Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.783
Filtrar
1.
PLoS One ; 19(8): e0306263, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39106250

RESUMEN

Striga hermonthica (Sh) and S. asiatica (Sa) are major parasitic weeds limiting cereal crop production and productivity in sub-Saharan Africa (SSA). Under severe infestation, Striga causes yield losses of up to 100%. Breeding for Striga-resistant maize varieties is the most effective and economical approach to controlling the parasite. Well-characterized and genetically differentiated maize germplasm is vital to developing inbred lines, hybrids, and synthetic varieties with Striga resistance and desirable product profiles. The objective of this study was to determine the genetic diversity of 130 tropical and sub-tropical maize inbred lines, hybrids, and open-pollinated varieties germplasm using phenotypic traits and single nucleotide polymorphism (SNP) markers to select Striga-resistant and complementary genotypes for breeding. The test genotypes were phenotyped with Sh and Sa infestations using a 13x10 alpha lattice design with two replications. Agro-morphological traits and Striga-resistance damage parameters were recorded under a controlled environment. Further, high-density Diversity Array Technology Sequencing-derived SNP markers were used to profile the test genotypes. Significant phenotypic differences (P<0.001) were detected among the assessed genotypes for the assessed traits. The SNP markers revealed mean gene diversity and polymorphic information content of 0.34 and 0.44, respectively, supporting the phenotypic variation of the test genotypes. Higher significant variation was recorded within populations (85%) than between populations using the analysis of molecular variance. The Structure analysis allocated the test genotypes into eight major clusters (K = 8) in concordance with the principal coordinate analysis (PCoA). The following genetically distant inbred lines were selected, displaying good agronomic performance and Sa and Sh resistance: CML540, TZISTR25, TZISTR1248, CLHP0303, TZISTR1174, TZSTRI113, TZDEEI50, TZSTRI115, CML539, TZISTR1015, CZL99017, CML451, CML566, CLHP0343 and CML440. Genetically diverse and complementary lines were selected among the tropical and sub-tropical maize populations that will facilitate the breeding of maize varieties with Striga resistance and market-preferred traits.


Asunto(s)
Polimorfismo de Nucleótido Simple , Striga , Zea mays , Zea mays/genética , Zea mays/parasitología , Striga/fisiología , Striga/genética , Variación Genética , Fenotipo , Genotipo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Fitomejoramiento , Malezas/genética , Clima Tropical , Marcadores Genéticos
2.
Nat Commun ; 15(1): 6906, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134551

RESUMEN

The yield of pearl millet, a resilient cereal crop crucial for African food security, is severely impacted by the root parasitic weed Striga hermonthica, which requires host-released hormones, called strigolactones (SLs), for seed germination. Herein, we identify four SLs present in the Striga-susceptible line SOSAT-C88-P10 (P10) but absent in the resistant 29Aw (Aw). We generate chromosome-scale genome assemblies, including four gapless chromosomes for each line. The Striga-resistant Aw lacks a 0.7 Mb genome segment containing two putative CARLACTONOIC ACID METHYLTRANSFERASE1 (CLAMT1) genes, which may contribute to SL biosynthesis. Functional assays show that P10CLAMT1b produces the SL-biosynthesis intermediate methyl carlactonoate (MeCLA) and that MeCLA is the precursor of P10-specific SLs. Screening a diverse pearl millet panel confirms the pivotal role of the CLAMT1 section for SL diversity and Striga susceptibility. Our results reveal a reason for Striga susceptibility in pearl millet and pave the way for generating resistant lines through marker-assisted breeding or direct genetic modification.


Asunto(s)
Genoma de Planta , Lactonas , Pennisetum , Striga , Striga/genética , Lactonas/metabolismo , Pennisetum/genética , Pennisetum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cromosomas de las Plantas/genética , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Malezas/genética , Malezas/metabolismo , Resistencia a la Enfermedad/genética , Reguladores del Crecimiento de las Plantas/metabolismo
3.
PLoS One ; 19(8): e0306567, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39088477

