which activates canonical Wnt signaling in osteocytes, promoting osteogenesis and mineralization nodule formation in bone marrow stromal cells and inhibiting the formation of adipocytes. Moreover, DOME enhances endothelial cell migration and angiogenesis, which is integral to bone repair. More importantly, the DOME-PCI3D system, a 4D intelligent osteogenic module constructed through 3D bioprinting, stably supports cell growth (91.2% survival rate after 7 days) and significantly increases the expression of osteogenic transcription factors in bone marrow stromal cells and induces osteogenic differentiation and mineralization for 28 days. This study presents a novel approach for bone repair, employing 3D bioprinting to create a multifunctional 4D intelligent osteogenic module. This innovative method not only resolves challenges related to shape-matching and biological activity but also demonstrates the vast potential for applications in bone repair.


Asunto(s)
Indoles , Maleimidas , Osteogénesis , Vía de Señalización Wnt , Osteogénesis/fisiología , Osteocitos , Huesos , Ingeniería de Tejidos/métodos , Diferenciación Celular
13.
ACS Appl Bio Mater ; 7(3): 1976-1989, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38447202

RESUMEN

The development of nanocarriers to prolong the residence time and enhance the permeability of chemotherapeutic drugs on bladder mucosa is important in the postsurgery treatment of superficial bladder cancers (BCs). Here, the mucoadhesive HA-SH/PF127 nanogels composed of a temperature-sensitive Pluronic F127 (PF127) core and thiolated hyaluronic acid (HA-SH) shell were prepared by the emulsification/solvent evaporation method. The nanogels were constructed through the thiol-maleimide click reaction in the HA-SH aqueous side of the oil-water interface and self-oxidized cross-linking thiols between HA-SH. The HA-SH/PF127 nanogels prepared at different thiol-to-maleimide group molar ratios, water-to-oil volume ratios, and cross-linking reaction times were characterized regarding hydrodynamic diameter (Dh) and zeta potential (ζ), and the optimal formulation was obtained. The excellent mucoadhesive properties of the HA-SH/PF127 nanogels were evaluated by using the mucin particle method. Doxorubicin (DOX) was encapsulated in the PF127 core of DOX@HA-SH/PF127 nanogels with a high loading efficiency (87.5%) and sustained release from the nanogels in artificial urine. Ex vivo studies on porcine bladder mucosa showed that the DOX@HA-SH/PF127 nanogels enhanced the penetration of the DOX into the bladder mucosa without disrupting the mucus structure or the bladder tissue. A significant dose-dependent cytotoxic effect of DOX@HA-SH/PF127 nanogels on both T24 and MB49 cells was observed. The present study demonstrates that the mucoadhesive HA-SH/PF127 nanogels are a promising intravesical drug delivery system for superficial BC therapy.


Asunto(s)
Ácido Hialurónico , Maleimidas , Poloxámero , Polietilenglicoles , Polietileneimina , Compuestos de Sulfhidrilo , Animales , Porcinos , Poloxámero/química , Nanogeles , Ácido Hialurónico/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Doxorrubicina/química , Agua
14.
FEBS Lett ; 598(9): 1080-1093, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38523059

RESUMEN

Recent developments in sequencing and bioinformatics have advanced our understanding of adenosine-to-inosine (A-to-I) RNA editing. Surprisingly, recent analyses have revealed the capability of adenosine deaminase acting on RNA (ADAR) to edit DNA:RNA hybrid strands. However, edited inosines in DNA remain largely unexplored. A precise biochemical method could help uncover these potentially rare DNA editing sites. We explore maleimide as a scaffold for inosine labeling. With fluorophore-conjugated maleimide, we were able to label inosine in RNA or DNA. Moreover, with biotin-conjugated maleimide, we purified RNA and DNA containing inosine. Our novel technique of inosine chemical labeling and affinity molecular purification offers substantial advantages and provides a versatile platform for further discovery of A-to-I editing sites in RNA and DNA.


Asunto(s)
Adenosina , Inosina , Edición de ARN , Inosina/química , Inosina/metabolismo , Adenosina/química , Adenosina/metabolismo , Adenosina/análogos & derivados , Desaminación , ADN/química , ADN/metabolismo , Maleimidas/química , Adenosina Desaminasa/metabolismo , Adenosina Desaminasa/química , ARN/química , ARN/metabolismo , Coloración y Etiquetado/métodos , Humanos , Colorantes Fluorescentes/química , Biotina/química , Biotina/metabolismo
15.
J Biol Chem ; 300(3): 105714, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309502

