Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 760
Filtrar
1.
Food Res Int ; 187: 114373, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763649

RESUMEN

Effect of complexation of three medium-chain fatty acids (octanoic, decylic and lauric acid, OA, DA and LA, respectively) on structural characteristics, physicochemical properties and digestion behaviors of cassava starch (CS) was investigated. Current study indicated that LA was more easily to combine with CS (complex index 88.9%), followed by DA (80.9%), which was also consistent with their corresponding complexed lipids content. Following the investigation of morphology, short-range ordered structure, helical structure, crystalline/amorphous region and fractal dimension of the various complexes, all cassava starch-fatty acids complexes (CS-FAs) were characterized with a flaked morphology rather than a round morphology in native starch (control CS). X-ray diffraction demonstrated that all CS-FAs had a V-type crystalline structure, and nuclear magnetic resonance spectroscopy confirmed that the complexes made from different fatty acids displayed similar V6 or V7 type polymorphs. Interestingly, small-angle X-ray scattering analysis revealed that α value became greater following increased carbon chain length of fatty acids, indicating the formation of a more ordered fractal structure in the aggregates. Changes in rheological parameters G' and G'' indicated that starch complexed with fatty acids was more likely to form a gel network, but difference among three CS-FAs complexes was significant, which might be contributed to their corresponding hydrophobicity and hydrophilicity raised from individual fatty acids. Importantly, digestion indicated that CS-LA complexes had the lowest hydrolysis degree, followed by the greatest RS content, indicating the importance of chain length of fatty acids for manipulating the fine structure and functionality of the complexes.


Asunto(s)
Digestión , Ácidos Grasos , Ácidos Láuricos , Manihot , Almidón , Difracción de Rayos X , Manihot/química , Almidón/química , Ácidos Láuricos/química , Ácidos Grasos/química , Ácidos Decanoicos/química , Reología , Caprilatos/química , Espectroscopía de Resonancia Magnética
2.
Int J Biol Macromol ; 268(Pt 1): 131464, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38702248

RESUMEN

Global concerns over environmental damage caused by non-biodegradable single-use packaging have sparked interest in developing biomaterials. The food packaging industry is a major contributor to non-degradable plastic waste. This study investigates the impact of incorporating different concentrations of polyvinyl alcohol (PVA) and yerba mate extract as a natural antioxidant into carboxymethyl cassava starch films to possibly use as active degradable packaging to enhance food shelf life. Films with starch and PVA blends (SP) at different ratios (SP radios of 100:0, 90:10, 80:20 and 70:30) with and without yerba mate extract (Y) were successfully produced through extrusion and thermoforming. The incorporation of up to 20 wt% PVA improved starch extrusion processing and enhanced film transparency. PVA played a crucial role in improving the hydrophobicity, tensile strength and flexibility of the starch films but led to a slight deceleration in their degradation in compost. In contrast, yerba mate extract contributed to better compost degradation of the blend films. Additionally, it provided antioxidant activity, particularly in hydrophilic and lipophilic food simulants, suggesting its potential to extend the shelf life of food products. Starch-PVA blend films with yerba mate extract emerged as a promising alternative for mechanically resistant and active food packaging.


Asunto(s)
Antioxidantes , Embalaje de Alimentos , Manihot , Extractos Vegetales , Alcohol Polivinílico , Almidón , Embalaje de Alimentos/métodos , Alcohol Polivinílico/química , Almidón/química , Almidón/análogos & derivados , Antioxidantes/química , Manihot/química , Extractos Vegetales/química , Ilex paraguariensis/química , Resistencia a la Tracción , Interacciones Hidrofóbicas e Hidrofílicas , Fenómenos Mecánicos
3.
Sci Rep ; 14(1): 12535, 2024 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821999