RESUMEN

Winter wheat (Triticum aestivum, L.) production in the semi-arid US Northern High Plains (NHP) is challenged by frequent droughts and water-limited, low fertility soils. Composted cattle manure (compost) and cover crops (CC) are known to provide agroecosystem services such as improved soil health, and in the CC case, increased plant diversity, and competition with weedy species. The main concern of planting CC in winter wheat fallow rotation in regions that are more productive than the NHP, however, is the soil moisture depletion. It is unknown however, whether addition of CC to compost-amended soils in the NHP will improve soil properties and agroecosystem health without compromising already low soil water content. The main objective of this study was to assess the effects of four CC treatments amended with compost (45 Mg ha-1) or inorganic fertilizer (IF) (.09 Mg ha-1 mono-ammonium phosphate, 11-52-0 and 1.2 Mg ha-1ammonium sulfate, 21-0-0) on the presence of weeds, soil and plant total carbon (C), nitrogen (N), and biological dinitrogen (N2) fixation (BNF). Mycorrhizal Mix (MM), Nitrogen Fixer Mix (NF), Soil Building Mix (SB), a monoculture of phacelia (Phacelia tanacetifolia Benth L.) (PH), and a no CC control (no CC) were grown in native soil kept at 7% soil moisture in a greenhouse for a period of nine weeks. When amended with compost, MM was the most beneficial (48 g m-2 BNF and 1.7% soil C increase). SB had the highest germination, aboveground biomass, and decreased weed biomass by 60%. It also demonstrated the second highest amount of BNF (40 g m-2) and soil C increase by 1.5%. On contrary, IF hindered BNF by almost 70% in all legume-containing CC treatments and reduced soil C by 15%.


Asunto(s)
Productos Agrícolas , Fertilizantes , Suelo , Triticum , Suelo/química , Productos Agrícolas/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Nitrógeno/análisis , Nitrógeno/metabolismo , Estiércol , Animales , Ecosistema , Carbono/análisis , Carbono/metabolismo , Agricultura/métodos , Bovinos , Malezas/crecimiento & desarrollo , Micorrizas/fisiología
4.
Molecules ; 29(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998991

RESUMEN

Weeds are a serious threat to crop production, and the utilization of secondary metabolites of phytopathogenic fungi is considered to be an effective method of weed control. In this study, eight compounds were isolated and purified from the mycelium and fermentation broth extracts of Bipolaris cookei SYBL03. The compounds (1-8), except 2 and 6, are reported for the first time from this genus. The herbicidal activities of compounds 1-8 were studied by evaluating their effects on the seed germination and seedling growth of monocotyledonous and dicotyledonous weeds. The results indicated that compound 7 (Cyclo-N-methylphenylalanyltryptophenyl, cNMPT) exhibited a concentration-dependent dual effect on the growth of weed seedlings and selective herbicidal activity against dicotyledonous weeds. We further investigated the morphological and physiological responses of roots of Amaranthus retroflexus, a dicotyledonous weed, to compound 7. Some changes were found in seedlings grown in 400 µg/mL compound 7 solution for 96 h, such as shortening and swelling of elongation zone cells, reduced number and length of root hairs, damage and wrinkling of the root surface, occurrence of electrolyte leakage, and an increase in ethylene content. These results suggest that compound 7 may exert herbicidal activity by causing stress to weed seedlings. Increased ethylene production could be involved in the response of plants to compound 7.


Asunto(s)
Bipolaris , Herbicidas , Malezas , Plantones , Herbicidas/farmacología , Herbicidas/química , Herbicidas/aislamiento & purificación , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Bipolaris/efectos de los fármacos , Malezas/efectos de los fármacos , Malezas/crecimiento & desarrollo , Germinación/efectos de los fármacos , Amaranthus/efectos de los fármacos , Amaranthus/crecimiento & desarrollo , Raíces de Plantas , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo
5.
Genes (Basel) ; 15(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062683

RESUMEN

Amaranthus retroflexus L. (redroot pigweed) is one of the most problematic weeds in maize, sugar beet, vegetables, and soybean crop fields in Europe. Two pigweed amaranth biotypes (R1 and R2) from the Czech Republic resistant to photosystem II (PSII)-inhibiting herbicides were analyzed in this study. This study aimed to identify the genetic mechanisms that underlie the resistance observed in the biotypes. Additionally, we also intended to establish the use of chlorophyll fluorescence measurement as a rapid and reliable method for confirming herbicide resistance in this weed species. Both biotypes analyzed showed high resistance factors in a dose-response study and were thus confirmed to be resistant to PSII-inhibiting herbicides. A sequence analysis of the D1 protein revealed a well-known Ser-Gly substitution at amino acid position 264 in both biotypes. Molecular docking studies, along with the wild-type and mutant D1 protein's secondary structure analyses, revealed that the S264G mutation did not reduce herbicide affinity but instead indirectly affected the interaction between the target protein and the herbicides. The current study identified the S264G mutation as being responsible for conferring herbicide resistance in the pigweed amaranth biotypes. These findings can provide a strong basis for future studies that might use protein structure and mutation-based approaches to gain further insights into the detailed mechanisms of resistance in this weed species. In many individuals from both biotypes, resistance at a very early stage (BBCH10) of plants was demonstrated several hours after the application of the active ingredients by the chlorophyll fluorescence method. The effective PS II quantum yield parameter can be used as a rapid diagnostic tool for distinguishing between sensitive and resistant plants on an individual level. This method can be useful for identifying herbicide-resistant weed biotypes in the field, which can help farmers and weed management practitioners develop more effective weed control tactics.