RESUMEN

Inhibition of protein kinase C (PKC) efficiently promoted the self-renewal of embryonic stem cells (ESCs). However, information about the function of PKC inhibition remains lacking. Here, RNA-sequencing showed that the addition of Go6983 significantly inhibited the expression of de novo methyltransferases (Dnmt3a and Dnmt3b) and their regulator Dnmt3l, resulting in global hypomethylation of DNA in mouse ESCs. Mechanistically, PR domain-containing 14 (Prdm14), a site-specific transcriptional activator, partially contributed to Go6983-mediated repression of Dnmt3 genes. Administration of Go6983 increased Prdm14 expression mainly through the inhibition of PKCδ. High constitutive expression of Prdm14 phenocopied the ability of Go6983 to maintain` mouse ESC stemness in the absence of self-renewal-promoting cytokines. In contrast, the knockdown of Prdm14 eliminated the response to PKC inhibition and substantially impaired the Go6983-induced resistance of mouse ESCs to differentiation. Furthermore, liquid chromatography-mass spectrometry profiling and Western blotting revealed low levels of Suv39h1 and Suv39h2 in Go6983-treated mouse ESCs. Suv39h enzymes are histone methyltransferases that recognize dimethylated and trimethylated histone H3K9 specifically and usually function as transcriptional repressors. Consistently, the inhibition of Suv39h1 by RNA interference or the addition of the selective inhibitor chaetocin increased Prdm14 expression. Moreover, chromatin immunoprecipitation assay showed that Go6983 treatment led to decreased enrichment of dimethylation and trimethylation of H3K9 at the Prdm14 promoter but increased RNA polymerase Ⅱ binding affinity. Together, our results provide novel insights into the pivotal association between PKC inhibition-mediated self-renewal and epigenetic changes, which will help us better understand the regulatory network of stem cell pluripotency.


Asunto(s)
Proteínas de Unión al ADN , Células Madre Embrionarias de Ratones , Proteína Quinasa C , Animales , Ratones , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Indoles/farmacología , Maleimidas/farmacología , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/enzimología , Células Madre Embrionarias de Ratones/fisiología , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Inhibidores de Proteínas Quinasas/farmacología
16.
Chirality ; 36(2): e23645, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38384154

RESUMEN

We are looking into how well a copolymeric material made of poly (maleic acid-co-4-vinylpyridine) cross-linked with divinylbenzene can separate L-norepinephrine (L-NEP) from (±)-NEP. The initial step in this direction was the synthesis and subsequent analysis of L-NEP-maleimide chiral derivative. A 4-vinylpyridine/divinylbenzene combination was copolymerized with the resultant chiral maleimide. After heating the polymer materials in a high-alkaline environment to breakdown the connecting imide bonds, they were acidified in an HCl solution to eliminate the incorporated L-NEP species. Fourier transform infrared spectroscopy (FTIR) and a scanning electron microscope were used to examine the imprinted L-NEP-imprinted materials. The manufactured L-NEP-imprinted materials exhibited selectivity characteristics that were over 11 times greater for L-NEP than D-norepinephrine. The highest capacity observed in Langmuir adsorption studies was 170 mg/g at a pH of 7. After optical separation using a column technique, it was determined that the enantiomeric excess levels of D-norepinephrine and L-NEP in the first feeding and subsequent recovery solutions were 95% and 81%, respectively.


Asunto(s)
Impresión Molecular , Polímeros Impresos Molecularmente , Compuestos de Vinilo , Norepinefrina , Impresión Molecular/métodos , Estereoisomerismo , Polímeros/química , Adsorción , Maleimidas
17.
Bioconjug Chem ; 35(2): 203-213, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38343092

RESUMEN

The field of clinical surgery frequently encounters challenges related to atypical wound tissue healing, resulting in the development of persistent chronic wounds or aesthetically displeasing scar tissue. The use of wound dressings crafted from mussel adhesive proteins and hyaluronic acid has demonstrated the potential in mitigating these undesirable outcomes. However, the synergistic effects of these two biomaterials remain underexplored. In this study, we have engineered a versatile, degradable, and biocompatible dressing that comprises recombinant 3,4-dihydroxyphenylalanine (DOPA)-modified mussel adhesive proteins and maleimide-functionalized hyaluronic acid. We have successfully fabricated this biocompatible dressing and conducted comprehensive experimental assessments to confirm its hemostatic, antibacterial, and biocompatible characteristics. Importantly, this dressing exclusively incorporates biologically derived materials characterized by low toxicity and minimal immunogenicity, thus holding immense promise for clinical applications in the field of wound healing.


