Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.127
Filtrar
1.
J Exp Psychol Gen ; 153(8): 2127-2141, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39101910

RESUMEN

Tools enable humans to extend their sensing abilities beyond the natural limits of their hands, allowing them to sense objects as if they were using their hands directly. The similarities between direct hand interactions with objects (hand-based sensing) and the ability to extend sensory information processing beyond the hand (tool-mediated sensing) entail the existence of comparable processes for integrating tool- and hand-sensed information with vision, raising the question of whether tools support vision in bimanual object manipulations. Here, we investigated participants' performance while grasping objects either held with a tool or with their hand and compared these conditions with visually guided grasping (Experiment 1). By measuring reaction time, peak velocity, and peak of grip aperture, we found that actions were initiated earlier and performed with a smaller peak grip aperture when the object was seen and held with the tool or the contralateral hand compared to when it was only seen. Thus, tool-mediated sensing effectively supports vision in multisensory grasping and, even more intriguingly, resembles hand-based sensing. We excluded that results were due to the force exerted on the tool's handle (Experiment 2). Additionally, as for hand-based sensing, we found evidence that the tool supports vision by mainly providing object positional information (Experiment 3). Thus, integrating the tool-sensed position of the object with vision is sufficient to promote a multisensory advantage in grasping. Our findings indicate that multisensory integration mechanisms significantly improve grasping actions and fine-tune contralateral hand movements even when object information is only indirectly sensed through a tool. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Asunto(s)
Fuerza de la Mano , Mano , Desempeño Psicomotor , Percepción Visual , Humanos , Masculino , Femenino , Adulto , Desempeño Psicomotor/fisiología , Fuerza de la Mano/fisiología , Adulto Joven , Percepción Visual/fisiología , Mano/fisiología , Tiempo de Reacción/fisiología
2.
Sci Rep ; 14(1): 18564, 2024 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122791

RESUMEN

High-density electromyography (HD-EMG) can provide a natural interface to enhance human-computer interaction (HCI). This study aims to demonstrate the capability of a novel HD-EMG forearm sleeve equipped with up to 150 electrodes to capture high-resolution muscle activity, decode complex hand gestures, and estimate continuous hand position via joint angle predictions. Ten able-bodied participants performed 37 hand movements and grasps while EMG was recorded using the HD-EMG sleeve. Simultaneously, an 18-sensor motion capture glove calculated 23 joint angles from the hand and fingers across all movements for training regression models. For classifying across the 37 gestures, our decoding algorithm was able to differentiate between sequential movements with 97.3 ± 0.3 % accuracy calculated on a 100 ms bin-by-bin basis. In a separate mixed dataset consisting of 19 movements randomly interspersed, decoding performance achieved an average bin-wise accuracy of 92.8 ± 0.8 % . When evaluating decoders for use in real-time scenarios, we found that decoders can reliably decode both movements and movement transitions, achieving an average accuracy of 93.3 ± 0.9 % on the sequential set and 88.5 ± 0.9 % on the mixed set. Furthermore, we estimated continuous joint angles from the EMG sleeve data, achieving a R 2 of 0.884 ± 0.003 in the sequential set and 0.750 ± 0.008 in the mixed set. Median absolute error (MAE) was kept below 10° across all joints, with a grand average MAE of 1.8 ± 0 . 04 ∘ and 3.4 ± 0 . 07 ∘ for the sequential and mixed datasets, respectively. We also assessed two algorithm modifications to address specific challenges for EMG-driven HCI applications. To minimize decoder latency, we used a method that accounts for reaction time by dynamically shifting cue labels in time. To reduce training requirements, we show that pretraining models with historical data provided an increase in decoding performance compared with models that were not pretrained when reducing the in-session training data to only one attempt of each movement. The HD-EMG sleeve, combined with sophisticated machine learning algorithms, can be a powerful tool for hand gesture recognition and joint angle estimation. This technology holds significant promise for applications in HCI, such as prosthetics, assistive technology, rehabilitation, and human-robot collaboration.


