Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.122
Filtrar
1.
J Agric Food Chem ; 72(19): 10794-10804, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38711396

RESUMEN

Chitin-degrading enzymes are critical components in regulating the molting process of the Asian corn borer and serve as potential targets for controlling this destructive pest of maize. Here, we used a scaffold-hopping strategy to design a series of efficient naphthylimide insecticides. Among them, compound 8c exhibited potent inhibition of chitinase from OfChi-h and OfChtI at low nanomolar concentrations (IC50 = 1.51 and 9.21 nM, respectively). Molecular docking simulations suggested that 8c binds to chitinase by mimicking the interaction of chitin oligosaccharide substrates with chitinase. At low ppm concentrations, compound 8c performed comparably to commercial insecticides in controlling the highly destructive plant pest, the Asian corn borer. Tests on a wide range of nontarget organisms indicate that compound 8c has very low toxicity. In addition, the effect of inhibitor treatment on the expression of genes associated with the Asian corn borer chitin-degrading enzymes was further investigated by quantitative real-time polymerase chain reaction. In conclusion, our study highlights the potential of 8c as a novel chitinase-targeting insecticide for effective control of the Asian corn borer, providing a promising solution in the quest for sustainable pest management.


Asunto(s)
Quitina , Quitinasas , Proteínas de Insectos , Insecticidas , Simulación del Acoplamiento Molecular , Mariposas Nocturnas , Zea mays , Animales , Quitinasas/química , Quitinasas/genética , Quitinasas/metabolismo , Mariposas Nocturnas/enzimología , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/genética , Quitina/química , Quitina/metabolismo , Insecticidas/química , Insecticidas/farmacología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/antagonistas & inhibidores , Zea mays/química , Zea mays/parasitología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Diseño de Fármacos , Control de Insectos , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Relación Estructura-Actividad
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731841

RESUMEN

Plutella xylostella (Linnaeus) mainly damages cruciferous crops and causes huge economic losses. Presently, chemical pesticides dominate its control, but prolonged use has led to the development of high resistance. In contrast, the sterile insect technique provides a preventive and control method to avoid the development of resistance. We discovered two genes related to the reproduction of Plutella xylostella and investigated the efficacy of combining irradiation with RNA interference for pest management. The results demonstrate that after injecting PxAKT and PxCDK5, there was a significant decrease of 28.06% and 25.64% in egg production, and a decrease of 19.09% and 15.35% in the hatching rate compared to the control. The ratio of eupyrene sperm bundles to apyrene sperm bundles also decreased. PxAKT and PxCDK5 were identified as pivotal genes influencing male reproductive processes. We established a dose-response relationship for irradiation (0-200 Gy and 200-400 Gy) and derived the irradiation dose equivalent to RNA interference targeting PxAKT and PxCDK5. Combining RNA interference with low-dose irradiation achieved a sub-sterile effect on Plutella xylostella, surpassing either irradiation or RNA interference alone. This study enhances our understanding of the genes associated with the reproduction of Plutella xylostella and proposes a novel approach for pest management by combining irradiation and RNA interference.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina , Proteínas Proto-Oncogénicas c-akt , Interferencia de ARN , Animales , Masculino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Fertilidad/efectos de la radiación , Fertilidad/genética , Mariposas Nocturnas/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Femenino , Reproducción/efectos de la radiación , Reproducción/genética
3.
BMC Biol ; 22(1): 102, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693535

RESUMEN

BACKGROUND: Sex-limited chromosomes Y and W share some characteristics, including the degeneration of protein-coding genes, enrichment of repetitive elements, and heterochromatin. However, although many studies have suggested that Y chromosomes retain genes related to male function, far less is known about W chromosomes and whether they retain genes related to female-specific function. RESULTS: Here, we built a chromosome-level genome assembly of the Asian corn borer, Ostrinia furnacalis Guenée (Lepidoptera: Crambidae, Pyraloidea), an economically important pest in corn, from a female, including both the Z and W chromosome. Despite deep conservation of the Z chromosome across Lepidoptera, our chromosome-level W assembly reveals little conservation with available W chromosome sequence in related species or with the Z chromosome, consistent with a non-canonical origin of the W chromosome. The W chromosome has accumulated significant repetitive elements and experienced rapid gene gain from the remainder of the genome, with most genes exhibiting pseudogenization after duplication to the W. The genes that retain significant expression are largely enriched for functions in DNA recombination, the nucleosome, chromatin, and DNA binding, likely related to meiotic and mitotic processes within the female gonad. CONCLUSIONS: Overall, our chromosome-level genome assembly supports the non-canonical origin of the W chromosome in O. furnacalis, which experienced rapid gene gain and loss, with the retention of genes related to female-specific function.