RESUMEN

Cassava root rot disease caused by the fungal pathogens Fusarium solani and Lasiodiplodia theobromae produces severe damages on cassava production. This research was conducted to produce and assess silver nanoparticles (AgNPs) synthesized by Trichoderma harzianum for reducing root rot disease. The results revealed that using the supernatants of T. harzianum on a silver nitrate solution changed it to reddish color at 48 h, indicating the formation of AgNPs. Further characterization was identified using dynamic light scattering (DLS) and scanning electron microscope (SEM). DLS supported that the Z-average size is at 39.79 nm and the mean zeta potential is at - 36.5 mV. SEM revealed the formation of monodispersed spherical shape with a diameter between 60-75 nm. The antibacterial action of AgNPs as an antifungal agent was demonstrated by an observed decrease in the size of the fungal colonies using an increasing concentration of AgNPs until the complete inhibition growth of L. theobromae and F. solani at > 58 µg mL-1 and at ≥ 50 µg mL-1, respectively. At in vitro conditions, the applied AgNPs caused a decrease in the percentage of healthy aerial hyphae of L. theobromae (32.5%) and of F. solani (70.0%) compared to control (100%). The SR-FTIR spectra showed the highest peaks in the first region (3000-2800 cm-1) associated with lipids and fatty acids located at 2962, 2927, and 2854 cm-1 in the AgNPs treated samples. The second region (1700-1450 cm-1) consisting of proteins and peptides revealed the highest peaks at 1658, 1641, and 1548 cm-1 in the AgNPs treated samples. The third region (1300-900 cm-1), which involves nucleic acid, phospholipids, polysaccharides, and carbohydrates, revealed the highest peaks at 1155, 1079, and 1027 cm-1 in the readings from the untreated samples. Finally, the observed root rot severity on cassava roots treated with AgNPs (1.75 ± 0.50) was significantly lower than the control samples (5.00 ± 0.00).


Asunto(s)
Manihot , Nanopartículas del Metal , Enfermedades de las Plantas , Raíces de Plantas , Plata , Nanopartículas del Metal/química , Plata/química , Plata/farmacología , Enfermedades de las Plantas/microbiología , Manihot/microbiología , Manihot/química , Raíces de Plantas/microbiología , Fusarium/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/química , Hypocreales/metabolismo , Hypocreales/efectos de los fármacos , Trichoderma/metabolismo
4.
Sci Rep ; 14(1): 12098, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802489

RESUMEN

The aim of this study was to investigate the efficacy of a new therapeutic approach (cassava wax bath: CWB) compared with usual care (paraffin wax bath: PWB) in patients with plantar fasciitis (PF). Forty patients with PF were recruited into the study (CWB group, n = 20, PWB group, n = 20). Patients in the CWB group received cassava wax bath and patients in the PWB group received usual care (PWB). The primary outcome was pain intensity (PI). The secondary outcomes were the pressure pain threshold (PPT), pain frequency (PFr), foot and ankle ability measure (FAAM), and ankle dorsiflexion range of motion (ADROM). All outcomes were assessed before and after the five-week intervention, one month, and three months after the intervention period. After the intervention, statistically significant improvement was found in all outcomes after the intervention period and during the one month and three months follow-up study in both groups (P < 0.05). For all outcomes, no between-group differences were seen at any post-assessment time-point, except for PFr (P < 0.05). In conclusion, the findings of this study indicate that CWB was significantly superior to PWB in reducing PFr. For the other outcomes, CWB and PWB were both equally effective in reducing PI and increasing PPT, FAAM, and ADROM in patients with PF. Therefore, CWB might be considered as a novel useful therapeutic option for PF patients.Trial registration: Thai Clinical Trials Registry (TCTR) (Identification number: TCTR20220128002), First posted date: 28/01/2022.


Asunto(s)
Fascitis Plantar , Manihot , Humanos , Femenino , Masculino , Persona de Mediana Edad , Manihot/química , Método Doble Ciego , Adulto , Fascitis Plantar/terapia , Resultado del Tratamiento , Ceras/uso terapéutico , Dimensión del Dolor , Rango del Movimiento Articular , Baños/métodos
5.
Int J Biol Macromol ; 269(Pt 2): 132054, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704063

RESUMEN

In this study, we analyzed the pectin structure within the pulp of cassava. Cassava pectin, derived from cassava pulp treatment at 120 °C for 90 min, was separated into four fractions (CP-P, CP-SD1, CP-SD2F, and CP-SD2R) based on variations in water solubility, electrical properties, and molecular weights. Sugar composition analysis demonstrated an abundance of homogalacturonan (HG) in CP-P and CP-SD2F, rhamnogalacturonan I (RG-I) in CP-SD2R, and neutral sugars in CP-SD1. Because RG-I possesses a complex structure, we analyzed CP-SD2R using various pectinolytic enzymes. Galactose was the major sugar in CP-SD2R accounting for 49 %, of which 65 % originated from arabinogalactan I, 9 % from galactose and galactooligosaccharides, 5 % from arabinogalactan II, and 11 % from galactoarabinan. Seventy-four percent of arabinose in CP-SD2R was present as galactoarabinan. The methylation (DM) and acetylation (DAc) degrees of cassava pectin were 11 and 15 %, respectively. The HG and RG-I regions exhibited DAc values of 5 and 44 %, respectively, signifying the high DAc of RG-I compared to HG. Information derived from the structural analysis of cassava pectin will enable efficient degradation of pectin and cellulose, leading to the use of cassava pulp as a raw material for biorefineries.