Asunto(s)
Electromiografía , Gestos , Mano , Dispositivos Electrónicos Vestibles , Humanos , Electromiografía/métodos , Masculino , Femenino , Adulto , Mano/fisiología , Algoritmos , Movimiento/fisiología , Adulto Joven
3.
Nat Commun ; 15(1): 6857, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127772

RESUMEN

In tactile sensing, decoding the journey from afferent tactile signals to efferent motor commands is a significant challenge primarily due to the difficulty in capturing population-level afferent nerve signals during active touch. This study integrates a finite element hand model with a neural dynamic model by using microneurography data to predict neural responses based on contact biomechanics and membrane transduction dynamics. This research focuses specifically on tactile sensation and its direct translation into motor actions. Evaluations of muscle synergy during in -vivo experiments revealed transduction functions linking tactile signals and muscle activation. These functions suggest similar sensorimotor strategies for grasping influenced by object size and weight. The decoded transduction mechanism was validated by restoring human-like sensorimotor performance on a tendon-driven biomimetic hand. This research advances our understanding of translating tactile sensation into motor actions, offering valuable insights into prosthetic design, robotics, and the development of next-generation prosthetics with neuromorphic tactile feedback.


Asunto(s)
Tacto , Humanos , Tacto/fisiología , Mano/fisiología , Fenómenos Biomecánicos , Fuerza de la Mano/fisiología , Percepción del Tacto/fisiología , Músculo Esquelético/fisiología , Retroalimentación Sensorial/fisiología , Modelos Neurológicos , Robótica , Masculino
4.
Sci Rep ; 14(1): 18789, 2024 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138248

RESUMEN

Motor contagions refer to implicit effects induced by the observation of actions made by others on one's own actions. A plethora of studies conducted over the last two decades have demonstrated that both observed and predicted actions can induce various kinds of motor contagions in a human observer. However, motor contagions have always been investigated with regard to different features of an observed action, and it remains unclear whether the background environment in which an observed action takes place modulates motor contagions as well. Here, we investigated participant movements in an empirical hand steering task during which the participants were required to move a cursor through a visual channel after being presented with videos of an actor performing the same task. We manipulated the congruency between the actions shown in the video and the background channels and examined whether and how they affected the participants' own movements. We observed a clear interaction between the observed action and its background. The movement time of the participants' actions tended to increase or decrease depending on whether they observed a faster or slower movement, respectively, and these changes were amplified if the background was not congruent with the action contained within it. These results suggest that background information can modulate motor contagions in humans.


Asunto(s)
Movimiento , Desempeño Psicomotor , Humanos , Masculino , Femenino , Adulto , Movimiento/fisiología , Adulto Joven , Desempeño Psicomotor/fisiología , Percepción Visual/fisiología , Mano/fisiología , Estimulación Luminosa
5.
Sci Rep ; 14(1): 18298, 2024 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112629

RESUMEN

Hand visibility affects motor control, perception, and attention, as visual information is integrated into an internal model of somatomotor control. Spontaneous brain activity, i.e., at rest, in the absence of an active task, is correlated among somatomotor regions that are jointly activated during motor tasks. Recent studies suggest that spontaneous activity patterns not only replay task activation patterns but also maintain a model of the body's and environment's statistical regularities (priors), which may be used to predict upcoming behavior. Here, we test whether spontaneous activity in the human somatomotor cortex as measured using fMRI is modulated by visual stimuli that display hands vs. non-hand stimuli and by the use/action they represent. A multivariate pattern analysis was performed to examine the similarity between spontaneous activity patterns and task-evoked patterns to the presentation of natural hands, robot hands, gloves, or control stimuli (food). In the left somatomotor cortex, we observed a stronger (multivoxel) spatial correlation between resting state activity and natural hand picture patterns compared to other stimuli. No task-rest similarity was found in the visual cortex. Spontaneous activity patterns in somatomotor brain regions code for the visual representation of human hands and their use.