Asunto(s)
Cromosomas de Insectos , Mariposas Nocturnas , Cromosomas Sexuales , Animales , Mariposas Nocturnas/genética , Femenino , Cromosomas Sexuales/genética , Cromosomas de Insectos/genética , Masculino , Evolución Molecular , Genoma de los Insectos
4.
Sci Data ; 11(1): 461, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710675

RESUMEN

Oriental tobacco budworm (Helicoverpa assulta) and cotton bollworm (Helicoverpa armigera) are two closely related species within the genus Helicoverpa. They have similar appearances and consistent damage patterns, often leading to confusion. However, the cotton bollworm is a typical polyphagous insect, while the oriental tobacco budworm belongs to the oligophagous insects. In this study, we used Nanopore, PacBio, and Illumina platforms to sequence the genome of H. assulta and used Hifiasm to create a haplotype-resolved draft genome. The Hi-C technique helped anchor 33 primary contigs to 32 chromosomes, including two sex chromosomes, Z and W. The final primary haploid genome assembly was approximately 415.19 Mb in length. BUSCO analysis revealed a high degree of completeness, with 99.0% gene coverage in this genome assembly. The repeat sequences constituted 38.39% of the genome assembly, and we annotated 17093 protein-coding genes. The high-quality genome assembly of the oriental tobacco budworm serves as a valuable genetic resource that enhances our comprehension of how they select hosts in a complex odour environment. It will also aid in developing an effective control policy.


Asunto(s)
Genoma de los Insectos , Haplotipos , Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Cromosomas de Insectos , Helicoverpa armigera
5.
BMC Genomics ; 25(1): 493, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762533

RESUMEN

BACKGROUND: Insects rely on sophisticated sensitive chemosensory systems to sense their complex chemical environment. This sensory process involves a combination of odorant receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) in the chemosensory system. This study focused on the identification and characterization of these three types of chemosensory receptor genes in two closely related Phthorimaea pest species, Phthorimaea operculella (potato tuber moth) and Phthorimaea absoluta (tomato leaf miner). RESULTS: Based on manual annotation of the genome, we identified a total of 349 chemoreceptor genes from the genome of P. operculella, including 93 OR, 206 GR and 50 IR genes, while for P. absoluta, we identified 72 OR, 122 GR and 46 IR genes. Through phylogenetic analysis, we observed minimal differences in the number and types of ORs and IRs between the potato tuber moth and tomato leaf miner. In addition, we found that compared with those of tomato leaf miners, the gustatory receptor branch of P. operculella has undergone a large expansion, which may be related to P. absoluta having a narrower host range than P. operculella. Through analysis of differentially expressed genes (DEGs) of male and female antennae, we uncovered 45 DEGs (including 32ORs, 9 GRs, and 4 IRs). CONCLUSIONS: Our research provides a foundation for exploring the chemical ecology of these two pests and offers new insights into the dietary differentiation of lepidopteran insects, while simultaneously providing molecular targets for developing environmentally friendly pest control methods based on insect chemoreception.


