Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Int J Biol Macromol ; 279(Pt 1): 135127, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39208883

RESUMEN

We are investigating the glycolytic pathway in Pyrobaculum calidifontis whose genome sequence contains homologues of all the enzymes involved in this pathway. We have characterized most of them. An open reading frame, Pcal_0606, annotated as a putative phosphoglucose/phosphomannose isomerase has to be characterized yet. In silico analysis indicated the presence of more than one substrate binding pockets at the dimeric interface of Pcal_0606. The gene encoding Pcal_0606 was cloned and expressed in Escherichia coli. Recombinant Pcal_0606, produced in soluble form, exhibited highest enzyme activity at 90 °C and pH 8.5. Presence or absence of metal ions or EDTA did not significantly affect the enzyme activity. Under optimal conditions, Pcal_0606 displayed apparent Km values of 0.33, 0.34, and 0.29 mM against glucose 6-phosphate, mannose 6-phosphate and fructose 6-phosphate, respectively. In the same order, Vmax values against these substrates were 290, 235, and 240 µmol min-1 mg-1, indicating that Pcal_0606 catalyzed the reversible isomerization of these substrates with nearly same catalytic efficiency. These results characterize Pcal_0606 a bifunctional phosphoglucose/phosphomannose isomerase, which displayed high thermostability with a half-life of ∼50 min at 100 °C. To the best of our knowledge, Pcal_0606 is the most active and thermostable bifunctional phosphoglucose/phosphomannose isomerase characterized to date.


Asunto(s)
Manosa-6-Fosfato Isomerasa , Pyrobaculum , Manosa-6-Fosfato Isomerasa/genética , Manosa-6-Fosfato Isomerasa/metabolismo , Manosa-6-Fosfato Isomerasa/química , Especificidad por Sustrato , Pyrobaculum/enzimología , Pyrobaculum/genética , Cinética , Concentración de Iones de Hidrógeno , Glucosa-6-Fosfato Isomerasa/genética , Glucosa-6-Fosfato Isomerasa/química , Glucosa-6-Fosfato Isomerasa/metabolismo , Clonación Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Relación Estructura-Actividad , Modelos Moleculares , Temperatura , Secuencia de Aminoácidos
2.
Enzyme Microb Technol ; 177: 110427, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518553

RESUMEN

d-mannose has been widely used in food, medicine, cosmetic, and food-additive industries. To date, chemical synthesis or enzymatic conversion approaches based on iso/epimerization reactions for d-mannose production suffered from low conversion rate due to the reaction equilibrium, necessitating intricate separation processes for obtaining pure products on an industrial scale. To circumvent this challenge, this study showcased a new approach for d-mannose synthesis from glucose through constructing a phosphorylation-dephosphorylation pathway in an engineered strain. Specifically, the gene encoding phosphofructokinase (PfkA) in glycolytic pathway was deleted in Escherichia coli to accumulate fructose-6-phosphate (F6P). Additionally, one endogenous phosphatase, YniC, with high specificity to mannose-6-phosphate, was identified. In ΔpfkA strain, a recombinant synthetic pathway based on mannose-6-phosphate isomerase and YniC was developed to direct F6P to mannose. The resulting strain successfully produced 25.2 g/L mannose from glucose with a high conversion rate of 63% after transformation for 48 h. This performance surpassed the 15% conversion rate observed with 2-epimerases. In conclusion, this study presents an efficient method for achieving high-yield mannose synthesis from cost-effective glucose.


Asunto(s)
Escherichia coli , Glucosa , Manosa , Manosa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fosforilación , Glucosa/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Manosafosfatos/metabolismo , Ingeniería Metabólica , Fructosafosfatos/metabolismo , Manosa-6-Fosfato Isomerasa/metabolismo , Manosa-6-Fosfato Isomerasa/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Glucólisis
3.
Nat Commun ; 15(1): 2144, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459021

RESUMEN

Host survival depends on the elimination of virus and mitigation of tissue damage. Herein, we report the modulation of D-mannose flux rewires the virus-triggered immunometabolic response cascade and reduces tissue damage. Safe and inexpensive D-mannose can compete with glucose for the same transporter and hexokinase. Such competitions suppress glycolysis, reduce mitochondrial reactive-oxygen-species and succinate-mediated hypoxia-inducible factor-1α, and thus reduce virus-induced proinflammatory cytokine production. The combinatorial treatment by D-mannose and antiviral monotherapy exhibits in vivo synergy despite delayed antiviral treatment in mouse model of virus infections. Phosphomannose isomerase (PMI) knockout cells are viable, whereas addition of D-mannose to the PMI knockout cells blocks cell proliferation, indicating that PMI activity determines the beneficial effect of D-mannose. PMI inhibition suppress a panel of virus replication via affecting host and viral surface protein glycosylation. However, D-mannose does not suppress PMI activity or virus fitness. Taken together, PMI-centered therapeutic strategy clears virus infection while D-mannose treatment reprograms glycolysis for control of collateral damage.