Asunto(s)
Mapeo Encefálico , Mano , Imagen por Resonancia Magnética , Percepción Visual , Humanos , Mano/fisiología , Masculino , Femenino , Adulto , Percepción Visual/fisiología , Adulto Joven , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Corteza Motora/fisiología , Corteza Motora/diagnóstico por imagen , Descanso/fisiología , Estimulación Luminosa , Corteza Visual/fisiología , Corteza Visual/diagnóstico por imagen
6.
Artículo en Inglés | MEDLINE | ID: mdl-39110556

RESUMEN

The ability of a novel biorealistic hand prosthesis for grasp force control reveals improved neural compatibility between the human-prosthetic interaction. The primary purpose here was to validate a virtual training platform for amputee subjects and evaluate the respective roles of visual and tactile information in fundamental force control tasks. We developed a digital twin of tendon-driven prosthetic hand in the MuJoCo environment. Biorealistic controllers emulated a pair of antagonistic muscles controlling the index finger of the virtual hand by surface electromyographic (sEMG) signals from amputees' residual forearm muscles. Grasp force information was transmitted to amputees through evoked tactile sensation (ETS) feedback. Six forearm amputees participated in force tracking and holding tasks under different feedback conditions or using their intact hands. Test results showed that visual feedback played a predominant role than ETS feedback in force tracking and holding tasks. However, in the absence of visual feedback during the force holding task, ETS feedback significantly enhanced motor performance compared to feedforward control alone. Thus, ETS feedback still supplied reliable sensory information to facilitate amputee's ability of stable grasp force control. The effects of tactile and visual feedback on force control were subject-specific when both types of feedback were provided simultaneously. Amputees were able to integrate visual and tactile information to the biorealistic controllers and achieve a good sensorimotor performance in grasp force regulation. The virtual platform may provide a training paradigm for amputees to adapt the biorealistic hand controller and ETS feedback optimally.


Asunto(s)
Amputados , Miembros Artificiales , Electromiografía , Retroalimentación Sensorial , Fuerza de la Mano , Mano , Diseño de Prótesis , Humanos , Retroalimentación Sensorial/fisiología , Masculino , Fuerza de la Mano/fisiología , Mano/fisiología , Adulto , Femenino , Persona de Mediana Edad , Tacto/fisiología , Músculo Esquelético/fisiología , Desempeño Psicomotor/fisiología , Antebrazo/fisiología , Fenómenos Biomecánicos , Tendones/fisiología
7.
Sensors (Basel) ; 24(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39124059

RESUMEN

This study evaluates the R3THA™ assessment protocol (R3THA-AP™), a technology-supported testing module for personalized rehabilitation in children with cerebral palsy (CP). It focuses on the reliability and validity of the R3THA-AP in assessing hand and arm function, by comparing kinematic assessments with standard clinical assessments. Conducted during a 4-week summer camp, the study assessed the functional and impairment levels of children with CP aged 3-18. The findings suggest that R3THA is more reliable for children aged 8 and older, indicating that age significantly influences the protocol's effectiveness. The results also showed that the R3THA-AP's kinematic measurements of hand and wrist movements are positively correlated with the Box and Blocks Test Index (BBTI), reflecting hand function and dexterity. Additionally, the R3THA-AP's accuracy metrics for hand and wrist activities align with the Melbourne Assessment 2's Range of Motion (MA2-ROM) scores, suggesting a meaningful relationship between R3THA-AP data and clinical assessments of motor skills. However, no significant correlations were observed between the R3THA-AP and MA2's accuracy and dexterity measurements, indicating areas for further research. These findings validate the R3THA-AP's utility in assessing motor abilities in CP patients, supporting its integration into clinical practice.


Asunto(s)
Brazo , Parálisis Cerebral , Mano , Humanos , Parálisis Cerebral/rehabilitación , Parálisis Cerebral/fisiopatología , Niño , Adolescente , Mano/fisiopatología , Mano/fisiología , Masculino , Femenino , Fenómenos Biomecánicos , Brazo/fisiopatología , Brazo/fisiología , Preescolar , Rehabilitación Neurológica/métodos , Rehabilitación Neurológica/instrumentación , Rango del Movimiento Articular/fisiología , Reproducibilidad de los Resultados
8.
J Neuroeng Rehabil ; 21(1): 142, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135110