Asunto(s)
Amaranthus , Resistencia a los Herbicidas , Herbicidas , Complejo de Proteína del Fotosistema II , Amaranthus/genética , Amaranthus/efectos de los fármacos , Amaranthus/crecimiento & desarrollo , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , República Checa , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Malezas/genética , Malezas/efectos de los fármacos , Simulación del Acoplamiento Molecular , Mutación
6.
Sensors (Basel) ; 24(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39001158

RESUMEN

Accurate weed detection is essential for the precise control of weeds in wheat fields, but weeds and wheat are sheltered from each other, and there is no clear size specification, making it difficult to accurately detect weeds in wheat. To achieve the precise identification of weeds, wheat weed datasets were constructed, and a wheat field weed detection model, YOLOv8-MBM, based on improved YOLOv8s, was proposed. In this study, a lightweight visual converter (MobileViTv3) was introduced into the C2f module to enhance the detection accuracy of the model by integrating input, local (CNN), and global (ViT) features. Secondly, a bidirectional feature pyramid network (BiFPN) was introduced to enhance the performance of multi-scale feature fusion. Furthermore, to address the weak generalization and slow convergence speed of the CIoU loss function for detection tasks, the bounding box regression loss function (MPDIOU) was used instead of the CIoU loss function to improve the convergence speed of the model and further enhance the detection performance. Finally, the model performance was tested on the wheat weed datasets. The experiments show that the YOLOv8-MBM proposed in this paper is superior to Fast R-CNN, YOLOv3, YOLOv4-tiny, YOLOv5s, YOLOv7, YOLOv9, and other mainstream models in regards to detection performance. The accuracy of the improved model reaches 92.7%. Compared with the original YOLOv8s model, the precision, recall, mAP1, and mAP2 are increased by 10.6%, 8.9%, 9.7%, and 9.3%, respectively. In summary, the YOLOv8-MBM model successfully meets the requirements for accurate weed detection in wheat fields.


Asunto(s)
Malezas , Triticum , Triticum/fisiología , Malezas/fisiología , Redes Neurales de la Computación , Algoritmos
7.
J Agric Food Chem ; 72(29): 16140-16151, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39007211

RESUMEN

Given the prevalence of the malignant weed Chinese Sprangletop (Leptochloa chinensis (L.) Nees) in rice fields, the development of novel herbicides against this weed has aroused wide interest. Here, we report a novel diphenyl ether-pyrimidine hybrid, DEP-5, serving as a systematic pre/postemergence herbicide candidate for broad-spectrum weed control in rice fields, specifically for L. chinensis. Notably, DEP-5 exhibits over 80% herbicidal activity against the resistant biotypes even at 37.5 g a.i./ha under greenhouse conditions and has complete control of L. chinensis at 150 g a.i./ha in the rice fields. We uncover that DEP-5 acts as a noncompetitive inhibitor of acetohydroxyacid synthase (AHAS) with an inhibition constant (Ki) of 39.4 µM. We propose that DEP-5 binds to AHAS in two hydrophobic-driven binding modes that differ from commercial AHAS inhibitors. Overall, these findings demonstrate that DEP-5 has great potential to be developed into a herbicide for L. chinensis control and inspire fresh concepts for novel AHAS-inhibiting herbicide design.


Asunto(s)
Acetolactato Sintasa , Herbicidas , Oryza , Proteínas de Plantas , Malezas , Poaceae , Control de Malezas , Herbicidas/farmacología , Herbicidas/química , Oryza/química , Malezas/efectos de los fármacos , Malezas/enzimología , Acetolactato Sintasa/metabolismo , Acetolactato Sintasa/antagonistas & inhibidores , Acetolactato Sintasa/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/antagonistas & inhibidores , Poaceae/química , Poaceae/enzimología , Poaceae/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Pirimidinas/farmacología , Cinética , Éteres Fenílicos/farmacología , Éteres Fenílicos/química
8.
J Biosci ; 492024.
Artículo en Inglés | MEDLINE | ID: mdl-39046033