Asunto(s)
Manosa-6-Fosfato Isomerasa , Manosa , Animales , Ratones , Manosa-6-Fosfato Isomerasa/metabolismo , Glicosilación , Manosa/metabolismo , Glucosa/metabolismo , Antivirales/farmacología
4.
Plant Sci ; 338: 111897, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37852415

RESUMEN

Due to anthropogenic global warming, droughts are expected to increase and water availability to decrease in the coming decades. For this reason, research is increasingly focused on developing plant varieties and crop cultivars with reduced water consumption. Transpiration occurs through stomatal pores, resulting in water loss. Potassium plays a significant role in stomatal regulation. KAT1 is an inward-rectifying potassium channel that contributes to stomatal opening. Using a yeast high-throughput screening of an Arabidopsis cDNA library, MEE31 was found to physically interact with KAT1. MEE31 was initially identified in a screen for mutants with delayed embryonic development. The gene encodes a conserved phosphomannose isomerase (PMI). We report here that MEE31 interacts with and increases KAT1 activity in yeast and this interaction was also confirmed in plants. In addition, MEE31 complements the function of the yeast homologue, whereas the truncated version recovered in the screening does not, thus uncoupling the enzymatic activity from KAT1 regulation. We show that MEE31 overexpression leads to increased stomatal opening in Arabidopsis transgenic lines. Our data suggest that MEE31 is a moonlighting protein involved in both GDP-D-mannose biosynthesis and KAT1 regulation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Manosa-6-Fosfato Isomerasa , Canales de Potasio de Rectificación Interna , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Manosa/metabolismo , Proteínas de Plantas/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Agua/metabolismo , Manosa-6-Fosfato Isomerasa/metabolismo
5.
Microbiol Spectr ; 10(5): e0202722, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-35980200

RESUMEN

Aspergillus flavus causes invasive aspergillosis in immunocompromised patients and severe contamination of agriculturally important crops by producing aflatoxins. The fungal cell wall is absent in animals and is structurally different from that of plants, which makes it a potential antifungal drug target due to its essentiality for fungal survival. Mannose is one of the important components in the fungal cell wall, which requires GDP-mannose (GDP-Man) as the primary donor. Three consecutive enzymes, namely, phosphomannose isomerase (PMI), phosphomannose mutase (PMM), and GDP-mannose phosphorylase (GMPP), are required for GDP-Man biosynthesis. Thus, PMI is of prime importance in cell wall biosynthesis and also has an active role in sugar metabolism. Here, we investigated the functional role of PMI in A. flavus by generating a pmiA-deficient strain. The mutant required exogenous mannose to survive and exhibited reduced growth rate, impaired conidiation, early germination, disturbance in stress responses, and defects in colonization of crop seeds. Furthermore, attenuated virulence of the mutant was documented in both Caenorhabditis elegans and Galleria mellonella infection models. Our results suggested that PMI plays an important role in the development, stress responses, and pathogenicity of A. flavus and therefore could serve as a potential target for battling against infection and controlling aflatoxin contamination caused by A. flavus. IMPORTANCE Aspergillus flavus is a common fungal pathogen of humans, animals, and agriculturally important crops. It causes invasive aspergillosis in humans and also produces highly carcinogenic mycotoxins in postharvest crops that threaten food safety worldwide. To alleviate or eliminate the threats posed by A. flavus, it is necessary to identify genes involved in pathogenicity and mycotoxin contamination. However, little progress has been made in this regard. Here, we focused on PMI, which is the first enzyme involved in the biosynthesis pathway of GDP-Man and thus is important for cell wall synthesis and protein glycosylation. Our study revealed that PMI is important for growth of A. flavus. It is also involved in conidiation, germination, morphogenesis, stress responses, and pathogenicity of A. flavus. Thus, PMI is a potent antifungal target to curb the threats posed by A. flavus.