RESUMEN

BACKGROUND: Closing the control loop between users and their prostheses by providing artificial sensory feedback is a fundamental step toward the full restoration of lost sensory-motor functions. METHODS: We propose a novel approach to provide artificial proprioceptive feedback about two degrees of freedom using a single array of 8 vibration motors (compact solution). The performance afforded by the novel method during an online closed-loop control task was compared to that achieved using the conventional approach, in which the same information was conveyed using two arrays of 8 and 4 vibromotors (one array per degree of freedom), respectively. The new method employed Gaussian interpolation to modulate the intensity profile across a single array of vibration motors (compact feedback) to convey wrist rotation and hand aperture by adjusting the mean and standard deviation of the Gaussian, respectively. Ten able-bodied participants and four transradial amputees performed a target achievement control test by utilizing pattern recognition with compact and conventional vibrotactile feedback to control the Hannes prosthetic hand (test conditions). A second group of ten able-bodied participants performed the same experiment in control conditions with visual and auditory feedback as well as no-feedback. RESULTS: Conventional and compact approaches resulted in similar positioning accuracy, time and path efficiency, and total trial time. The comparison with control condition revealed that vibrational feedback was intuitive and useful, but also underlined the power of incidental feedback sources. Notably, amputee participants achieved similar performance to that of able-bodied participants. CONCLUSIONS: The study therefore shows that the novel feedback strategy conveys useful information about prosthesis movements while reducing the number of motors without compromising performance. This is an important step toward the full integration of such an interface into a prosthesis socket for clinical use.


Asunto(s)
Miembros Artificiales , Retroalimentación Sensorial , Mano , Propiocepción , Vibración , Muñeca , Humanos , Retroalimentación Sensorial/fisiología , Propiocepción/fisiología , Adulto , Masculino , Muñeca/fisiología , Femenino , Mano/fisiología , Amputados/rehabilitación , Rotación , Adulto Joven , Persona de Mediana Edad , Tacto/fisiología
9.
Nat Commun ; 15(1): 5821, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987530

RESUMEN

We propose a compact wearable glove capable of estimating both the finger bone lengths and the joint angles of the wearer with a simple stretch-based sensing mechanism. The soft sensing glove is designed to easily stretch and to be one-size-fits-all, both measuring the size of the hand and estimating the finger joint motions of the thumb, index, and middle fingers. The system was calibrated and evaluated using comprehensive hand motion data that reflect the extensive range of natural human hand motions and various anatomical structures. The data were collected with a custom motion-capture setup and transformed into the joint angles through our post-processing method. The glove system is capable of reconstructing arbitrary and even unconventional hand poses with accuracy and robustness, confirmed by evaluations on the estimation of bone lengths (mean error: 2.1 mm), joint angles (mean error: 4.16°), and fingertip positions (mean 3D error: 4.02 mm), and on overall hand pose reconstructions in various applications. The proposed glove allows us to take advantage of the dexterity of the human hand with potential applications, including but not limited to teleoperation of anthropomorphic robot hands or surgical robots, virtual and augmented reality, and collection of human motion data.


Asunto(s)
Dedos , Mano , Dispositivos Electrónicos Vestibles , Humanos , Mano/fisiología , Dedos/fisiología , Articulaciones de los Dedos/fisiología , Movimiento/fisiología , Fenómenos Biomecánicos , Rango del Movimiento Articular/fisiología
10.
PLoS One ; 19(7): e0306713, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38990858

RESUMEN

BACKGROUND: Soft-robotic gloves with an assist-as-needed control have the ability to assist daily activities where needed, while stimulating active and highly functional movements within the user's possibilities. Employment of hand activities with glove support might act as training for unsupported hand function. OBJECTIVE: To evaluate the therapeutic effect of a grip-supporting soft-robotic glove as an assistive device at home during daily activities. METHODS: This multicentre intervention trial consisted of 3 pre-assessments (averaged if steady state = PRE), one post-assessment (POST), and one follow-up assessment (FU). Participants with chronic hand function limitations were included. Participants used the Carbonhand glove during six weeks in their home environment on their most affected hand. They were free to choose which activities to use the glove with and for how long. The primary outcome measure was grip strength, secondary outcome measures were pinch strength, hand function and glove use time. RESULTS: 63 patients with limitations in hand function resulting from various disorders were included. Significant improvements (difference PRE-POST) were found for grip strength (+1.9 kg, CI 0.8 to 3.1; p = 0.002) and hand function, as measured by Jebson-Taylor Hand Function Test (-7.7 s, CI -13.4 to -1.9; p = 0.002) and Action Research Arm Test (+1.0 point, IQR 2.0; p≤0.001). Improvements persisted at FU. Pinch strength improved slightly in all fingers over six-week glove use, however these differences didn't achieve significance. Participants used the soft-robotic glove for a total average of 33.0 hours (SD 35.3), equivalent to 330 min/week (SD 354) or 47 min/day (SD 51). No serious adverse events occurred. CONCLUSION: The present findings showed that six weeks use of a grip-supporting soft-robotic glove as an assistive device at home resulted in a therapeutic effect on unsupported grip strength and hand function. The glove use time also showed that this wearable, lightweight glove was able to assist participants with the performance of daily tasks for prolonged periods.