Asunto(s)
Manihot , Pectinas , Manihot/química , Pectinas/química , Fraccionamiento Químico , Peso Molecular , Poligalacturonasa/química , Poligalacturonasa/metabolismo , Metilación , Solubilidad
6.
Trop Anim Health Prod ; 56(4): 136, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647730

RESUMEN

This study examined the effects of using mushroom mycelium to ferment tigernut and cassava pulp on the growth performance, haematology and immunology of rabbits. Seventy-five New Zealand Bulk grower rabbits were randomly distributed to four treatment groups and a control group in a completely randomized approach. The treatment groups were fed with formulated experimental diets containing one of fermented tigernut drink by-product (FT), fermented cassava sievate (FC), unfermented tigernut drink by-product (UT), or unfermented cassava sievate (UC). The control group was fed a basal diet with no additives. The proximate composition of the fermented feed was analyzed. The weight gain of the animals was, 834.5, 633, 790, 510, and 706 g for control, FT, FC, UT, and UC respectively. The packed cell volume (PCV) for animals in the control group, FT, and FC are 34.33, 37.26, and 32.29% respectively. The red blood cell (RBC) of the FT was favourably improved (5.53 × 1012/L) compared to those of UT (2.28 × 1012/L), while there was a reduction in the red blood cell count of FC group (1.02 × 1012/L). Conclusively, the inclusion of fermented tiger nut drink by-product in rabbit feed improved the PCV and RBC of the rabbits' understudy but did not affect their growth performance.


Asunto(s)
Alimentación Animal , Dieta , Fermentación , Manihot , Animales , Conejos/crecimiento & desarrollo , Conejos/sangre , Manihot/química , Masculino , Alimentación Animal/análisis , Dieta/veterinaria , Distribución Aleatoria , Arecaceae/química , Hematócrito/veterinaria , Aumento de Peso/efectos de los fármacos
7.
Int J Biol Macromol ; 267(Pt 1): 131439, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593902

RESUMEN

In this study, an edible film was fabricated by incorporating anthocyanin extract from black rice (AEBR) into acetylated cassava starch (ACS)/carboxymethyl-cellulose (CMC) to enhance the shelf life of pumpkin seeds. The effects of AEBR on the rheological properties of film-forming solutions, as well as the structural characterization and physicochemical properties of the film, were evaluated. Rheological properties of solutions revealed that AEBR was evenly dispersed into polymer matrix and bound by hydrogen bonds, as confirmed by Fourier transform infrared spectroscopy analysis. The appropriate AEBR addition could be compatible with polymer matrix and formed a compact film structure, improving the mechanical properties, barrier properties, and opacity. However, with further addition of AEBR, the tensile strength and water vapor permeability decreased and the tight structure was destroyed. After being stored separately under thermal and UV light accelerated conditions for 20 days, the peroxide value and acid value of roasted pumpkin seeds coated with the AEBR film showed a significant reduction. Moreover, the storage stability of AEBR was improved through the embedding of ACS/CMC biopolymers. These results indicated that AEBR film could effectively delay pumpkin seeds oxidation and prolong their shelf life as an antioxidant material.


Asunto(s)
Antocianinas , Carboximetilcelulosa de Sodio , Cucurbita , Películas Comestibles , Manihot , Oxidación-Reducción , Semillas , Almidón , Manihot/química , Antocianinas/química , Carboximetilcelulosa de Sodio/química , Almidón/química , Semillas/química , Cucurbita/química , Acetilación , Permeabilidad , Resistencia a la Tracción , Embalaje de Alimentos/métodos , Antioxidantes/química , Antioxidantes/farmacología , Extractos Vegetales/química , Reología , Espectroscopía Infrarroja por Transformada de Fourier
8.
Int J Biol Macromol ; 268(Pt 1): 131775, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657922

RESUMEN

Active packaging is a novel technology that utilizes active materials to interact with products and the environment, improving food shelf life. The purpose of this work was to fabricate a multifunctional film using Litsea cubeba essential oil (LC-EO) (1 %, 3 %, 5 %, and 7 %) as the active ingredient and pullulan(P)/tapioca starch (TS) as the carrier material. Adding essential oil improves the films properties, such as barrier ability, anti-oxidant, and antibacterial activity. However, tensile strength (TS) and elongation at break (EAB) were slightly reduced from 28.94 MPa to 11.29 MPa and 15.36 % to 12.19 %. The developed PTS3% films showed the best performance in mechanical properties, especially EAB (14.26 %), WVP (3.26 %) and OP (3.13 %), respectively. The inhibitory zone diameters in the agar-well diffusion test were 18.59 mm for Staphylococcus aureus and 17.32 mm for Escherichia coli. Further study was conducted to compare the preservation effects of film with low-density polyethylene bag (LDPE) on chilled beef. Remarkably, PTS3% film decreased the bacterial population in beef meat while maintaining the pH, color, texture, and TBARS levels within an acceptable range for ten days of storage at 4 °C rather than in a low-density polyethylene bag. The outcomes indicated the potential of PTS3% films in food packaging applications.