Asunto(s)
Aflatoxinas , Aspergilosis , Transferasas Intramoleculares , Animales , Humanos , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Virulencia/genética , Manosa-6-Fosfato Isomerasa/genética , Manosa-6-Fosfato Isomerasa/metabolismo , Antifúngicos , Manosa/metabolismo , Aflatoxinas/metabolismo , Transferasas Intramoleculares/metabolismo , Proteínas Fúngicas/genética
6.
Chembiochem ; 23(4): e202100497, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-34958513

RESUMEN

Self-stable precipitation polymerization was used to prepare an enzyme-immobilized microsphere composite. Phosphomannose isomerase (PMI) with His-tag was successfully immobilized on Ni2+ charged pyridine-derived particles. The maximum amount of PMI immobilized on such particles was ∼184 mg/g. Compared with free enzyme, the activity of the immobilized enzymes was significantly improved. In addition, the immobilized enzymes showed a much better thermostability than free enzymes. At the same time, the immobilized enzymes can be reused for multiple reaction cycles. We observed that the enzyme activity did not decrease significantly after six cycles. We conclude that the pyridine-derived particles can be used to selectively immobilize His-tagged enzymes, which can couple the enzyme purification and catalysis steps and improve the efficiency of enzyme-catalyzed industrial processes.


Asunto(s)
Quelantes/metabolismo , Histidina/metabolismo , Manosa-6-Fosfato Isomerasa/metabolismo , Nanopartículas/metabolismo , Níquel/metabolismo , Línea Celular Tumoral , Quelantes/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Histidina/química , Humanos , Manosa-6-Fosfato Isomerasa/química , Nanopartículas/química , Níquel/química
7.
Cancer Sci ; 112(12): 4944-4956, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34533861

RESUMEN

Diverse metabolic changes are induced by various driver oncogenes during the onset and progression of leukemia. By upregulating glycolysis, cancer cells acquire a proliferative advantage over normal hematopoietic cells; in addition, these changes in energy metabolism contribute to anticancer drug resistance. Because leukemia cells proliferate by consuming glucose as an energy source, an alternative nutrient source is essential when glucose levels in bone marrow are insufficient. We profiled sugar metabolism in leukemia cells and found that mannose is an energy source for glycolysis, the tricarboxylic acid (TCA) cycle, and the pentose phosphate pathway. Leukemia cells express high levels of phosphomannose isomerase (PMI), which mobilizes mannose to glycolysis; consequently, even mannose in the blood can be used as an energy source for glycolysis. Conversely, suppression of PMI expression or a mannose load exceeding the processing capacity of PMI inhibited transcription of genes related to mitochondrial metabolism and the TCA cycle, therefore suppressing the growth of leukemia cells. High PMI expression was also a poor prognostic factor for acute myeloid leukemia. Our findings reveal a new mechanism for glucose starvation resistance in leukemia. Furthermore, the combination of PMI suppression and mannose loading has potential as a novel treatment for driver oncogene-independent leukemia.


Asunto(s)
Leucemia/tratamiento farmacológico , Manosa-6-Fosfato Isomerasa/metabolismo , Manosa/administración & dosificación , Regulación hacia Arriba , Animales , Línea Celular Tumoral , Ciclo del Ácido Cítrico/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos , Células K562 , Leucemia/enzimología , Leucemia/genética , Leucemia/patología , Manosa/farmacología , Manosa-6-Fosfato Isomerasa/antagonistas & inhibidores , Ratones , Vía de Pentosa Fosfato/efectos de los fármacos , Pronóstico , Células THP-1 , Regulación hacia Arriba/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Med Oncol ; 38(9): 103, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34313879

RESUMEN

Mannose induces tumor cell apoptosis and inhibits glucose metabolism by accumulating intracellularly as mannose 6-phosphate while the drug sensitivity of tumors is negatively correlated with mannose phosphate isomerase gene (MPI) expression. In this study, we performed a first attempt to explore the relationship between the targeted gene MPI and immune infiltration and genetic and clinical characteristics of head and neck squamous carcinoma (HNSC) using computational algorithms and bioinformatic analysis, and further to verify the co-inhibition effects of mannose with genotoxicity, immune responses, and microbes dysbiosis in oral squamous cell carcinoma (OSCC) in vitro and in vivo. Our results found that patients with lower MPI expression had higher survival rate. The enhancement of MPI expression was in response to DNA damage gene, and ATM inhibitor was verified as a potential drug with a synergistic effect with mannose on HSC-3. In the HNSC, infiltrated immunocytes CD8+ T cell and B cell were the significantly reduced risk cells, while IL-22 and IFN-γ showed negative correlation with MPI. Finally, mannose could reverse immunophenotyping caused by antibiotics in mice, resulting in the decrease of CD8+ T cells and increase of myeloid-derived suppressor cells (MDSCs). In conclusion, the MPI gene showed a significant correlation with immune infiltration and genetic and clinical characteristics of HNSC. The treatment of ATM inhibitor, immune regulating cells of CD8+ T cells and MDSCs, and oral microbiomes in combination with mannose could exhibit co-inhibitory therapeutic effect for OSCC.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Biología Computacional/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Manosa-6-Fosfato Isomerasa/antagonistas & inhibidores , Manosa/farmacología , Neoplasias de la Boca/tratamiento farmacológico , Animales , Apoptosis , Biomarcadores de Tumor/análisis , Linfocitos T CD8-positivos/inmunología , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proliferación Celular , Humanos , Masculino , Manosa-6-Fosfato Isomerasa/metabolismo , Ratones , Ratones Endogámicos BALB C , Neoplasias de la Boca/inmunología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Células Supresoras de Origen Mieloide/inmunología , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Microbiol ; 58(9): 725-733, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32583284