RESUMEN

The Kunming-Montreal Global Biodiversity Framework (GBF) is a recently signed protocol by the conference of the parties (COP 15) with an aim to protect biodiversity from risks imposed by biological threats such as invasive alien species (IAS). The present work is an effort to meet target 6 of GBF which directly deals with IAS by assessing the current and future distribution of Ageratum species in regions of the Eastern Ghats of India. Prediction of Ageratum distribution was done based on greenhouse gas emission levels, namely RCP 4.5, 6.0 and 8.5 for the climatic years 2030, 2050 and 2080. Of a total of 23 environmental parameters (19 bioclimatic, 1 land use land cover (LULC) and 3 topographic) seven were selected for species distribution modeling (SDM) considering value inflation factor (VIF) scores <3 by using maximum entropy. In the current climatic scenario, 40.09% of the geographical area (TGA) is covered by Ageratum species which will reach 76.51%, 77.44%, 82.58% for RCP 4.5, 6.0 and 8.5 respectively by the end of 2100. Both the AUC value (0.884) and Jackknife test have shown a good model performance. The Eastern Ghats, being a biodiversity-rich zone, needs efficient conservation and management strategies to decrease the extent of invaded areas to maximize biodiversity returns.


Asunto(s)
Biodiversidad , Especies Introducidas , Malezas , India , Malezas/crecimiento & desarrollo , Animales , Cabras , Cambio Climático
9.
J Agric Food Chem ; 72(32): 17880-17889, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39083674

RESUMEN

Fluorochloridone (FLC) is a chiral herbicide that has four stereoisomers. This study systematically assessed the stereoselectivity of FLC to reveal the selective environmental behavior of its four isomers. Absolute configuration confirmation, evaluation of stereoselective bioactivity toward monocotyledonous and dicotyledonous weeds, toxicity to Danio rerio, and the stereoselective degradation in the potato system under field conditions of FLC were conducted. The four FLC stereoisomers were effectively separated on a superchiral S-AD column. The absolute configurations of the four stereoisomers of FLC were confirmed as (-)-(3S, 4S), (+)-(3S, 4R), (-)-(3R, 4S), and (+)-(3R, 4R)-FLC using single-crystal X-ray diffraction. The activities of the four stereoisomers were in the order of (-)-(3S, 4S)-FLC > (+)-(3R, 4R)-FLC > (+)-(3S, 4R)-FLC > (-)-(3R, 4S)-FLC, and the rate of selective degradation were in the order of (-)-(3R, 4S)-FLC > (+)-(3R, 4R)-FLC > (-)-(3S, 4R)-FLC > (+)-(3S, 4S)-FLC. The toxicity of the isomers were in the order of (-)-(3R, 4S)-FLC > (+)-(3R, 4R)-FLC > (-)-(3S, 4S)-FLC > (+)-(3S, 4R). Based on the results of bioactivity, toxicity, and degradation behavior assessments, the stereoisomer mixture containing (3R,4R)-FLC and (3S,4S)-FLC was concluded to be a better option than racemic FLC for increasing bioactivity and reducing usage.


Asunto(s)
Herbicidas , Solanum tuberosum , Pez Cebra , Herbicidas/química , Herbicidas/farmacología , Herbicidas/toxicidad , Estereoisomerismo , Solanum tuberosum/química , Animales , Malezas/efectos de los fármacos
10.
Environ Sci Pollut Res Int ; 31(37): 49891-49904, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39085693

RESUMEN

The present study investigates the synergistic impact of earthworms (Eisenia fetida and Eudrilus eugeniae) and microbes during vermicomposting of invasive weed phytomass (Xanthium strumarium and Lantana camara). This study aims introducing an onsite solution for weed control while producing valuable organic manure. Vermitransformation and detailed characterization of mono- (VC1, VC2, VC4, VC5) and polyculture (VC3, VC6) of X. strumarium and L. camara has been reported for the first time employing E. fetida and E. eugeniae. The study achieved 45.16 ± 2.48-76.73 ± 1.37% vermiconvertion rate. The pH, conductivity, and concentration of heavy metals are effectively stabilized. Furthermore, it observed a significant reduction in total organic carbon (TOC) alongside the augmentation of nitrogen, phosphorus, potassium, calcium, and other trace elements (Zn, Ni, Fe). The ash content, humification index, and C/N ratio analysis established the maturity of the vermicompost. The macronutrient enhancement in the vermicompost samples was recorded 1.5- to 2.47-fold for total N, 1.19- to 1.48-fold in available P, 1.1- to 1.2-fold in total K, and 1.1- to 1.18-fold in total Ca. The germination index reveals a significant reduction in phytotoxicity, suggesting the production of mature and suitable vermicompost for agricultural use. Evaluating mono- and polyculture techniques, the research highlights the superiority of E. fetida over E. eugeniae. Further, the earthworm population and biomass have significantly increased by the end of 60-day experimental trial.