Asunto(s)
Fuerza de la Mano , Mano , Dispositivos Electrónicos Vestibles , Humanos , Fuerza de la Mano/fisiología , Femenino , Masculino , Persona de Mediana Edad , Mano/fisiología , Adulto , Anciano , Dispositivos de Autoayuda , Robótica/instrumentación , Actividades Cotidianas
11.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000912

RESUMEN

The present work focuses on the tapping test, which is a method that is commonly used in the literature to assess dexterity, speed, and motor coordination by repeatedly moving fingers, performing a tapping action on a flat surface. During the test, the activation of specific brain regions enhances fine motor abilities, improving motor control. The research also explores neuromuscular and biomechanical factors related to finger dexterity, revealing neuroplastic adaptation to repetitive movements. To give an objective evaluation of all cited physiological aspects, this work proposes a measurement architecture consisting of the following: (i) a novel measurement protocol to assess the coordinative and conditional capabilities of a population of participants; (ii) a suitable measurement platform, consisting of synchronized and non-invasive inertial sensors to be worn at finger level; (iii) a data analysis processing stage, able to provide the final user (medical doctor or training coach) with a plethora of useful information about the carried-out tests, going far beyond state-of-the-art results from classical tapping test examinations. Particularly, the proposed study underscores the importance interdigital autonomy for complex finger motions, despite the challenges posed by anatomical connections; this deepens our understanding of upper limb coordination and the impact of neuroplasticity, holding significance for motor abilities assessment, improvement, and therapeutic strategies to enhance finger precision. The proof-of-concept test is performed by considering a population of college students. The obtained results allow us to consider the proposed architecture to be valuable for many application scenarios, such as the ones related to neurodegenerative disease evolution monitoring.


Asunto(s)
Dedos , Mano , Humanos , Dedos/fisiología , Mano/fisiología , Destreza Motora/fisiología , Fenómenos Biomecánicos/fisiología , Movimiento/fisiología , Masculino , Adulto , Femenino , Desempeño Psicomotor/fisiología
12.
Sensors (Basel) ; 24(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000951

RESUMEN

Hand-intensive work is strongly associated with work-related musculoskeletal disorders (WMSDs) of the hand/wrist and other upper body regions across diverse occupations, including office work, manufacturing, services, and healthcare. Addressing the prevalence of WMSDs requires reliable and practical exposure measurements. Traditional methods like electrogoniometry and optical motion capture, while reliable, are expensive and impractical for field use. In contrast, small inertial measurement units (IMUs) may provide a cost-effective, time-efficient, and user-friendly alternative for measuring hand/wrist posture during real work. This study compared six orientation algorithms for estimating wrist angles with an electrogoniometer, the current gold standard in field settings. Six participants performed five simulated hand-intensive work tasks (involving considerable wrist velocity and/or hand force) and one standardised hand movement. Three multiplicative Kalman filter algorithms with different smoothers and constraints showed the highest agreement with the goniometer. These algorithms exhibited median correlation coefficients of 0.75-0.78 for flexion/extension and 0.64 for radial/ulnar deviation across the six subjects and five tasks. They also ranked in the top three for the lowest mean absolute differences from the goniometer at the 10th, 50th, and 90th percentiles of wrist flexion/extension (9.3°, 2.9°, and 7.4°, respectively). Although the results of this study are not fully acceptable for practical field use, especially for some work tasks, they indicate that IMU-based wrist angle estimation may be useful in occupational risk assessments after further improvements.