RESUMEN

Phosphate sugar isomerases, catalyzing the isomerization between ketopentose/ketohexose phosphate and aldopentose/aldohexose phosphate, play an important role in microbial sugar metabolism. They are present in a wide range of microorganisms. They have attracted increasing research interest because of their broad substrate specificity and great potential in the enzymatic production of various rare sugars. Here, the enzymatic properties of various phosphate sugar isomerases are reviewed in terms of their substrate specificities and their applications in the production of valuable rare sugars because of their functions such as low-calorie sweeteners, bulking agents, and pharmaceutical precursor. Specifically, we focused on the industrial applications of D-ribose-5-phosphate isomerase and D-mannose-6-phosphate isomerase to produce D-allose and L-ribose, respectively.


Asunto(s)
Isomerasas Aldosa-Cetosa/metabolismo , Bacterias/metabolismo , Glucosa/biosíntesis , Manosa-6-Fosfato Isomerasa/metabolismo , Ribosa/biosíntesis , Hexosas/metabolismo , Pentosas/metabolismo , Especificidad por Sustrato , Edulcorantes/química
10.
J Agric Food Chem ; 68(25): 6892-6899, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32486647

RESUMEN

A mannose-6-phosphate isomerase (MPI) from Geobacillus thermodenitrificans was expressed and successfully encapsulated into the Saccharomyces cerevisiae spores. Our results demonstrated that compared to the free enzyme, the MPI triple mutant encapsulated in osw2Δ spores exhibited much preferred enzymatic properties, such as enhanced catalytic activity, excellent reusability, thermostability, and tolerance to various harsh conditions. In combination with an l-arabinose isomerase (AI) also from G. thermodenitrificans, this technique of spore encapsulation was applied for producing a high-value rare sugar l-ribose from biomass-derived l-arabinose. Using a 10 mL reaction system, 350 mg of l-ribose was produced from 1 g of l-arabinose with a conversion yield of 35% by repeatedly reacting with 200 mg of AI-encapsulated spores and 300 mg of MPI-encapsulated spores. This study provides a very useful and concise approach for the synthesis of rare sugars and other useful compounds.


Asunto(s)
Proteínas Bacterianas/genética , Geobacillus/enzimología , Manosa-6-Fosfato Isomerasa/genética , Ribosa/biosíntesis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Expresión Génica , Manosa-6-Fosfato Isomerasa/química , Manosa-6-Fosfato Isomerasa/metabolismo , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-30987578