Asunto(s)
Antibacterianos , Embalaje de Alimentos , Conservación de Alimentos , Glucanos , Litsea , Manihot , Aceites Volátiles , Almidón , Almidón/química , Glucanos/química , Glucanos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Conservación de Alimentos/métodos , Manihot/química , Embalaje de Alimentos/métodos , Litsea/química , Staphylococcus aureus/efectos de los fármacos , Animales , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Antioxidantes/química , Antioxidantes/farmacología , Resistencia a la Tracción , Carne/microbiología
9.
Rev Alerg Mex ; 71(1): 79, 2024 Feb 01.
Artículo en Español | MEDLINE | ID: mdl-38683096

RESUMEN

OBJECTIVE: Determine the electrophoretic profiles of the extracts of Manihot esculenta, Actinidia Deliciosa and Persea Americana and their possible relationship with Latex-Fruit Syndrome. METHODS: Protein extracts of M. esculenta, P. Americana and A. Deliciosa were prepared through the processes of maceration and solvent extraction from plant samples. In the case of the avocado, a prior extraction by soxhlet was carried out to eliminate the fat. The extracts were vacuum filtered, dialyzed and finally lyophilized. Separation of proteins based on molecular weight was performed by SDS PAGE electrophoresis. The electrophoretic profiles obtained were compared with the allergenic proteins previously identified in the latex extract, in order to determine a possible relationship with Latex-Fruit Syndrome, depending on the molecular weight. RESULTS: The extracts of M. esculenta and P. Americana showed a wide range of protein fractions with molecular weights varying from 10 to 250 KD, finding that the region with the highest concentration of bands was between 20 and 89 KD, (60 and 65%), respectively. A 20-band profile was obtained for the M. esculenta extract (Figure 1), with seven bands sharing similar weights with the latex allergens (Hev b 1, Hev b 2, Hev b3, Hev b 4, Hev b 5, Hev b 6.03, Hev b 8 and Hev b 10) (3-5). For the P. Americana extract, 20 bands were also observed (Figure 2), seven of which presented approximate weights to the Latex allergens (Hev b 1, Hev b 2 Hev b 4 Hev b 6.01 Hev b 6.03 Hev b 8 , Hev b 10 Hev b 11 Hev b 14). The Kiwi extract showed two bands of 19.1 and 22.9 KD, with weights close to latex proteins (figure 3), (Hev b 3 and Hev b 6.01), and allergens (Act d 2 and Act d 6), reported in the literature for this fruit. CONCLUSIONS: When analyzing the relationship between the separated protein fractions and the latex allergens described in the literature, a possible association of 35% was found for the extracts of M. esculenta and P. Americana, and 10% for A. Delicious, with great relevance being the association found with the allergens Hev b 4, Hev b 2, Hev 8 and Hev b 11, which are involved in Latex-Fruit Syndrome. The electrophoretic profiles of the prepared extracts were determined and compared with the Latex allergens. This information generates a contribution for the development of new research and advances in the standardization of these extracts on a large scale and for their future use in diagnostic tests.