Asunto(s)
Lantana , Oligoquetos , Animales , Malezas , Suelo/química , Metales Pesados , Contaminantes del Suelo
11.
Sci Rep ; 14(1): 16285, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009620

RESUMEN

Invasive alien species implications in ecological threats are attributed to their unique characteristics that are linked to their invasion. Veronica persica (Plantaginaceae family) is an alien weed species in Egypt. Regardless of its widespread globally in various regions, the growth traits and behavior of V. persica remain poorly understood. The comprehensive analysis, reveals the optimal germination (Gmax) was detected at 10/20 °C, 15/20 °C, and 20/25 °C at the moderate temperature regimes. The rapid germination rate (G rate) peaked at 10/20 °C regime, with a rate of 0.376 per day. Furthermore, under stress conditions, V. persica has 50% germination inhibition (G50) and 50% of growth inhibition occurred at - 0.91 MPa and 0.75 MPa of osmotic pressure and 3225.81 ppm and 2677.1 ppm of salt stress (NaCl) respectively. The germination ranged from 6 to 9 pH, with the highest germination percentage occurring at a pH of 7 & 8, reaching 88.75% compared to the control group. There is a strong interaction effect between habitats and plant stages, the plant stages and habitats have significant effects (p ≤ 0.00) on V. persica growth. There was high and moderate plasticity in the response of morphological and growth features between stages. During the seedling-juvenile interval and the juvenile-flowering stages, respectively, there was a noticeable increase in both Relative Growth Rate and Net Assimilation Rate. Demographic surveys identified approximately 24 species across 11 families associated with V. persica in invaded areas. The Sorenson indices of qualitative index exhibited high similarity values in the invaded sites by (82.35%) compared to (72.72%) in non-invaded sites. However, interactions with native communities were reflected in lower richness, diversity, and evenness, displaying slightly higher Simpson index 1 (λ) values compared to invaded and non-invaded sites (0.043 and 0.0290) vs. (0.0207 and 0.268), in rangelands and F. carica orchards respectively. These results emphasize the substantially higher adaptability of V. persica to variable environmental conditions and abilities to invade a new community. This knowledge about invasive V. persica weeds germination and growth is itemized as the consistent predictive base for future invasion and informs strategic management priorities.


Asunto(s)
Germinación , Especies Introducidas , Veronica , Veronica/crecimiento & desarrollo , Temperatura , Ecosistema , Malezas/crecimiento & desarrollo , Egipto
12.
J Agric Food Chem ; 72(31): 17125-17137, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39047218

RESUMEN

Weed resistance is a critical issue in crop production. Among the known herbicides, 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors are crucial for addressing weed resistance. HPPD inhibitors constitute a pivotal aspect of contemporary crop protection strategies. The advantages of these herbicides are their broad weed spectrum, flexible application, and excellent compatibility with other herbicides. They also exhibit satisfactory crop selectivity and low toxicity and are environmentally friendly. An increasing number of new HPPD inhibitors have been designed by combining computer-aided drug design with conventional design approaches. Herein, the molecular design and structural features of innovative HPPD inhibitors are reviewed to guide the development of new HPPD inhibitors possessing an enhanced biological efficacy.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Diseño de Fármacos , Inhibidores Enzimáticos , Herbicidas , Malezas , 4-Hidroxifenilpiruvato Dioxigenasa/antagonistas & inhibidores , 4-Hidroxifenilpiruvato Dioxigenasa/química , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Herbicidas/química , Herbicidas/farmacología , Herbicidas/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Malezas/efectos de los fármacos , Malezas/enzimología , Proteínas de Plantas/química , Proteínas de Plantas/antagonistas & inhibidores , Control de Malezas , Resistencia a los Herbicidas , Relación Estructura-Actividad , Estructura Molecular
13.
J Agric Food Chem ; 72(31): 17219-17228, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39052543

RESUMEN

Twelve novel longifolene-derived primary amine carboxylates were synthesized and evaluated for herbicidal activity. The structures of title compounds were confirmed by Fourier-transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), 13C NMR, and high-resolution mass spectrometry. The results showed that all the synthesized compounds exhibited higher herbicidal activity than the corresponding carboxylic acids involved in the reaction and the commercial herbicide glyphosate; some of them even possessed inhibition rates of 100% against Lolium multiflorum Lam. and Brassica campestris at low concentrations (0.039-0.313 mmol/L). Moreover, structural factors, including types of carboxylates and carbon chain length, had a great influence on the herbicidal performance. The herbicidal activity of dicarboxylates was similar to or much higher than that of corresponding monocarboxylates and glyphosate. Furthermore, compound 5l was found to be the most active candidate against the root and shoot growth of L. multiflorum Lam. and B. campestris with half maximal inhibitory concentrations (IC50) of around 0.010 and 0.023 mmol/L. The present work indicated that those prepared compounds have great potential to serve as high-performance botanical herbicides used at low doses.