RESUMEN

BACKGROUND AND OBJECTIVE: The present paper aims to study the inhibition of Candida albicans growth as candidiasis treatment, using seeds of Lepidium sativum as source. METHODS: In vitro assays were carried out on the antifungal activity of three kinds of extracts from L. sativum seeds against four strains of C. albicans, then testing the same phytochemicals on the inhibition of Lipase (LCR). A new in silico study was achieved using molecular docking, with Autodock vina program, to find binding affinity of two important and major lepidine alkaloids (lepidine E and B) towards the four enzymes secreted by C. albicans as target drugs, responsible of vitality and virulence of this yeast cells: Lipase, Serine/threonine phosphatase, Phosphomannose isomerase and Sterol 14-alpha demethylase (CYP51). RESULTS: The results of the microdillution assay show that the hexanic and alkaloidal extracts have an antifungal activity with MICs: 2.25 mg/ml and 4.5mg/ml, respectively. However, Candida rugosa lipase assay gives a remarkable IC50 values for the hexanic extract (1.42± 0.04 mg/ml) followed by 1.7± 0.1 and 2.29 ± 0.09 mg/ml of ethyl acetate and alkaloidal extracts respectively. The molecular docking confirms a significant correlation between C. albicans growth and inhibition of crucial enzymes involved in the invasion mechanism and cellular metabolisms, for the first time there were an interesting and new positive results on binding modes of lepidine E and B on the four studied enzymes. CONCLUSION: Through this work, we propose Lepidine B & E as potent antifungal drugs.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteínas Fúngicas/antagonistas & inhibidores , Lepidium sativum , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Semillas , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Candida albicans/enzimología , Candida albicans/crecimiento & desarrollo , Sistema Enzimático del Citocromo P-450/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lepidium sativum/química , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Manosa-6-Fosfato Isomerasa/antagonistas & inhibidores , Manosa-6-Fosfato Isomerasa/metabolismo , Terapia Molecular Dirigida , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Fosfoproteínas Fosfatasas/metabolismo , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Conformación Proteica , Semillas/química , Relación Estructura-Actividad , Virulencia
12.
Acta Crystallogr D Struct Biol ; 75(Pt 5): 475-487, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31063150

RESUMEN

Phosphomannose isomerase (PMI) is a housekeeping enzyme that is found in organisms ranging from bacteria to fungi to mammals and is important for cell-wall synthesis, viability and signalling. PMI is a zinc-dependent enzyme that catalyses the reversible isomerization between mannose 6-phosphate (M6P) and fructose 6-phosphate (F6P), presumably via the formation of a cis-enediol intermediate. The reaction is hypothesized to involve ring opening of M6P, the transfer of a proton from the C2 atom to the C1 atom and between the O1 and O2 atoms of the substrate, followed by ring closure resulting in the product F6P. Several attempts have been made to decipher the role of zinc ions and various residues in the catalytic function of PMI. However, there is no consensus on the catalytic base and the mechanism of the reaction catalyzed by the enzyme. In the present study, based on the structure of PMI from Salmonella typhimurium, site-directed mutagenesis targeting residues close to the bound metal ion and activity studies on the mutants, zinc ions were shown to be crucial for substrate binding. These studies also suggest Lys86 as the most probable catalytic base abstracting the proton in the isomerization reaction. Plausible roles for the highly conserved residues Lys132 and Arg274 could also be discerned based on comparison of the crystal structures of wild-type and mutant PMIs. PMIs from prokaryotes possess a low sequence identity to the human enzyme, ranging between 30% and 40%. Since PMI is important for the virulence of many pathogenic organisms, the identification of catalytically important residues will facilitate its use as a potential antimicrobial drug target.


Asunto(s)
Aminoácidos/metabolismo , Fructosafosfatos/metabolismo , Manosa-6-Fosfato Isomerasa/química , Manosa-6-Fosfato Isomerasa/metabolismo , Manosafosfatos/metabolismo , Salmonella typhimurium/enzimología , Zinc/metabolismo , Aminoácidos/química , Aminoácidos/genética , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Isomerismo , Manosa-6-Fosfato Isomerasa/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Especificidad por Sustrato , Zinc/química
13.
J Bacteriol ; 201(9)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30782637

RESUMEN

Bacillus subtilis phosphorylates sugars during or after their transport into the cell. Perturbation in the conversion of intracellular phosphosugars to the central carbon metabolites and accumulation of phosphosugars can impose stress on the cells. In this study, we investigated the effect of phosphosugar stress on B. subtilis Preliminary experiments indicated that the nonmetabolizable analogs of glucose were unable to impose stress on B. subtilis In contrast, deletion of manA encoding mannose 6-phosphate isomerase (responsible for conversion of mannose 6-phosphate to fructose 6-phosphate) resulted in growth arrest and bulged cell shape in the medium containing mannose. Besides, an operon encoding a repressor (GlcR) and a haloic acid dehalogenase (HAD)-like phosphatase (PhoC; previously YwpJ) were upregulated. Integration of the P glcR-lacZ cassette into different mutational backgrounds indicated that P glcR is induced when (i) a manA-deficient strain is cultured with mannose or (ii) when glcR is deleted. GlcR repressed the transcription of glcR-phoC by binding to the σA-type core elements of P glcR An electrophoretic mobility shift assay showed no interaction between mannose 6-phosphate (or other phosphosugars) and the GlcR-P glcR DNA complex. PhoC was an acid phosphatase mainly able to dephosphorylate glycerol 3-phosphate and ribose 5-phosphate. Mannose 6-phosphate was only weakly dephosphorylated by PhoC. Since deletion of glcR and phoC alone or in combination had no effect on the cells during phosphosugar stress, it is assumed that the derepression of glcR-phoC is a side effect of phosphosugar stress in B. subtilisIMPORTANCEBacillus subtilis has different stress response systems to cope with external and internal stressors. Here, we investigated how B. subtilis deals with the high intracellular concentration of phosphosugars as an internal stressor. The results indicated the derepression of an operon consisting of a repressor (GlcR) and a phosphatase (PhoC). Further analysis revealed that this operon is not a phosphosugar stress response system. The substrate specificity of PhoC may indicate a connection between the glcR-phoC operon and pathways in which glycerol 3-phosphate and ribose 5-phosphate are utilized, such as membrane biosynthesis and teichoic acid elongation.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Manosafosfatos/metabolismo , Operón , Fosfatasa Ácida/metabolismo , Bacillus subtilis/enzimología , Bacillus subtilis/crecimiento & desarrollo , Manosa-6-Fosfato Isomerasa/deficiencia , Manosa-6-Fosfato Isomerasa/metabolismo , Proteínas Represoras/metabolismo
14.
Nature ; 563(7733): 719-723, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30464341

RESUMEN

It is now well established that tumours undergo changes in cellular metabolism1. As this can reveal tumour cell vulnerabilities and because many tumours exhibit enhanced glucose uptake2, we have been interested in how tumour cells respond to different forms of sugar. Here we report that the monosaccharide mannose causes growth retardation in several tumour types in vitro, and enhances cell death in response to major forms of chemotherapy. We then show that these effects also occur in vivo in mice following the oral administration of mannose, without significantly affecting the weight and health of the animals. Mechanistically, mannose is taken up by the same transporter(s) as glucose3 but accumulates as mannose-6-phosphate in cells, and this impairs the further metabolism of glucose in glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway and glycan synthesis. As a result, the administration of mannose in combination with conventional chemotherapy affects levels of anti-apoptotic proteins of the Bcl-2 family, leading to sensitization to cell death. Finally we show that susceptibility to mannose is dependent on the levels of phosphomannose isomerase (PMI). Cells with low levels of PMI are sensitive to mannose, whereas cells with high levels are resistant, but can be made sensitive by RNA-interference-mediated depletion of the enzyme. In addition, we use tissue microarrays to show that PMI levels also vary greatly between different patients and different tumour types, indicating that PMI levels could be used as a biomarker to direct the successful administration of mannose. We consider that the administration of mannose could be a simple, safe and selective therapy in the treatment of cancer, and could be applicable to multiple tumour types.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Manosa/metabolismo , Manosa/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Administración Oral , Animales , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Peso Corporal/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Manosa/administración & dosificación , Manosa/uso terapéutico , Manosa-6-Fosfato Isomerasa/deficiencia , Manosa-6-Fosfato Isomerasa/genética , Manosa-6-Fosfato Isomerasa/metabolismo , Manosafosfatos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neoplasias/clasificación , Neoplasias/patología , Interferencia de ARN , Proteína bcl-X/metabolismo
15.
J Am Chem Soc ; 140(11): 3829-3832, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29509426

RESUMEN

Simple strategies to produce organisms whose growth is strictly dependent on the presence of a noncanonical amino acid are useful for the generation of live vaccines and the biological containment of recombinant organisms. To this end, we report an approach based on genetically replacing key histidine (His) residues in essential proteins with functional His analogs. We demonstrate that 3-methyl-l-histidine (MeH) functionally substitutes for a key metal binding ligand, H264, in the zinc-containing metalloenzyme mannose-6-phosphate isomerase (ManA). An evolved variant, Opt5, harboring both N262S and H264MeH substitutions exhibited comparable activities to wild type ManA. An engineered Escherichia coli strain containing the ManA variant Opt5 was strictly dependent on MeH for growth with an extremely low reversion rate. This straightforward strategy should be applicable to other metallo- or nonmetalloproteins that contain essential His residues.


Asunto(s)
Aminoácidos/metabolismo , Histidina/metabolismo , Manosa-6-Fosfato Isomerasa/química , Manosa-6-Fosfato Isomerasa/metabolismo , Zinc/metabolismo , Aminoácidos/química , Candida albicans/enzimología , Escherichia coli/citología , Escherichia coli/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/enzimología
16.
J Biotechnol ; 264: 1-7, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29050879

RESUMEN

GDP-l-fucose is an l-fucose donor to synthesize fucosylated compounds such as human milk oligosaccharides or Lewis antigen. In this study, we used Lactococcus lactis subsp. cremoris NZ9000 to express 4 enzymes, ManB, ManC, Gmd, and WcaG and produced GDP-l-fucose by using one-pot synthesis method with mannose-6-phosphate as substrate and the enzymes as biocatalyst. For preparation of enzyme mixture, 4 genes (manB, manC, gmd, and wcaG) cloned from Escherichia coli were transformed into L. lactis strains using pNZ8008 and the recombinant cell lysates were obtained after cultivation. When mannose-6-phosphate was used as the substrate, the consecutive reactions with ManB, ManC, Gmd, and WcaG resulted in the successful production of GDP-l-fucose (0.13mM). When GDP-d-mannose was used as the substrate, it was entirely converted to GDP-l-fucose (0.2mM; 0.12g/L) via 2 enzymatic reactions mediated by Gmd and WcaG. This is the first report of GDP-l-fucose production by using multiple enzymes expressed in lactic acid bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Guanosina Difosfato Fucosa/metabolismo , Lactococcus lactis/metabolismo , Manosiltransferasas/metabolismo , Ingeniería Metabólica/métodos , Proteínas Bacterianas/genética , Escherichia coli/genética , Lactococcus lactis/genética , Manosa-6-Fosfato Isomerasa/genética , Manosa-6-Fosfato Isomerasa/metabolismo , Manosiltransferasas/genética , Redes y Vías Metabólicas/genética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Plásmidos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Elife ; 62017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28644127

RESUMEN

Rapid cellular proliferation in early development and cancer depends on glucose metabolism to fuel macromolecule biosynthesis. Metabolic enzymes are presumed regulators of this glycolysis-driven metabolic program, known as the Warburg effect; however, few have been identified. We uncover a previously unappreciated role for Mannose phosphate isomerase (MPI) as a metabolic enzyme required to maintain Warburg metabolism in zebrafish embryos and in both primary and malignant mammalian cells. The functional consequences of MPI loss are striking: glycolysis is blocked and cells die. These phenotypes are caused by induction of p53 and accumulation of the glycolytic intermediate fructose 6-phosphate, leading to engagement of the hexosamine biosynthetic pathway (HBP), increased O-GlcNAcylation, and p53 stabilization. Inhibiting the HBP through genetic and chemical methods reverses p53 stabilization and rescues the Mpi-deficient phenotype. This work provides mechanistic evidence by which MPI loss induces p53, and identifies MPI as a novel regulator of p53 and Warburg metabolism.


Asunto(s)
Acetilglucosamina/metabolismo , Manosa-6-Fosfato Isomerasa/metabolismo , Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Línea Celular Tumoral , Fructosafosfatos/metabolismo , Glucólisis , Humanos , Pez Cebra/embriología
18.
Vaccine ; 35(21): 2862-2869, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28412074

RESUMEN

Colanic Acid (CA) and lipopolysaccharide (LPS) are two major mannose-containing extracellular polysaccharides of Salmonella. Their presence on the bacterial surface can mask conserved protective outer membrane proteins (OMPs) from the host immune system. The mannose moiety in these molecules is derived from GDP-mannose, which is synthesized in several steps. The first two steps require the action of phosphomannose isomerase, encoded by pmi (manA), followed by phosphomannomutase, encoded by manB. There are two copies of manB present in the Salmonella chromosome, one located in the cps gene cluster (cpsG) responsible for CA synthesis, and the other in the rfb gene cluster (rfbK) involved in LPS O-antigen synthesis. In this study, it was demonstrated that the products of cpsG and rfbK are isozymes. To evaluate the impact of these genes on O-antigen synthesis, virulence and immunogenicity, single mutations (Δpmi, ΔrfbK or ΔcpsG) and a double mutation (ΔrfbK ΔcpsG) were introduced into both wild-type Salmonella enterica and an attenuated Δcya Δcrp vaccine strain. The Δpmi, ΔrfbK and ΔcpsG ΔrfbK mutants were defective in LPS synthesis and attenuated for virulence. In orally inoculated mice, strain S122 (Δcrp Δcya ΔcpsG ΔrfbK) and its parent S738 (Δcrp Δcya) were both avirulent and colonized internal tissues. Strain S122 elicited higher levels of anti-S. Typhimurium OMP serum IgG than its parent strain. Mice immunized with S122 were completely protected against challenge with wild-type virulent S. Typhimurium and partially protected against challenge with either wild-type virulent S. Choleraesuis or S. Enteritidis. These data indicate that deletions in rfbK and cpsG are useful mutations for inclusion in future attenuated Salmonella vaccine strains to induce cross-protective immunity.