OBJETIVO: Determinar los perfiles electroforéticos de los extractos de Manihot esculenta, Actinidia deliciosa y Persea americana y su posible relación con el Síndrome de Látex ­ Fruta. MÉTODOS: Se prepararon extractos proteicos de M. esculenta, P. Americana y A. Deliciosa, a través de los procesos de macerado y extracción con solventes a partir muestras vegetales. En el caso del aguacate, se realizó una extracción previa por soxhlet, para eliminar la grasa. Los extractos se filtraron al vacío, se sometieron a diálisis y por último se liofilizaron. La separación de las proteínas en función del peso molecular se realizó mediante electroforesis SDS PAGE. Se compararon los perfiles electroforéticos obtenidos con las proteínas alergénicas previamente identificadas en el extracto de látex, con el fin de determinar una posible relación con el Síndrome de Látex-Fruta, en función del peso molecular. RESULTADOS: Los extractos de M. esculenta y P. americana mostraron una amplia gama de fracciones proteicas con pesos moleculares que varían desde 10 a 250 KD, encontrando que la región con mayor concentración de bandas se situó entre 20 y 89 KD, (60 y 65 %), respectivamente. Se obtuvo un perfil de 20 bandas para el extracto de M. esculenta (figura 1), con siete bandas que comparten pesos similares con los alérgenos del látex (Hev b 1, Hev b 2, Hev b3, Hev b 4, Hev b 5, Hev b 6.03, Hev b 8 y Hev b 10) (3-5). Para el extracto de P. americana, también se observaron 20 bandas (figura 2), siete de las cuales presentaron pesos aproximados a los alérgenos de Látex (Hev b 1, Hev b 2 Hev b 4 Hev b 6.01 Hev b 6.03 Hev b 8, Hev b 10 Hev b 11 Hev b 14). El extracto de Kiwi mostró dos bandas de 19,1 y 22,9 KD, con pesos cercanos a proteínas de látex (figura 3), (Hev b 3 y Hev b 6.01), y los alérgenos (Act d 2 y Act d 6), reportados en la literatura para esta fruta. CONCLUSIONES: Al analizar la relación existente entre las fracciones proteicas separadas y los alérgenos de los látex descritos en la literatura, se encontró una posible asociación del 35% para los extractos de M. esculenta y P. Americana, y del 10% para A. Deliciosa, siendo de gran relevancia la asociación encontrada con los alérgenos Hev b 4, Hev b 2, Hev 8 y Hev b 11, los cuales se encuentran implicados en el Síndrome de Látex-Fruto. Se lograron determinar los perfiles electroforéticos de los extractos elaborados y se compararon con los alérgenos del Látex. Está información genera un aporte para el desarrollo de nuevas investigaciones y avances en la estandarización de estos extractos a gran escala y para su uso futuro en pruebas diagnósticas.


Asunto(s)
Actinidia , Alérgenos , Hipersensibilidad al Látex , Manihot , Persea , Proteínas de Plantas , Manihot/química , Alérgenos/análisis , Actinidia/química , Persea/química , Proteínas de Plantas/análisis , Proteínas de Plantas/inmunología , Frutas/química , Látex/química , Extractos Vegetales/química , Electroforesis en Gel de Poliacrilamida , Síndrome , Peso Molecular
10.
Carbohydr Res ; 538: 109098, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38527408

RESUMEN

This study describes the novel development of quaternized cassava starch (Q-CS) with antimicrobial and antiviral properties, particularly effective against the MHV-3 coronavirus. The preparation of Q-CS involved the reaction of cassava starch (CS) with glycidyltrimethylammonium chloride (GTMAC) in an alkaline solution. Q-CS physicochemical properties were determined by FTIR, NMR, elemental analysis, zeta potential, TGA, and moisture sorption. FTIR and NMR spectra confirmed the introduction of cationic groups in the CS structure. The elemental analysis revealed a degree of substitution (DS) of 0.552 of the cationic reagent on the hydroxyl groups of CS. Furthermore, Q-CS exhibited a positive zeta potential value (+28.6 ± 0.60 mV) attributed to the high positive charge density shown by the quaternary ammonium groups. Q-CS demonstrated lower thermal stability and higher moisture sorption compared to CS. The antimicrobial activity of Q-CS was confirmed against Escherichia coli (MIC = 0.156 mg mL-1) and Staphylococcus aureus (MIC = 0.312 mg mL-1), along with a remarkable ability to inactivate 99% of MHV-3 coronavirus after only 1 min of direct contact. Additionally, Q-CS showed high cell viability (close to 100%) and minimal cytotoxicity effects, guaranteeing its safe use. Therefore, these findings indicate the potential use of Q-CS as a raw material for antiseptic biomaterials.


Asunto(s)
Compuestos de Amonio , Coronavirus , Manihot , Manihot/química , Staphylococcus aureus , Almidón/química
11.
Arch Anim Nutr ; 78(1): 30-44, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38436931

RESUMEN

Cassava protein (CP), barley protein (BP) and yellow pea protein (YPP) are important nutrient and integral constituent of staple in pet foods. It is known that the digestion of proteins directly influences their absorption and utilisation. In the present work, we performed in vitro simulated gastrointestinal digestion of three plant proteins as a staple for dog and cat food. The digestion rate of CP, BP and YPP in dog food was 56.33 ± 0.90%, 48.53 ± 0.91%, and 66.96 ± 0.37%, respectively, whereas the digestion rate of CP, BP, and YPP in cat food was 66.25 ± 0.72%, 43.42 ± 0.83%, and 58.05 ± 0.85%, respectively. Using SDS-polyacrylamide gel electrophoresis to determine the molecular weight (MW) of each protein and the products of their digestion, it was revealed that MW of digestion samples decreased, and MW during the small intestine phase was lower than that during the gastric phase. Peptide sequences of digested products were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and it was found that the total number of peptides in the small intestine digestion samples was higher than that in the gastric phase samples. The MW of peptides obtained from CP was within the range of 1000-1500 Da, while MW of peptides derived from BP and YPP was within the range of 400-2000 Da. In addition, free amino acids were mainly produced in the small intestine phase. Furthermore, the percentage of essential amino acids in the small intestine phase (63 ~ 82%) was higher than that in the gastric phase (37 ~ 63%). Taken together, these findings contribute to the current understanding of the utilisation of plant proteins in dog and cat foods and provide important insights into the selection and application of plant proteins as a staple in dog and cat foods.