Asunto(s)
Algoritmos , Muñeca , Humanos , Muñeca/fisiología , Masculino , Adulto , Femenino , Rango del Movimiento Articular/fisiología , Fenómenos Biomecánicos , Movimiento/fisiología , Mano/fisiología , Articulación de la Muñeca/fisiología
13.
Artículo en Inglés | MEDLINE | ID: mdl-38949928

RESUMEN

Brain-computer interfaces (BCIs) provide a communication interface between the brain and external devices and have the potential to restore communication and control in patients with neurological injury or disease. For the invasive BCIs, most studies recruited participants from hospitals requiring invasive device implantation. Three widely used clinical invasive devices that have the potential for BCIs applications include surface electrodes used in electrocorticography (ECoG) and depth electrodes used in Stereo-electroencephalography (SEEG) and deep brain stimulation (DBS). This review focused on BCIs research using surface (ECoG) and depth electrodes (including SEEG, and DBS electrodes) for movement decoding on human subjects. Unlike previous reviews, the findings presented here are from the perspective of the decoding target or task. In detail, five tasks will be considered, consisting of the kinematic decoding, kinetic decoding,identification of body parts, dexterous hand decoding, and motion intention decoding. The typical studies are surveyed and analyzed. The reviewed literature demonstrated a distributed motor-related network that spanned multiple brain regions. Comparison between surface and depth studies demonstrated that richer information can be obtained using surface electrodes. With regard to the decoding algorithms, deep learning exhibited superior performance using raw signals than traditional machine learning algorithms. Despite the promising achievement made by the open-loop BCIs, closed-loop BCIs with sensory feedback are still in their early stage, and the chronic implantation of both ECoG surface and depth electrodes has not been thoroughly evaluated.


Asunto(s)
Interfaces Cerebro-Computador , Electrocorticografía , Electrodos Implantados , Movimiento , Humanos , Electrocorticografía/instrumentación , Electrocorticografía/métodos , Movimiento/fisiología , Estimulación Encefálica Profunda/instrumentación , Fenómenos Biomecánicos , Electroencefalografía/métodos , Electroencefalografía/instrumentación , Electrodos , Corteza Motora/fisiología , Mano/fisiología , Algoritmos
14.
Bioinspir Biomim ; 19(5)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38986470

RESUMEN

Tactile sensors play an important role when robots perform contact tasks, such as physical information collection, force or displacement control to avoid collision. For these manipulations, excessive contact may cause damage while poor contact cause information loss between the robotic end-effector and the objects. Inspired by skin structure and signal transmission method, this paper proposes a tactile sensing system based on the self-sensing soft pneumatic actuator (S-SPA) capable of providing tactile sensing capability for robots. Based on the adjustable height and compliance characteristics of the S-SPA, the contact process is safe and more tactile information can be collected. And to demonstrate the feasibility and advantage of this system, a robotic hand with S-SPAs could recognize different textures and stiffness of the objects by touching and pinching behaviours to collect physical information of the various objects under the positive work states of the S-SPA. The result shows the recognition accuracy of the fifteen texture plates reaches 99.4%, and the recognition accuracy of the four stiffness cuboids reaches 100%by training a KNN model. This safe and simple tactile sensing system with high recognition accuracies based on S-SPA shows great potential in robotic manipulations and is beneficial to applications in domestic and industrial fields.


Asunto(s)
Biomimética , Diseño de Equipo , Robótica , Tacto , Robótica/instrumentación , Tacto/fisiología , Biomimética/instrumentación , Humanos , Mano/fisiología , Materiales Biomiméticos
15.
PLoS One ; 19(7): e0307550, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39037994