Asunto(s)
Hemostáticos , Hemostáticos/farmacología , Hemostáticos/uso terapéutico , Cisteína , Ácido Hialurónico , Antibacterianos/farmacología , Vendajes , Maleimidas
18.
Free Radic Biol Med ; 213: 359-370, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38290604

RESUMEN

Epidemiological studies have established a robust correlation between exposure to ambient particulate matter (PM) and various neurological disorders, with dysregulation of intracellular redox processes and cell death being key mechanisms involved. Ferroptosis, a cell death form characterized by iron-dependent lipid peroxidation and disruption of antioxidant defenses, may be involved in the neurotoxic effects of PM exposure. However, the relationship between PM-induced neurotoxicity and ferroptosis in nerve cells remains to be elucidated. In this study, we utilized a rat model (exposed to PM at a dose of 10 mg/kg body weight per day for 4 weeks) and an HT-22 cell model (exposed to PM at concentrations of 50, 100, and 200 µg/mL for 24 h) to investigate the potential induction of ferroptosis by PM exposure. Furthermore, RNA sequencing analysis was employed to identify hub genes that potentially contribute to the process of ferroptosis, which was subsequently validated through in vivo and in vitro experiments. The results revealed that PM exposure increased MDA content and Fe2+ levels, and decreased SOD activity and GSH/GSSG ratio in rat hippocampal and HT-22 cells. Through RNA sequencing analysis, bioinformatics analysis, and RT-qPCR experiments, we identified GSK3B as a possible hub gene involved in ferroptosis. Subsequent investigations demonstrated that PM exposure increased GSK3B levels and decreased Nrf2, and GPX4 levels in vivo and in vitro. Furthermore, treatment with LY2090314, a specific inhibitor of GSK3B, was found to mitigate the PM-induced elevation of MDA and ROS and restore SOD activity and GSH/GSSG ratio. The LY2090314 treatment promoted the upregulation of Nrf2 and GPX4 and facilitated the nuclear translocation of Nrf2 in HT-22 cells. Moreover, treatment with LY2090314 resulted in the upregulation of Nrf2 and GPX4, along with the facilitation of nuclear translocation of Nrf2. This study suggested that PM-induced ferroptosis in hippocampal cells may be via the GSK3B/Nrf2/GPX4 pathway.


Asunto(s)
Ferroptosis , Compuestos Heterocíclicos con 3 Anillos , Maleimidas , Síndromes de Neurotoxicidad , Animales , Ratas , Ferroptosis/genética , Disulfuro de Glutatión , Factor 2 Relacionado con NF-E2/genética , Hipocampo , Superóxido Dismutasa
19.
Nano Lett ; 24(10): 2989-2997, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38294951

RESUMEN

Many virus-like particles (VLPs) have good chemical, thermal, and mechanical stabilities compared to those of other biologics. However, their stability needs to be improved for the commercialization and use in translation of VLP-based materials. We developed an endoskeleton-armored strategy for enhancing VLP stability. Specifically, the VLPs of physalis mottle virus (PhMV) and Qß were used to demonstrate this concept. We built an internal polymer "backbone" using a maleimide-PEG15-maleimide cross-linker to covalently interlink viral coat proteins inside the capsid cavity, while the native VLPs are held together by only noncovalent bonding between subunits. Endoskeleton-armored VLPs exhibited significantly improved thermal stability (95 °C for 15 min), increased resistance to denaturants (i.e., surfactants, pHs, chemical denaturants, and organic solvents), and enhanced mechanical performance. Single-molecule force spectroscopy demonstrated a 6-fold increase in rupture distance and a 1.9-fold increase in rupture force of endoskeleton-armored PhMV. Overall, this endoskeleton-armored strategy provides more opportunities for the development and applications of materials.


Asunto(s)
Proteínas de la Cápside , Cápside , Proteínas de la Cápside/química , Cápside/química , Maleimidas/análisis
20.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 913-922, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37535074

RESUMEN

Albuvirtide (ABT) is the first long-acting HIV fusion inhibitor developed in China, blocking the invasion of HIV-1 virus into target cells. This study aimed to compare the pharmacokinetics (PK), tolerability, and safety of ABT following a single intravenous (IV) bolus injection or intravenous drip in healthy Chinese subjects. A single-center, randomized, open-label, single-period, parallel phase I clinical trial was conducted. Thirty subjects were randomly divided into three groups in a ratio of 1:1:1. After an overnight fast, all subjects received a single dose of 320 mg ABT either by intravenous drip for 45 min (group A) or bolus injection for 0.5 min (group B), or bolus injection for 3 min (group C). ABT plasma concentrations were analyzed using a validated enzyme-linked immunosorbent assay (ELISA). Non-compartmental analysis was used to evaluate PK parameters. The median time to reach maximum concentration was 0.75 h in group A and 0.16 h in both groups B and C. Elimination half-life, mean residence time, apparent clearance, and apparent volume of distribution were similar among the three groups. The 90% confidence intervals (CI) of geometric mean ratios of PK parameters for groups B and C relative to group C were within 85-120%. All adverse events (AEs) reported in this study were mild, according to the CTCAE guidelines and the study investigator's judgement. ABT bolus injections for 0.5 min and 3 min are expected to be well tolerated and to exhibit similar PK characteristics as IV drip for 45 min, offering potential clinical benefits.


Asunto(s)
Maleimidas , Péptidos , Humanos , Infusiones Intravenosas , Voluntarios Sanos , Inyecciones Intravenosas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...