Asunto(s)
Evolución Molecular , Mariposas Nocturnas , Filogenia , Receptores Odorantes , Animales , Mariposas Nocturnas/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Familia de Multigenes , Adaptación al Huésped/genética , Genómica/métodos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
6.
Sci Data ; 11(1): 338, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580759

RESUMEN

Athetis lepigone is an emerging highly polyphagous insect pest reported to cause crop damage in several European and Asian countries. However, our understanding of its genetic adaptation mechanisms has been limited due to lack of high-quality genetic resources. In this study, we present a chromosomal-level genome of A. lepigone, representing the first species in the genus of Athetis. We employed PacBio long-read sequencing and Hi-C technologies to generate 612.49 Mb genome assembly which contains 42.43% repeat sequences with a scaffold N50 of 20.9 Mb. The contigs were successfully clustered into 31 chromosomal-size scaffolds with 37% GC content. BUSCO assessment revealed a genome completeness of 97.4% with 96.3 identified as core Arthropoda single copy orthologs. Among the 17,322 genes that were predicted, 15,965 genes were functionally annotated, representing a coverage of 92.17%. Furthermore, we revealed 106 P450, 37 GST, 27 UGT, and 74 COE gene families in the genome of A. lepigone. This genome provides a significant and invaluable genomic resource for further research across the entire genus of Athetis.


Asunto(s)
Genoma de los Insectos , Mariposas Nocturnas , Animales , Secuencia de Bases , Genómica , Mariposas Nocturnas/genética , Filogenia , Cromosomas de Insectos
7.
PLoS One ; 19(4): e0297662, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38603675

RESUMEN

The cocoa pod borer (CPB) Conopomorpha cramerella (Snellen) (Lepidoptera: Gracillaridae) is one of the major constraints for cocoa production in South East Asia. In addition to cultural and chemical control methods, autocidal control tactics such as the Sterile Insect Technique (SIT) could be an efficient addition to the currently control strategy, however SIT implementation will depend on the population genetics of the targeted pest. The aim of the present work was to search for suitable microsatellite loci in the genome of CPB that is partially sequenced. Twelve microsatellites were initially selected and used to analyze moths collected from Indonesia, Malaysia, and the Philippines. A quality control verification process was carried out and seven microsatellites found to be suitable and efficient to distinguish differences between CPB populations from different locations. The selected microsatellites were also tested against a closely related species, i.e. the lychee fruit borer Conopomorpha sinensis (LFB) from Vietnam and eight loci were found to be suitable. The availability of these novel microsatellite loci will provide useful tools for the analysis of the population genetics and gene flow of these pests, to select suitable CPB strains to implement the SIT.


Asunto(s)
Cacao , Chocolate , Lepidópteros , Mariposas Nocturnas , Animales , Lepidópteros/genética , Mariposas Nocturnas/genética , Cacao/genética , Genética de Población , Repeticiones de Microsatélite/genética
8.
J Invertebr Pathol ; 204: 108101, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574951

RESUMEN

The resistance of pest insects to biopesticides based on the bacterium Bacillus thuringiensis (Bt) is normally associated with changes to the receptors involved in the mechanism of action of the pesticidal proteins produced by Bt. In some strains of Plutella xylostella (the diamondback moth) resistance has evolved through a signalling mechanism in which the genes encoding the receptor proteins are downregulated whereas in others it has been linked to structural changes in the receptors themselves. One such well characterized mutation is in the ABCC2 gene indicating that changes to this protein can result in resistance. However other studies have found that knocking out this protein does not result in a significant level of resistance. In this study we wanted to test the hypothesis that constitutive receptor downregulation is the major cause of Bt resistance in P. xylostella and that mutations in the now poorly expressed receptor genes may not contribute significantly to the phenotype. To that end we investigated the expression of a receptor (ABCC2) and the major regulator of the signalling pathway (MAP4K4) in two resistant and four susceptible strains. No correlation was found between expression levels and susceptibility; however, a frameshift mutation was identified in the ABCC2 receptor in a newly characterized resistant strain.


Asunto(s)
Bacillus thuringiensis , Resistencia a los Insecticidas , Mariposas Nocturnas , Control Biológico de Vectores , Animales , Bacillus thuringiensis/genética , Resistencia a los Insecticidas/genética , Mariposas Nocturnas/microbiología , Mariposas Nocturnas/genética , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Brasil , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas Bacterianas/genética
9.
Mol Immunol ; 170: 76-87, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38640818