RESUMEN

Music has been reported to facilitate motor performance. However, there is no data on the effects of different acoustic environmental stimuli on manual dexterity. The present observational study aimed at investigating the effects of background music and noise on a manual dexterity task in young, middle-aged and elderly subjects. Sixty healthy, right-handed subjects aged between 18 and 80 years were enrolled. Twenty young (mean age: 22±2 years), 20 middle-aged (mean age: 55±8 years) and 20 elderly (mean age: 72±5 years) subjects performed the Nine Hole Peg Test (NHPT) in four different acoustic environments: silence (noise < 20dBA), classical music at 60dBA, rock music at 70 dBA, and a noise stimulus at 80dBA. Performance was recorded using an optical motion capture system and retro-reflective markers (SMART DX, 400, BTS). Outcome measures included the total test time and peg-grasp, peg-transfer, peg-in-hole, hand-return, and removing phases times. Normalized jerk, mean and peak of velocity during transfer and return phases were also computed. No differences were found for NHPT phases and total times, normalized jerk, peak of velocity and mean velocity between four acoustic conditions (p>0.05). Between-group differences were found for NHPT total time, where young subjects revealed better performance than elderly (p˂0.001) and middle-aged (p˂0.001) groups. Music and noise stimuli in the considered range of intensity had no influence on the execution of a manual dexterity task in young, middle-aged and elderly subjects. These findings may have implications for working, sportive and rehabilitative activities.


Asunto(s)
Estimulación Acústica , Música , Humanos , Persona de Mediana Edad , Anciano , Masculino , Femenino , Adulto Joven , Adulto , Desempeño Psicomotor/fisiología , Adolescente , Destreza Motora/fisiología , Anciano de 80 o más Años , Ruido , Mano/fisiología
16.
Sci Rep ; 14(1): 16710, 2024 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030359

RESUMEN

Reward usually enhances task performance, but exceptionally large rewards can impede performance due to psychological pressure. In this study, we investigated motor activity changes in high-reward situations and identified indicators for performance decline. Fourteen healthy adults practiced a velocity-dependent right-hand motor task for three days, followed by a test day with varying monetary reward for each trial. Participants were divided into low performers (LPs) and high performers (HPs) according to whether success rate decreased or increased, respectively, on the highest reward trials compared to lower reward trials. Both LPs and HPs demonstrated increased hand velocity during higher reward trials, but only LPs exhibited a significant increase in velocity variance. There was also a negative correlation between the pre-movement co-contraction index (CCI) of the biceps and triceps muscles and success rate on the highest reward trials. This correlation was confirmed in a second experiment with 12 newly recruited participants, suggesting that pre-movement CCI is a marker for performance decline caused by high reward. These findings suggest that interventions to reduce pre-movement CCI such as biofeedback training could be useful for preventing the paradoxical decline in motor performance associated with high rewards.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Recompensa , Humanos , Masculino , Femenino , Adulto , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Adulto Joven , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Mano/fisiología , Electromiografía
17.
Sci Rep ; 14(1): 16506, 2024 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019893

RESUMEN

In two-handed actions like baseball batting, the brain can allocate the control to each arm in an infinite number of ways. According to hemispheric specialization theory, the dominant hemisphere is adept at ballistic control, while the non-dominant hemisphere is specialized at postural stabilization, so the brain should divide the control between the arms according to their respective specialization. Here, we tested this prediction by examining how the brain shares the control between the dominant and non-dominant arms during bimanual reaching and postural stabilization. Participants reached with both hands, which were tied together by a stiff virtual spring, to a target surrounded by an unstable repulsive force field. If the brain exploits each hemisphere's specialization, then the dominant arm should be responsible for acceleration early in the movement, and the non-dominant arm will be the prime actor at the end when holding steady against the force field. The power grasp force, which signifies the postural stability of each arm, peaked at movement termination but was equally large in both arms. Furthermore, the brain predominantly used the arm that could use the stronger flexor muscles to mainly accelerate the movement. These results point to the brain flexibly allocating the control to each arm according to the task goal without adhering to a strict specialization scheme.