Asunto(s)
Aminoácidos , Digestión , Péptidos , Digestión/fisiología , Aminoácidos/metabolismo , Aminoácidos/química , Animales , Péptidos/metabolismo , Péptidos/química , Alimentación Animal/análisis , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Hordeum/química , Hordeum/metabolismo , Manihot/química , Manihot/metabolismo , Pisum sativum/química , Pisum sativum/metabolismo , Perros , Proteínas de Guisantes/química , Proteínas de Guisantes/metabolismo , Gatos , Espectrometría de Masas en Tándem/veterinaria , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/fisiología , Tracto Gastrointestinal/química
12.
Int J Biol Macromol ; 266(Pt 2): 131182, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554898

RESUMEN

Formic acid is utilized to induce esterification and chemical gelatinization in starch, particularly in the fabrication of electrospun fibers for nanomaterial production. This study investigated the impact of different concentrations (15, 20, 25, and 30 %) of cassava starch and formic acid as a solvent on the characteristics of the resultant polymeric solutions and electrospun fibers. Morphology, size distribution, thermogravimetric properties, diffraction patterns, and relative crystallinity were evaluated for the electrospun fibers. The amylose content of starch varied from 16.5 to 23.7 %, decreasing with esterification, achieving a degree of substitution of approximately 0.93. The solution-rheology exhibited elastic behavior, with viscosity increasing as starch concentration increased, hindering the fabrication of fibers at 25 and 30 % starch. Successful electrospun fibers were formed using 15 % and 20 % starch, displaying homogeneous morphologies with mean diameters of 165 nm and 301 nm, respectively. Esterification influenced thermogravimetric properties, leading to fibers with reduced degradation temperatures and mass loss compared to native starches. The electrospun fibers presented an amorphous structure, indicating a drastic reduction in relative crystallinity from 35.2 % in native starch to 8.5 % for esterified starches. This study highlights the intricate relationship between starch concentration, esterification, and solution viscosity, affecting the electrospinnability and properties of starch-polymeric solutions.


Asunto(s)
Formiatos , Manihot , Almidón , Manihot/química , Esterificación , Formiatos/química , Almidón/química , Viscosidad , Amilosa/química , Reología , Termogravimetría
13.
Int J Biol Macromol ; 266(Pt 1): 131271, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556239

RESUMEN

Yerba mate industrial processing produces tons of powder as a by-product, this yerba mate powder (YMP) is an excellent source of biomass to develop biodegradable materials. Cassava starch modified with 1,2,3,4-butane tetracarboxylic acid (BA) in the presence of sodium propionate as a catalyst is an eco-friendly option to obtain bioadhesives. This work aimed to develop sustainable laminates from starch-based adhesives and yerba mate powder and to study their physico-chemical, structural, and mechanical properties. Blends of bioadhesive and YMP were prepared (1:1, adhesive:YMP). Monolayer materials were obtained by thermo-compression and later assembled with adhesive to obtain bilayer laminates. Bioadhesive was able to bind the yerba mate by-product fibers, as evidenced by SEM microstructure analysis, the interactions of adhesive:substrate were elucidated by ATR-FTIR and supported by chemometrics analysis. The incorporation of the catalyst decreased the rugosity of materials and their mechanical performance was improved by the action of both acid concentration and catalyst presence, requiring higher energy for puncture. Thus, it was feasible to obtain mono and bilayer laminates as an eco-compatible alternative for the design of sustainable tray-like materials based on the industrial by-product of yerba mate.


Asunto(s)
Adhesivos , Manihot , Almidón , Almidón/química , Adhesivos/química , Manihot/química
14.
J Sci Food Agric ; 104(8): 4561-4572, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38319871