Asunto(s)
Aminas , Brassica , Ácidos Carboxílicos , Herbicidas , Lolium , Herbicidas/farmacología , Herbicidas/química , Herbicidas/síntesis química , Brassica/efectos de los fármacos , Brassica/crecimiento & desarrollo , Brassica/química , Lolium/efectos de los fármacos , Lolium/crecimiento & desarrollo , Aminas/química , Aminas/farmacología , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Control de Malezas , Relación Estructura-Actividad , Malezas/efectos de los fármacos , Malezas/crecimiento & desarrollo , Estructura Molecular
14.
J Agric Food Chem ; 72(31): 17191-17199, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39054861

RESUMEN

Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) has a high status in the development of new inhibitors. To develop novel and highly effective PPO inhibitors, active substructure linking and bioisosterism replacement strategies were used to design and synthesize novel tetrahydrophthalimide derivatives containing oxadiazole/thiadiazole moieties, and their inhibitory effects on Nicotiana tobacco PPO (NtPPO) and herbicidal activity were evaluated. Among them, compounds B11 (Ki = 9.05 nM) and B20 (Ki = 10.23 nM) showed significantly better inhibitory activity against NtPPO than that against flumiclorac-pentyl (Ki = 46.02 nM). Meanwhile, compounds A20 and B20 were 100% effective against three weeds (Abutilon theophrasti, Amaranthus retroflexus, and Portulaca oleracea) at 37.5 g a.i./ha. It was worth observing that compound B11 was more than 90% effective against three weeds (Abutilon theophrasti, Amaranthus retroflexus, and Portulaca oleracea) at 18.75 and 9.375 g a.i./ha. It was also safer to rice, maize, and wheat than flumiclorac-pentyl at 150 g a.i./ha. In addition, the molecular docking results showed that compound B11 could stably bind to NtPPO and it had a stronger hydrogen bond with Arg98 (2.9 Å) than that of flumiclorac-pentyl (3.2 Å). This research suggests that compound B11 could be used as a new PPO inhibitor, and it could help control weeds in agricultural production.


Asunto(s)
Amaranthus , Diseño de Fármacos , Inhibidores Enzimáticos , Herbicidas , Simulación del Acoplamiento Molecular , Oxadiazoles , Ftalimidas , Malezas , Protoporfirinógeno-Oxidasa , Tiadiazoles , Herbicidas/química , Herbicidas/farmacología , Herbicidas/síntesis química , Tiadiazoles/química , Tiadiazoles/farmacología , Tiadiazoles/síntesis química , Malezas/efectos de los fármacos , Malezas/enzimología , Oxadiazoles/química , Oxadiazoles/farmacología , Oxadiazoles/síntesis química , Relación Estructura-Actividad , Ftalimidas/química , Ftalimidas/farmacología , Ftalimidas/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Protoporfirinógeno-Oxidasa/antagonistas & inhibidores , Protoporfirinógeno-Oxidasa/química , Protoporfirinógeno-Oxidasa/metabolismo , Amaranthus/química , Amaranthus/efectos de los fármacos , Proteínas de Plantas/química , Proteínas de Plantas/antagonistas & inhibidores , Estructura Molecular , Nicotiana/química
15.
J Agric Food Chem ; 72(31): 17200-17209, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39075938

RESUMEN

Photosynthesis system II (PS II) is an important target for the development of bioherbicides. In this study, a series of natural naphthoquinone derivatives containing diaryl ether were designed and synthesized based on the binding model of lawsone and PS II D1. Bioassays exhibited that most compounds had more than 80% inhibition of Portulaca oleracea and Echinochloa crusgalli roots at a dose of 100 µg/mL and compounds B4, B5, and C3 exhibited superior herbicidal activities against dicotyledonous and monocotyledon weeds to commercial atrazine. In particular, compound B5 exhibited excellent herbicidal activity at a dosage of 150 g a.i./ha. In addition, compared with atrazine, compound B5 causes less damage to crops. Molecular docking studies revealed that compound B5 effectively interacted with Pisum sativum PS II D1 via diverse interaction models, such as π-π stacking and hydrogen bonds. Molecular dynamics simulation studies and chlorophyll fluorescence measurements revealed that compound B5 acted on PS II. This is the first report of natural naphthoquinone derivatives targeting PS II and compound B5 may be a candidate molecule for the development of new herbicides targeting PS II.