RESUMEN

Peroxiredoxins are antioxidant proteins that detoxify peroxynitrite, hydrogen peroxide, and organic hydroperoxides, impacting various physiological processes such as immune responses, apoptosis, cellular homeostasis, and so on. In the present study, we identified and characterized peroxiredoxin 1 from Antheraea pernyi (thereafter designated as ApPrx-1) that encodes a predicted 195 amino acid residue protein with a 21.8 kDa molecular weight. Quantitative real-time PCR analysis revealed that the mRNA level of ApPrx-1 was highest in the hemocyte, fat body, and midgut. Immune-challenged larval fat bodies and hemocytes showed increased ApPrx-1 transcript. Moreover, ApPrx-1 expression was induced in hemocytes and the whole body of A. pernyi following exogenous H2O2 administration. A DNA cleavage assay performed using recombinant ApPrx-1 protein showed that rApPrx-1 protein manifests the ability to protect supercoiled DNA damage from oxidative stress. To test the rApPrx-1 protein antioxidant activity, the ability of the rApPrx-1 protein to remove H2O2 was assessed in vitro using rApPrx-1 protein and DTT, while BSA + DDT served as a control group. The results revealed that ApPrx-1 can efficiently remove H2O2 in vitro. In the loss of function analysis, we found that ApPrx-1 significantly increased the levels of H2O2 in ApPrx-1-depleted larvae compared to the control group. We also found a significantly lower survival rate in the larvae in which ApPrx-1 was knocked down. Interestingly, the antibacterial activity was significantly higher in the ApPrx-1 depleted larvae, compared to the control. Collectively, evidence strongly suggests that ApPrx-1 may regulate physiological activities and provides a reference for further studies to validate the utility of the key genes involved in reliving oxidative stress conditions and regulating the immune responses of insects.


Asunto(s)
Hemocitos , Peróxido de Hidrógeno , Mariposas Nocturnas , Estrés Oxidativo , Peroxirredoxinas , Animales , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/inmunología , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/genética , Estrés Oxidativo/genética , Peróxido de Hidrógeno/farmacología , Hemocitos/metabolismo , Hemocitos/inmunología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/genética , Antioxidantes/metabolismo , Secuencia de Aminoácidos , Daño del ADN
10.
Sci Rep ; 14(1): 7931, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575641

RESUMEN

Phthorimaea absoluta is an invasive solanaceous plant pest with highly devastating effects on tomato plant. Heavy reliance on insecticide use to tackle the pest has been linked to insecticide resistance selection in P. absoluta populations. To underline insights on P. absoluta insecticide resistance mechanisms to diamides and avermectins, we evaluated the transcriptomic profile of parental (field-collected) and F8 (lab-reared) populations. Furthermore, to screen for the presence of organophosphate and pyrethroid resistance, we assessed the gene expression levels of acetylcholinesterase (ace1) and para-type voltage-gated sodium channel (VGSG) genes in the F1 to F8 lab-reared progeny of diamide and avermectin exposed P. absoluta field-collected populations. The VGSG gene showed up-regulation in 12.5% and down-regulation in 87.5% of the screened populations, while ace1 gene showed up-regulation in 37.5% and down-regulation in 62.5% of the screened populations. Gene ontology of the differentially expressed genes from both parental and eighth generations of diamide-sprayed P. absoluta populations revealed three genes involved in the metabolic detoxification of diamides in P. absoluta. Therefore, our study showed that the detoxification enzymes found could be responsible for P. absoluta diamide-based resistance, while behavioural resistance, which is stimulus-dependent, could be attributed to P. absoluta avermectin resistance.


Asunto(s)
Insecticidas , Ivermectina/análogos & derivados , Lepidópteros , Mariposas Nocturnas , Animales , Lepidópteros/genética , Insecticidas/farmacología , Insecticidas/metabolismo , Mariposas Nocturnas/genética , Acetilcolinesterasa/metabolismo , Diamida , Perfilación de la Expresión Génica , Larva
11.
Pestic Biochem Physiol ; 200: 105810, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582582