Asunto(s)
Lateralidad Funcional , Movimiento , Humanos , Masculino , Movimiento/fisiología , Adulto , Lateralidad Funcional/fisiología , Adulto Joven , Femenino , Equilibrio Postural/fisiología , Desempeño Psicomotor/fisiología , Fenómenos Biomecánicos , Brazo/fisiología , Mano/fisiología , Fuerza de la Mano/fisiología , Encéfalo/fisiología
18.
Proc Natl Acad Sci U S A ; 121(31): e2400687121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042677

RESUMEN

The seemingly straightforward task of tying one's shoes requires a sophisticated interplay of joints, muscles, and neural pathways, posing a formidable challenge for researchers studying the intricacies of coordination. A widely accepted framework for measuring coordinated behavior is the Haken-Kelso-Bunz (HKB) model. However, a significant limitation of this model is its lack of accounting for the diverse variability structures inherent in the coordinated systems it frequently models. Variability is a pervasive phenomenon across various biological and physical systems, and it changes in healthy adults, older adults, and pathological populations. Here, we show, both empirically and with simulations, that manipulating the variability in coordinated movements significantly impacts the ability to change coordination patterns-a fundamental feature of the HKB model. Our results demonstrate that synchronized bimanual coordination, mirroring a state of healthy variability, instigates earlier transitions of coordinated movements compared to other variability conditions. This suggests a heightened adaptability when movements possess a healthy variability. We anticipate our study to show the necessity of adapting the HKB model to encompass variability, particularly in predictive applications such as neuroimaging, cognition, skill development, biomechanics, and beyond.


Asunto(s)
Movimiento , Desempeño Psicomotor , Humanos , Masculino , Femenino , Desempeño Psicomotor/fisiología , Adulto , Movimiento/fisiología , Fenómenos Biomecánicos , Adulto Joven , Mano/fisiología
19.
Sci Rep ; 14(1): 17301, 2024 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068196

RESUMEN

Our ability to skillfully manipulate objects is supported by rapid corrective responses that are initiated when we experience perturbations that interfere with movement goals. For example, the corrective lifting response is triggered when an object is heavier than expected and fails to lift off the surface. In this situation, the absence of expected sensory feedback signalling lift off initiates, within ~ 90 ms, an increase in lifting force. Importantly, when people repeatedly lift an object that, on occasional catch trials, is heavier than expected, the gain of the corrective response, defined as the rate of force increase, adapts to the 'catch' weight. In the present study, we investigated whether this response adaption transfers intermanually. In the training phase, participants used either their left or right hand (counterbalanced) to repeatedly lift a 3 N object that unexpectedly increased to 9 N on catch trials, leading to an increase in the gain of the lifting response across catch trials. Participants then lifted the object with their other hand. On the first catch trial, the gain remained elevated and thus transferred across the hands. This finding suggests that the history of lifts performed by one hand updates the corrective responses for both hands.


Asunto(s)
Adaptación Fisiológica , Mano , Elevación , Humanos , Femenino , Masculino , Mano/fisiología , Adulto , Adulto Joven , Desempeño Psicomotor/fisiología
20.
Sensors (Basel) ; 24(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39066034

RESUMEN

In current smart classroom research, numerous studies focus on recognizing hand-raising, but few analyze the movements to interpret students' intentions. This limitation hinders teachers from utilizing this information to enhance the effectiveness of smart classroom teaching. Assistive teaching methods, including robotic and artificial intelligence teaching, require smart classroom systems to both recognize and thoroughly analyze hand-raising movements. This detailed analysis enables systems to provide targeted guidance based on students' hand-raising behavior. This study proposes a morphology-based analysis method to innovatively convert students' skeleton key point data into several one-dimensional time series. By analyzing these time series, this method offers a more detailed analysis of student hand-raising behavior, addressing the limitations of deep learning methods that cannot compare classroom hand-raising enthusiasm or establish a detailed database of such behavior. This method primarily utilizes a neural network to obtain students' skeleton estimation results, which are then converted into time series of several variables using the morphology-based analysis method. The YOLOX and HrNet models were employed to obtain the skeleton estimation results; YOLOX is an object detection model, while HrNet is a skeleton estimation model. This method successfully recognizes hand-raising actions and provides a detailed analysis of their speed and amplitude, effectively supplementing the coarse recognition capabilities of neural networks. The effectiveness of this method has been validated through experiments.


Asunto(s)
Mano , Motivación , Redes Neurales de la Computación , Estudiantes , Humanos , Mano/fisiología , Motivación/fisiología , Movimiento/fisiología , Grabación en Video/métodos , Inteligencia Artificial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...