Asunto(s)
Diseño de Fármacos , Echinochloa , Herbicidas , Simulación del Acoplamiento Molecular , Naftoquinonas , Malezas , Herbicidas/química , Herbicidas/farmacología , Herbicidas/síntesis química , Naftoquinonas/química , Naftoquinonas/farmacología , Echinochloa/efectos de los fármacos , Echinochloa/crecimiento & desarrollo , Malezas/efectos de los fármacos , Malezas/crecimiento & desarrollo , Relación Estructura-Actividad , Éteres/química , Éteres/farmacología , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/antagonistas & inhibidores , Complejo de Proteína del Fotosistema II/metabolismo , Estructura Molecular , Proteínas de Plantas/química , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos
16.
PeerJ ; 12: e17698, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071122

RESUMEN

Despite their overlooked status, weeds are increasingly recognized for their therapeutic value, aligning with historical reliance on plants for medicine and nutrition. This study investigates the medicinal potential of native weed species in Bangladesh, specifically pigments, antioxidants, and free radical scavenging abilities. Twenty different medicinal weed species were collected from the vicinity of Khulna Agricultural University and processed in the Crop Botany Department Laboratory. Pigment levels were determined using spectrophotometer analysis, and phenolics, flavonoids, and DPPH were quantified accordingly. Chlorophyll levels in leaves ranged from 216.70 ± 9.41 to 371.14 ± 28.67 µg g-1 FW, and in stems from 51.98 ± 3.21 to 315.89 ± 17.19 µg g-1 FW. Flavonoid content also varied widely, from 1,624.62 ± 102.03 to 410.00 ± 115.58 mg CE 100 g-1 FW in leaves, and from 653.08 ± 32.42 to 80.00 ± 18.86 mg CE 100 g-1 FW in stems. In case of phenolics content Euphorbia hirta L. displaying the highest total phenolic content in leaves (1,722.33 ± 417.89 mg GAE 100 g-1 FW) and Ruellia tuberosa L. in stems (977.70 ± 145.58 mg GAE 100 g-1 FW). The lowest DPPH 2.505 ± 1.028 mg mL-1was found in Heliotropium indicum L. leaves. Hierarchical clustering links species with pigment, phenolic/flavonoid content, and antioxidant activity. PCA, involving 20 species and seven traits, explained 70.07% variability, with significant PC1 (14.82%) and PC2 (55.25%). Leaves were shown to be superior, and high-performing plants such as E. hirta and H. indicum stood out for their chemical composition and antioxidant activity. Thus, this research emphasizes the value of efficient selection while concentrating on the therapeutic potential of native weed species.


Asunto(s)
Antioxidantes , Depuradores de Radicales Libres , Malezas , Plantas Medicinales , Bangladesh , Antioxidantes/química , Antioxidantes/análisis , Antioxidantes/farmacología , Malezas/química , Depuradores de Radicales Libres/química , Plantas Medicinales/química , Hojas de la Planta/química , Flavonoides/análisis , Flavonoides/química , Fenoles/análisis , Fenoles/química , Extractos Vegetales/química , Pigmentos Biológicos/química , Pigmentos Biológicos/análisis , Clorofila/análisis
17.
J Agric Food Chem ; 72(26): 14592-14600, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38914518

RESUMEN

This study represents the initial examination of the herbicidal efficacy, crop safety, and degradation patterns of 2,4-D ethylhexyl ester (2,4-D EHE) at the enantiomeric level. Baseline separation of 2,4-D EHE enantiomers was achieved using a superchiral R-AD column, with their absolute configurations determined through chemical reaction techniques. Evaluation of weed control efficacy against sensitive species such as sun spurge and flixweed demonstrated significantly higher inhibition rates for S-2,4-D EHE compared to R-2,4-D EHE. Conversely, no stereoselectivity was observed in the fresh-weight inhibition rates of both enantiomers on crops or nonsensitive weeds. A sensitive HPLC-MS/MS method was developed to simultaneously detect two enantiomers and the metabolite 2,4-D in plants. Investigation into degradation kinetics revealed no substantial difference in the half-lives of R- and S-2,4-D EHE in maize and flixweed. Notably, the metabolite 2,4-D exhibited prolonged persistence at elevated levels on flixweed, while it degraded rapidly on maize.