RESUMEN

Ectropis grisescens (Lepidoptera: Geometridae) is a destructive tea pest in China. Mimesis, characterized by changing body color, is an important trait of E. grisescens larvae. Hence, identifying melanin pathway-related genes may contribute to developing new pest control strategies. In the present study, we cloned Egebony, a gene potentially involved in melanin pigmentation in E. grisescens, and subsequently conducted CRISPR/Cas9-mediated targeted mutagenesis of Egebony to analyze its role in pigmentation and development. At the larvae, prepupae, and pupae stages, Egebony-knockout individuals exhibited darker pigmentation than the wild-type. However, Egebony knockout did not impact the colors of sclerotized appendants, including ocelli, setae, and claws. While mutant pupae could successfully develop into moths, they were unable to emerge from the puparium. Notably, embryo hatchability and larval survival of mutants remained normal. Further investigation indicated that mutant pupae exhibited significantly stronger shearing force than the wild-type, with the pigmented layer of mutant pupae appearing darker and thicker. Collectively, these results suggest that the loss of Egebony might increase the rigidity of the puparium and prevent moth eclosion. This study provides new insights into understanding the function and diversification of ebony in insect development and identifies a lethal gene that can be manipulated for developing effective pest control strategies.


Asunto(s)
Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Melaninas/genética , Sistemas CRISPR-Cas , Larva/genética , Pigmentación/genética
12.
Pestic Biochem Physiol ; 200: 105824, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582588

RESUMEN

The slowpoke channel responds to the intracellular calcium concentration and the depolarization of the cell membrane. It plays an important role in maintaining the resting potential and regulating the homeostasis of neurons, but it can also regulate circadian rhythm, sperm capacitation, ethanol tolerance, and other physiological processes in insects. This renders it a potentially useful target for the development of pest control strategies. There are relatively few studies on the slowpoke channels in lepidopteran pests, and their pharmacological properties are still unclear. So, in this study, the slowpoke gene of Plutella xylostella (Pxslo) was heterologous expressed in HEK293T cells, and the I-V curve of the slowpoke channel was measured by whole cell patch clamp recordings. Results showed that the slowpoke channel could be activated at -20 mV with 150 µM Ca2+. The subsequent comparison of the electrophysiological characteristics of the alternative splicing site E and G deletions showed that the deletion of the E site enhances the response of the slowpoke channel to depolarization, while the deletion of the G site weakens the response of the slowpoke channel to depolarization. Meanwhile, the nonspecific inhibitors TEA and 4-AP of the Kv channels, and four pesticides were tested and all showed an inhibition effect on the PxSlo channel at 10 or 100 µM, suggesting that these pesticides also target the slowpoke channel. This study enriches our understanding of the slowpoke channel in Lepidopteran insects and can aid in the development of relevant pest management strategies.


Asunto(s)
Mariposas Nocturnas , Plaguicidas , Animales , Masculino , Humanos , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Células HEK293 , Semillas , Plaguicidas/metabolismo
13.
Pestic Biochem Physiol ; 200: 105832, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582595

RESUMEN

Moth insects rely on sex pheromones for long distance attraction and searching for sex partners. The biosynthesis of moth sex pheromones involves the catalytic action of multiple enzymes, with desaturases playing a crucial role in the process of carbon chain desaturation. However, the specific desaturases involved in sex pheromone biosynthesis in fall armyworm (FAW), Spodoptera frugiperda, have not been clarified. In this study, a Δ11 desaturase (SfruDES1) gene in FAW was knocked out using the CRISPR/Cas9 genome editing system. A homozygous mutant of SfruDES1 was obtained through genetic crosses. The gas chromatography-mass spectrometry (GC-MS) analysis results showed that the three main sex pheromone components (Z7-12:Ac, Z9-14:Ac, and Z11-16:Ac) and the three minor components (Z9-14:Ald, E11-14:Ac and Z11-14:Ac) of FAW were not detected in homozygous mutant females compared to the wild type. Furthermore, behavioral assay demonstrated that the loss of SfruDES1 resulted in a significant reduction in the attractiveness of females to males, along with disruptions in mating behavior and oviposition. Additionally, in a heterologous expression system, recombinant SfruDES1 could introduce a cis double bond at the Δ11 position in palmitic acid, which resulted in the changes in components of the synthesized products. These findings suggest desaturase plays a key role in the biosynthesis of sex pheromones, and knockout of the SfruDES1 disrupts sex pheromone biosynthesis and mating behavior in FAW. The SfruDES1 could serve as tool to develop a control method for S. frugiperda.


Asunto(s)
Mariposas Nocturnas , Atractivos Sexuales , Animales , Femenino , Masculino , Spodoptera/genética , Spodoptera/metabolismo , Atractivos Sexuales/metabolismo , Oviposición , Mariposas Nocturnas/genética , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/química , Ácido Graso Desaturasas/metabolismo
14.
J Agric Food Chem ; 72(14): 8180-8188, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38556749

RESUMEN

Juvenile hormone binding protein (JHBP) is a key regulator of JH signaling, and crosstalk between JH and 20-hydroxyecdysone (20E) can activate and fine-tune the mitogen-activated protein kinase cascade, leading to resistance to insecticidal proteins from Bacillis thuringiensis (Bt). However, the involvement of JHBP in the Bt Cry1Ac resistance of Plutella xylostella remains unclear. Here, we cloned a full-length cDNA encoding JHBP, and quantitative real-time PCR (qPCR) analysis showed that the expression of the PxJHBP gene in the midgut of the Cry1Ac-susceptible strain was significantly higher than that of the Cry1Ac-resistant strain. Furthermore, CRISPR/Cas9-mediated knockout of the PxJHBP gene significantly increased Cry1Ac susceptibility, resulting in a significantly shorter lifespan and reduced fertility. These results demonstrate that PxJHBP plays a critical role in the resistance to Cry1Ac protoxin and in the regulation of physiological metabolic processes associated with reproduction in adult females, providing valuable insights to improve management strategies of P. xylostella.


Asunto(s)
Bacillus thuringiensis , Mariposas Nocturnas , Animales , Femenino , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Larva/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Longevidad , Sistemas CRISPR-Cas , Endotoxinas/genética , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Resistencia a los Insecticidas/genética
15.
Proc Natl Acad Sci U S A ; 121(17): e2319726121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38630713

RESUMEN

The Ornate Moth, Utetheisa ornatrix, has served as a model species in chemical ecology studies for decades. Like in the widely publicized stories of the Monarch and other milkweed butterflies, the Ornate Moth and its relatives are tropical insects colonizing whole continents assisted by their chemical defenses. With the recent advances in genomic techniques and evo-devo research, it is becoming a model for studies in other areas, from wing pattern development to phylogeography, from toxicology to epigenetics. We used a genomic approach to learn about Utetheisa's evolution, detoxification, dispersal abilities, and wing pattern diversity. We present an evolutionary genomic analysis of the worldwide genus Utetheisa, then focusing on U. ornatrix. Our reference genome of U. ornatrix reveals gene duplications in the regions possibly associated with detoxification abilities, which allows them to feed on toxic food plants. Finally, comparative genomic analysis of over 100 U. ornatrix specimens from the museum with apparent differences in wing patterns suggest the potential roles of cortex and lim3 genes in wing pattern formation of Lepidoptera and the utility of museum-preserved collection specimens for wing pattern research.


Asunto(s)
Mariposas Diurnas , Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Mariposas Diurnas/genética , Genómica , Alas de Animales
16.
Bull Entomol Res ; 114(2): 281-292, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38602247

RESUMEN

Mythimna separata (Lepidoptera: Noctuidae) is an omnivorous pest that poses a great threat to food security. Insect antimicrobial peptides (AMPs) are small peptides that are important effector molecules of innate immunity. Here, we investigated the role of the AMP cecropin B in the growth, development, and immunity of M. separata. The gene encoding M. separata cecropin B (MscecropinB) was cloned. The expression of MscecropinB was determined in different developmental stages and tissues of M. separata. It was highest in the prepupal stage, followed by the pupal stage. Among larval stages, the highest expression was observed in the fourth instar. Tissue expression analysis of fourth instar larvae showed that MscecropinB was highly expressed in the fat body and haemolymph. An increase in population density led to upregulation of MscecropinB expression. MscecropinB expression was also upregulated by the infection of third and fourth instar M. separata with Beauveria bassiana or Bacillus thuringiensis (Bt). RNA interference (RNAi) targeting MscecropinB inhibited the emergence rate and fecundity of M. separata, and resulted in an increased sensitivity to B. bassiana and Bt. The mortality of M. separata larvae was significantly higher in pathogen plus RNAi-treated M. separata than in controls treated with pathogens only. Our findings indicate that MscecropinB functions in the eclosion and fecundity of M. separata and plays an important role in resistance to infection by B. bassiana and Bt.