RESUMEN

BACKGROUND: Consumers of boiled cassava in Africa, Latin America and Asia use specific preference criteria to evaluate its cooking quality, in terms of texture, colour and taste. To improve adoption rates of improved cassava varieties intended for consumption after boiling, these preference criteria need to be determined, quantified and integrated as post-harvest quality traits in the target product profile of boiled cassava, so that breeding programs may screen candidate varieties based on both agronomic traits and consumer preference traits. RESULTS: Surveys of various end-user groups identified seven priority quality attributes of boiled cassava covering root preparation, visual aspect, taste and texture. Three populations of contrasted cassava genotypes, from good-cooking to bad-cooking, in three countries (Uganda, Benin, Colombia) were then characterized according to these quality attributes by sensory quantitative descriptive analysis (QDA) and by standard instrumental methods. Consumers' preferences of the texture attributes mealiness and hardness were also determined. By analysis of correlations, the consumers' preferences scores were translated into thresholds of acceptability in terms of QDA scores, then in terms of instrumental measurements (water absorption during boiling and texture analysis). The thresholds of acceptability were used to identify among the Colombian and Benin populations promising genotypes for boiled cassava quality. CONCLUSION: This work demonstrates the steps of determining priority quality attributes for boiled cassava and establishing their corresponding quantitative thresholds of acceptability. The information can then be included in boiled cassava target product profiles used by cassava breeders, for better selection and adoption rates of new varieties. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Comportamiento del Consumidor , Culinaria , Genotipo , Manihot , Gusto , Manihot/genética , Manihot/química , Humanos , Colombia , Benin
15.
J Sci Food Agric ; 104(8): 4586-4595, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38381087

RESUMEN

BACKGROUND: Cassava retting ability and the textural qualities of cooked fufu are important quality traits. Cassava retting is a complex process in which soaking causes tissue breakdown, starch release, and softening. The rate at which various traits linked to it evolve varies greatly during fufu processing. According to the literature, there is no standard approach for determining retting ability. The retting indices and textural properties of fufu were measured using both manual and instrumental approaches. RESULTS: Different protocols were developed to classify 64 and 11 cassava genotypes into various groups based on retting ability and textural qualities, respectively. The retting protocols revealed considerable genetic dissimilarities in genotype classification: foaming ability and water clarity should be measured at 24 h, while penetrometer, hardness, turbidity, pH, and total titratable acidity data are best collected after 36 h. The stepwise regression model revealed that pH, foaming ability, and dry matter content are the best multivariates (with the highest R2) for predicting cassava retting. These predictors were used to develop an index for assessing the retting ability of cassava genotypes. The retting index developed showed a significant relationship with dry matter content and fufu yield. The study also showed significant correlations between instrumental cohesiveness and sensory smoothness (r = -0.75), moldability (r = -0.62), and stretchability (r = 0.78). Instrumental cohesiveness can correctly estimate fufu smoothness (R2 = 0.56, P = 0.008) and stretchability (R2 = 0.60, P = 0.005). CONCLUSION: pH, foaming ability, and dry matter content are the best traits for predicting cassava retting ability, while instrumental cohesiveness can effectively estimate fufu smoothness and stretchability. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Manihot , Fitomejoramiento , Manihot/química , Manihot/genética , Manihot/metabolismo , Genotipo , Culinaria , Tubérculos de la Planta/química , Tubérculos de la Planta/metabolismo , Almidón/metabolismo , Almidón/química , Harina/análisis , Manipulación de Alimentos/métodos
16.
Int J Biol Macromol ; 265(Pt 1): 130422, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423429

RESUMEN

The evolution of the starch fine structure during growth and its impact on the gelatinization behavior of cassava starch (CS) was investigated by isolating starch from South China 6068 (SC6068) cassava harvested from the 4th to 9th growth period. During growth, the short-range ordered structure, crystallinity as well as particle size distribution of starch were increased. Meanwhile, the starch molecular size and amylopectin (AP) proportion increased, while the proportion of amylose (AM) exhibited a decreasing tendency. The chains of short-AM (X ~ 100-1000) were mainly significantly reduced, whereas the short and medium-AP chains (X ~ 6-24) had the most increment in AP. The solubility, thermal stability, shear resistance, and retrogradation resistance of starch were enhanced after gelatinized under the influence of the results mentioned above. This study presented a deeper insight into the variation of starch fine structure during growth and its influence on gelatinization behavior, which would provide a theoretical basis for starch industrial applications.


Asunto(s)
Manihot , Manihot/química , Almidón/química , Amilopectina/química , Amilosa/química , Solubilidad
17.
An Acad Bras Cienc ; 96(1): e20191322, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38359285

RESUMEN

Dry residue of cassava was studied on the digestibility, performance, intestinal measurements, with or without inclusion of carbohydrases, of slow-growing broilers. 160 Label Rouge broiler chickens, 21-d-old, were distributed in a randomized, 2x5 factorial arrangement (male and female x 0, 10, 20, 30 and 40% residue) (metabolism trial). 1,100 male chicks were distributed in a 2x5 factorial arrangement (with/without carbohydrases x 0; 2.5; 5.0; 7.5; and 10.0% residue), with five replicates (performance trial). Increasing residue levels led to increases in energetic values. Feed intake from 1-21-d-old and 1-63-d-old decreased linearly. At 42 d-old, feed intake and weight gain levels exhibited a quadratic response, which predicted a highest value at 3.32% and 4.77%, respectively, for diets without carbohydrases. For 21- and 42-d-old chickens, the inclusion of carbohydrases reduced the weight and length of the small intestine. The energetic values of the diets were positively influenced by the residue and had similar digestibility values for both sexes. Inclusion of up to 10% of residue in slow-growing broiler diets does not impaired performance and intestinal morphology. The addition of carbohydrases reduced the viscosity of the digesta but it was not enough to improve the performance of the birds.