Asunto(s)
Herbicidas , Espectrometría de Masas en Tándem , Zea mays , Zea mays/química , Zea mays/metabolismo , Herbicidas/química , Herbicidas/farmacología , Herbicidas/metabolismo , Estereoisomerismo , Ácido 2,4-Diclorofenoxiacético/química , Ácido 2,4-Diclorofenoxiacético/metabolismo , Cromatografía Líquida de Alta Presión , Malezas/efectos de los fármacos , Malezas/crecimiento & desarrollo , Malezas/metabolismo , Malezas/química , Cinética , Ésteres/química , Ésteres/farmacología , Ésteres/metabolismo , Araceae/química , Araceae/efectos de los fármacos , Araceae/metabolismo
18.
Environ Sci Pollut Res Int ; 31(30): 42495-42520, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38872037

RESUMEN

Plants have numerous strategies for phytoremediation depending upon the characteristic of pollutants. Plant growth promoting rhizobacteria (PGPR) are essential to the process of phytoremediation and play a key part in it. The mechanism of PGPR for phytoremediation is mediated by two methods; under the direct method there is phytohormone production, nitrogen fixation, nutrient mineral solubilization, and siderophore production while the indirect method includes quorum quenching, antibiosis, production of lytic enzyme, biofilm formation, and hydrogen cyanide production. Due to their economic and environmental viability, most researchers have recently concentrated on the potential of weed plants for phytoremediation. Although weed plants are considered unwanted and noxious, they have a high growth rate and adaptability which opens a high scope for its role in phytoremediation of contaminated site. The interaction of plant with rhizobacteria starts from root exudates containing various organic acids and peptides which act as nutrients essential for colonization and siderophore production by the rhizospheric bacteria. The rhizobacteria, while colonizing, tend to promote plant growth and health either directly by providing phytohormones and minerals or indirectly by suppressing growth of possible phytopathogens. Recently, several weed plants have been reported for phytoextraction of heavy metals (Ni, Pb, Zn, Hg, Cd, Cu, As, Fe, and Cr) contaminants from various agro-based industries. These potential native weed plants have high prospect of eco-restoration of polluted site with complex organo-metallic waste for sustainable development.


Asunto(s)
Biodegradación Ambiental , Residuos Industriales , Malezas , Contaminantes del Suelo/metabolismo , Desarrollo de la Planta , Metales Pesados/metabolismo
19.
Science ; 384(6703): 1394-1395, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38935719
20.
Braz J Biol ; 84: e281402, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38922196

RESUMEN

One of the major limitations to proper weed management is the lack of knowledge about the biology of the species. The aim of this study was to understand the influence of temperature and light on the germination and emergence of Commelina benghalensis and Richardia brasiliensis, as well as the influence of burial depth in the soil and the presence of mulch. The experiment regarding the influence of light and temperature on germination was conducted using a 2x4 factorial design, with two light conditions (presence for 12 hours and absence for 24 hours) and four temperature alternations every 12 hours (20-25 ºC, 20-30 ºC, 20-35 ºC, and 15-35 ºC), with four replications. The second experiment was conducted in a completely randomized design with four replications, testing seven sowing depths (0.0; 0.5; 1.0; 2.0; 4.0; 6.0; 10.0 cm) in clay-textured soil. In the third experiment, millet, black oat, and sun hemp straw were placed on the surface of the pot where the weeds were sown. R. brasiliensis showed high germination rates at 15°-35°C and in the presence of light, indicating positive photoblastism, as the germination percentage was 63.50% in the presence of light and 1% without light. C. benghalensis showed higher germination rates at 20-35ºC, with a germination percentage of 46.5% under light treatment and 44% in the absence of light. R. brasiliensis exhibited the highest germination percentage at a depth of 0.5 cm, with 72.50%. C. benghalensis showed better germination at depths of 1 and 4 cm, with 48.33% and 49.16%, respectively. Both crotalaria and millet caused significant inhibition of germination in both weed species. R. brasiliensis and C. benghalensis exhibit higher seed germination under alternating temperatures, with R. brasiliensis displaying positive photoblastism and C. benghalensis being neutral. Greater seeding depths negatively influence germination, and cover crops such as crotalaria and millet can be used to suppress these weeds.


Asunto(s)
Germinación , Luz , Temperatura , Germinación/fisiología , Malezas/fisiología , Suelo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...