Asunto(s)
Reacciones Cruzadas , Inmunidad Heteróloga , Antígenos O/biosíntesis , Polisacáridos/biosíntesis , Vacunas contra la Salmonella/inmunología , Salmonella typhimurium/inmunología , Salmonella typhimurium/metabolismo , Animales , Anticuerpos Antibacterianos/sangre , Proteínas de la Membrana Bacteriana Externa/inmunología , Femenino , Humanos , Manosa-6-Fosfato Isomerasa/deficiencia , Manosa-6-Fosfato Isomerasa/metabolismo , Ratones Endogámicos BALB C , Antígenos O/inmunología , Fosfotransferasas (Fosfomutasas)/deficiencia , Fosfotransferasas (Fosfomutasas)/metabolismo , Polisacáridos/inmunología , Vacunas contra la Salmonella/administración & dosificación , Salmonella typhimurium/enzimología , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología
19.
Plant Mol Biol ; 93(4-5): 451-463, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28032251

RESUMEN

KEY MESSAGE: This study addresses T-DNA insert stability and transgene expression consistency in multiple cycles of field propagated sugarcane. T-DNA inserts are stable; no transgene rearrangements were observed. AmCYAN1 and PMI protein accumulation levels were maintained. There was no evidence that production of either protein declined across generations and no transgene silencing was observed in three commercial sugarcane varieties through commercially relevant ratooning, propagation-by-setts, and micro-propagation generation processes over 4 years of field testing. Long term transgene expression consistency and T-DNA insert stability can be achieved in sugarcane, suggesting that it is highly probable that transgenic sugarcane can be successfully commercialized. This study addresses T-DNA insert stability and transgene expression consistency in multiple cycles of field propagated sugarcane. These data are critical supporting information needed for successful commercialization of GM sugarcane. Here seventeen transgenic events, containing the AmCYAN1 gene driven by a CMP promoter and the E. coli PMI gene driven by either a CMP or Ubi promoter, were used to monitor T-DNA insert stability and consistency of transgene encoded protein accumulation through commercially relevant ratooning, propagation-by-setts, and micro-propagation generation processes. The experiments were conducted in three commercial sugarcane varieties over 4 years of field testing. DNA gel blot analysis showed that the T-DNA inserts are stable; no transgene rearrangements were observed. Quantitative ELISA showed no evidence of decreasing AmCYAN1 and PMI protein levels across generations and no transgene silencing was observed. These results indicate that long term transgene expression consistency and T-DNA insert stability can be achieved in sugarcane, suggesting that it is highly probable that transgenic sugarcane can be successfully commercialized.


Asunto(s)
ADN Bacteriano/genética , Expresión Génica , Plantas Modificadas Genéticamente/genética , Saccharum/genética , Transgenes/genética , Animales , Ensayo de Inmunoadsorción Enzimática , Escherichia coli/enzimología , Escherichia coli/genética , Ingeniería Genética/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Manosa-6-Fosfato Isomerasa/genética , Manosa-6-Fosfato Isomerasa/metabolismo , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados , Saccharum/crecimiento & desarrollo , Anémonas de Mar/genética , Anémonas de Mar/metabolismo , Factores de Tiempo
20.
Appl Microbiol Biotechnol ; 100(21): 9003-9011, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27664159

RESUMEN

L-Ribose is a synthetic L-form monosaccharide. It is a building block of many novel nucleotide analog anti-viral drugs. Bio-production of L-ribose relies on a two-step reaction: (i) conversion of L-arabinose to L-ribulose by the catalytic action of L-arabinose isomerase (L-AI) and (ii) conversion of L-ribulose to L-ribose by the catalytic action of L-ribose isomerase (L-RI, EC 5.3.1.B3) or mannose-6-phosphate isomerase (MPI, EC 5.3.1.8, alternately named as phosphomannose isomerase). Between the two enzymes, L-RI is a rare enzyme that was discovered in 1996 by Professor Izumori's group, whereas MPI is an essential enzyme in metabolic pathways in humans and microorganisms. Recent studies have focused on their potentials for industrial production of L-ribose. This review summarizes the applications of L-RI and MPI for L-ribose production.


Asunto(s)
Isomerasas Aldosa-Cetosa/metabolismo , Manosa-6-Fosfato Isomerasa/metabolismo , Ribosa/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...