Asunto(s)
Pollos , Glicósido Hidrolasas , Manihot , Animales , Femenino , Masculino , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Pollos/fisiología , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Manihot/química , Verduras
18.
Int J Biol Macromol ; 260(Pt 1): 129446, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38409770

RESUMEN

Effects of Epiphyllum oxypetalum (DC.) Haw polysaccharide (EP) on physicochemical/digestive properties of tapioca starch (TS) were investigated, and its effects on final quality of TS-based foods were further determined. Results showed EP significantly decreased gelatinization enthalpy (3.92 to 2.11 J/g) and increased breakdown (302 to 382 cp), thereby inducing the gelatinization of TS. Meanwhile, EP decreased setback viscosity (324 to 258 cp), suggesting the retrogradation of TS paste was inhibited. Rheological determination results suggested EP had an impact on the viscoelasticity of TS paste. Moreover, particle size distribution showed EP increased size of TS by cross-linking. Additionally, the suitable addition of EP ameliorated the microstructure and decreased the crystal diffraction peak area of TS gel. Infrared spectroscopy results revealed EP modified the above properties of TS by hydrogen bonds and non-covalent forces. Furthermore, EP inhibited the in vitro digestion of TS paste. Using taro balls as TS-based food model, appropriate addition of EP (0.10 %) improved texture properties, frozen storage stability and color of samples. The present results can not only facilitate the understanding of the modification mechanism of EP on the properties of TS, but also induce the burgeoning of starchy products and the possible application of EP in foods.


Asunto(s)
Manihot , Manihot/química , Almidón/química , Viscosidad , Alimentos , Termodinámica
19.
Bioresour Technol ; 396: 130433, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342281

RESUMEN

Cassava (Manihot esculenta Crantz) leaves, the primary by-product of cassava processing, constitute a significant protein source, accounting for 18 to 38 percent on a dry weight basis. Despite their nutritional value, a substantial portion of these leaves is often discarded post-harvest, resulting in notable resource waste. This study employs metagenomic technology to investigate the protein degradation mechanism in cassava leaves, aiming to provide a technical reference for value-added of this by-product. Following a 36-hour period of natural fermentation, the protein degradation rate reached 58%, a phenomenon intricately linked to both the microbial community structure and its functional properties. Notably, Lactococcus and Enterobacter, recognized for their abundant protease activity, were predominant. Metagenomically assembled genomes further revealed Lactococcus's substantial role in producing flavors and active compounds, including amino acids and peptides. This study offers novel perspectives to the foodization and high-value utilization of cassava by-products, emphasizing the sustainable exploitation of biomass resources.


Asunto(s)
Manihot , Fermentación , Manihot/química , Manihot/metabolismo , Proteolisis , Hojas de la Planta/química
20.
J Mol Graph Model ; 128: 108716, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38277856

RESUMEN

Cassava extracts containing cyanogenic compounds demonstrate anticancer properties. The cyanogenic glucoside linamarin found abundantly in cassava can release hydrogen cyanide (HCN) upon hydrolysis, a potent cytotoxin. However, linamarin's hydrolysis mechanism by human enzymes is poorly delineated and constitutes a bottleneck for therapeutic development. This study aimed to investigate linamarin's hydrolysis mechanism by human ß-glucosidase and identify structural derivatives with enhanced hydrolytic potential using density functional theory calculations. Results revealed α-anomeric derivatives as promising, with leaving group ability and steric bulk strongly governing hydrolysability. We identified several linamarin analogs with predicted rapid hydrolysis kinetics that may enable swift cytotoxic HCN release against cancer cells. This investigation enriches understanding of cyanogenic glycoside reactivity to facilitate their development as targeted antineoplastic agents. The identified derivatives set the groundwork for experimental evaluation of enhanced linamarin-inspired compounds as innovative cancer therapeutics.


Asunto(s)
Manihot , Neoplasias , Humanos , Hidrólisis , Nitrilos , Cianuro de Hidrógeno , Glicósidos/química , Glicósidos/toxicidad , Manihot/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA