Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 35(8): mr6, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38888935

RESUMEN

Maintenance of a pool of active lysosomes with acidic pH and degradative hydrolases is crucial for cell health. Abnormalities in lysosomal function are closely linked to diseases, such as lysosomal storage disorders, neurodegeneration, intracellular infections, and cancer among others. Emerging body of research suggests the malfunction of lysosomal hydrolase trafficking pathway to be a common denominator of several disease pathologies. However, available conventional tools to assess lysosomal hydrolase trafficking are insufficient and fail to provide a comprehensive picture about the trafficking flux and location of lysosomal hydrolases. To address some of the shortcomings, we designed a genetically-encoded fluorescent reporter containing a lysosomal hydrolase tandemly tagged with pH sensitive and insensitive fluorescent proteins, which can spatiotemporally trace the trafficking of lysosomal hydrolases. As a proof of principle, we demonstrate that the reporter can detect perturbations in hydrolase trafficking, that are induced by pharmacological manipulations and pathophysiological conditions like intracellular protein aggregates. This reporter can effectively serve as a probe for mapping the mechanistic intricacies of hydrolase trafficking pathway in health and disease and is a utilitarian tool to identify genetic and pharmacological modulators of this pathway, with potential therapeutic implications.


Asunto(s)
Hidrolasas , Lisosomas , Manosafosfatos , Transporte de Proteínas , Humanos , Lisosomas/metabolismo , Manosafosfatos/metabolismo , Hidrolasas/metabolismo , Hidrolasas/genética , Fluorescencia , Genes Reporteros , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Fluorescentes Verdes/metabolismo , Concentración de Iones de Hidrógeno , Células HeLa
2.
J Pharmacol Exp Ther ; 389(3): 313-314, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38772716

RESUMEN

We thank Dr. Weimer and her colleagues for their comments related to our recent work (Anding et al., 2023) and are grateful for the opportunity to further discuss the importance of efficient lysosomal targeting of enzyme-replacement therapies (ERT) for the treatment of Pompe disease. Patients with Pompe disease have mutations in the gene that encodes for acid α glucosidase (GAA), a lysosomal enzyme necessary for the breakdown of glycogen. The first-generation ERT, alglucosidase alfa, provides a lifesaving therapy for the severe form of the disease (infantile onset Pompe disease) and improves or stabilizes respiratory and motor function in patients with less severe disease (late onset Pompe disease). Despite these gains, significant unmet need remains, particularly in patients who display respiratory and motor decline following years of treatment. Poor tissue uptake and lysosomal targeting via inefficient binding of the cation-independent mannose-6-phosphate (M6P) receptor (CIMPR) in skeletal muscle contributed to this suboptimal treatment response, prompting the development of new ERTs with increased levels of M6P.


Asunto(s)
1-Desoxinojirimicina , Terapia de Reemplazo Enzimático , Enfermedad del Almacenamiento de Glucógeno Tipo II , Manosafosfatos , alfa-Glucosidasas , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Animales , Terapia de Reemplazo Enzimático/métodos , Manosafosfatos/metabolismo , Ratones , alfa-Glucosidasas/uso terapéutico , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/administración & dosificación , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/administración & dosificación , 1-Desoxinojirimicina/uso terapéutico , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo
3.
Mol Genet Metab ; 142(2): 108487, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38733638

RESUMEN

Phosphomannomutase 2 (PMM2) converts mannose-6-phospahate to mannose-1-phosphate; the substrate for GDP-mannose, a building block of the glycosylation biosynthetic pathway. Pathogenic variants in the PMM2 gene have been shown to be associated with protein hypoglycosylation causing PMM2-congenital disorder of glycosylation (PMM2-CDG). While mannose supplementation improves glycosylation in vitro, but not in vivo, we hypothesized that liposomal delivery of mannose-1-phosphate could increase the stability and delivery of the activated sugar to enter the targeted compartments of cells. Thus, we studied the effect of liposome-encapsulated mannose-1-P (GLM101) on global protein glycosylation and on the cellular proteome in skin fibroblasts from individuals with PMM2-CDG, as well as in individuals with two N-glycosylation defects early in the pathway, namely ALG2-CDG and ALG11-CDG. We leveraged multiplexed proteomics and N-glycoproteomics in fibroblasts derived from different individuals with various pathogenic variants in PMM2, ALG2 and ALG11 genes. Proteomics data revealed a moderate but significant change in the abundance of some of the proteins in all CDG fibroblasts upon GLM101 treatment. On the other hand, N-glycoproteomics revealed the GLM101 treatment enhanced the expression levels of several high-mannose and complex/hybrid glycopeptides from numerous cellular proteins in individuals with defects in PMM2 and ALG2 genes. Both PMM2-CDG and ALG2-CDG exhibited several-fold increase in glycopeptides bearing Man6 and higher glycans and a decrease in Man5 and smaller glycan moieties, suggesting that GLM101 helps in the formation of mature glycoforms. These changes in protein glycosylation were observed in all individuals irrespective of their genetic variants. ALG11-CDG fibroblasts also showed increase in high mannose glycopeptides upon treatment; however, the improvement was not as dramatic as the other two CDG. Overall, our findings suggest that treatment with GLM101 overcomes the genetic block in the glycosylation pathway and can be used as a potential therapy for CDG with enzymatic defects in early steps in protein N-glycosylation.


Asunto(s)
Trastornos Congénitos de Glicosilación , Fibroblastos , Liposomas , Manosafosfatos , Fosfotransferasas (Fosfomutasas) , Humanos , Glicosilación/efectos de los fármacos , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Manosafosfatos/metabolismo , Fosfotransferasas (Fosfomutasas)/genética , Fosfotransferasas (Fosfomutasas)/metabolismo , Fosfotransferasas (Fosfomutasas)/deficiencia , Proteómica , Manosa/metabolismo
4.
Enzyme Microb Technol ; 177: 110427, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518553

RESUMEN

d-mannose has been widely used in food, medicine, cosmetic, and food-additive industries. To date, chemical synthesis or enzymatic conversion approaches based on iso/epimerization reactions for d-mannose production suffered from low conversion rate due to the reaction equilibrium, necessitating intricate separation processes for obtaining pure products on an industrial scale. To circumvent this challenge, this study showcased a new approach for d-mannose synthesis from glucose through constructing a phosphorylation-dephosphorylation pathway in an engineered strain. Specifically, the gene encoding phosphofructokinase (PfkA) in glycolytic pathway was deleted in Escherichia coli to accumulate fructose-6-phosphate (F6P). Additionally, one endogenous phosphatase, YniC, with high specificity to mannose-6-phosphate, was identified. In ΔpfkA strain, a recombinant synthetic pathway based on mannose-6-phosphate isomerase and YniC was developed to direct F6P to mannose. The resulting strain successfully produced 25.2 g/L mannose from glucose with a high conversion rate of 63% after transformation for 48 h. This performance surpassed the 15% conversion rate observed with 2-epimerases. In conclusion, this study presents an efficient method for achieving high-yield mannose synthesis from cost-effective glucose.


Asunto(s)
Escherichia coli , Glucosa , Manosa , Manosa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fosforilación , Glucosa/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Manosafosfatos/metabolismo , Ingeniería Metabólica , Fructosafosfatos/metabolismo , Manosa-6-Fosfato Isomerasa/metabolismo , Manosa-6-Fosfato Isomerasa/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Glucólisis
5.
Front Cell Infect Microbiol ; 14: 1349221, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38357444

RESUMEN

Viruses, despite their simple structural composition, engage in intricate and complex interactions with their hosts due to their parasitic nature. A notable demonstration of viral behavior lies in their exploitation of lysosomes, specialized organelles responsible for the breakdown of biomolecules and clearance of foreign substances, to bolster their own replication. The man-nose-6-phosphate (M6P) pathway, crucial for facilitating the proper transport of hydrolases into lysosomes and promoting lysosome maturation, is frequently exploited for viral manipulation in support of replication. Recently, the discovery of lysosomal enzyme trafficking factor (LYSET) as a pivotal regulator within the lysosomal M6P pathway has introduced a fresh perspective on the intricate interplay between viral entry and host factors. This groundbreaking revelation illuminates unexplored dimensions of these interactions. In this review, we endeavor to provide a thorough overview of the M6P pathway and its intricate interplay with viral factors during infection. By consolidating the current understanding in this field, our objective is to establish a valuable reference for the development of antiviral drugs that selectively target the M6P pathway.


Asunto(s)
Hidrolasas , Virosis , Humanos , Hidrolasas/metabolismo , Manosafosfatos/análisis , Manosafosfatos/química , Manosafosfatos/metabolismo , Virosis/metabolismo , Lisosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...