Asunto(s)
Proteínas de Insectos , Larva , Mariposas Nocturnas , Animales , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/genética , Mariposas Nocturnas/microbiología , Mariposas Nocturnas/crecimiento & desarrollo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/crecimiento & desarrollo , Larva/microbiología , Bacillus thuringiensis , Beauveria/fisiología , Péptidos Antimicrobianos/genética , Pupa/crecimiento & desarrollo , Interferencia de ARN
17.
Sci Data ; 11(1): 419, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653995

RESUMEN

Tortricidae is one of the largest families in Lepidoptera, including subfamilies of Tortricinae, Olethreutinae, and Chlidanotinae. Here, we assembled the gap-free genome for the subfamily Chlidanotinae using Illumina, Nanopore, and Hi-C sequencing from Polylopha cassiicola, a pest of camphor trees in southern China. The nuclear genome is 302.03 Mb in size, with 36.82% of repeats and 98.4% of BUCSO completeness. The karyotype is 2n = 44 for males. We identified 15412 protein-coding genes, 1052 tRNAs, and 67 rRNAs. We also determined the mitochondrial genome of this species and annotated 13 protein-coding genes, 22 tRNAs, and one rRNA. These high-quality genomes provide valuable information for studying phylogeny, karyotypic evolution, and adaptive evolution of tortricid moths.


Asunto(s)
Genoma de los Insectos , Genoma Mitocondrial , Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Masculino , Filogenia , China , ARN de Transferencia/genética , Cariotipo
18.
Biomolecules ; 14(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38672415

RESUMEN

The ATP-binding cassette (ABC) transporters are a superfamily of membrane proteins. These active transporters are involved in the export of different substances such as xenobiotics. ABC transporters from subfamily C (ABCC) have also been described as functional receptors for different insecticidal proteins from Bacillus thuringiensis (Bt) in several lepidopteran species. Numerous studies have characterized the relationship between the ABCC2 transporter and Bt Cry1 proteins. Although other ABCC transporters sharing structural and functional similarities have been described, little is known of their role in the mode of action of Bt proteins. For Heliothis virescens, only the ABCC2 transporter and its interaction with Cry1A proteins have been studied to date. Here, we have searched for paralogs to the ABCC2 gene in H. virescens, and identified two new ABC transporter genes: HvABCC3 and HvABCC4. Furthermore, we have characterized their gene expression in the midgut and their protein topology, and compared them with that of ABCC2. Finally, we discuss their possible interaction with Bt proteins by performing protein docking analysis.


Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Animales , Toxinas de Bacillus thuringiensis/metabolismo , Endotoxinas/metabolismo , Endotoxinas/genética , Endotoxinas/química , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/genética , Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/genética , Simulación del Acoplamiento Molecular , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/química
19.
Pestic Biochem Physiol ; 201: 105857, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685236

RESUMEN

The oriental tobacco budworm Helicoverpa assulta (Lepidoptera: Noctuidae) is a specialist pest that may cause serious damages to important crops such as chili pepper and tobacco. Various man-made insecticides have been applied to control the infestation of this pest. To understand how this pest copes with insecticides, it is required to identify key players involved in insecticide transformation. In this study, a P450 gene of CYP6B subfamily was identified in the oriental tobacco budworm, and its expression pattern was revealed. Moreover, the activities of HassCYP6B6 against 12 insecticides were explored using recombinant enzymes produced in the facile Escherichia coli. Data from metabolic experiments showed that HassCYP6B6 was able to metabolize conventional insecticides including organophosporates (diazinon, malathion, phoxim), carbamate propoxur, and pyrethroid esfenvalerate, while no significant metabolism was observed towards new-type pesticides such as neonicotinoids (acetamiprid, imidacloprid), diamides (chlorantraniliprole, cyantraniliprole), macrocyclic lactone (emamectin benzoate, ivermectin), and metaflumizone. Structures of metabolites were proposed based on mass spectrometry analyses. The results demonstrate that HassCYP6B6 plays important roles in the transformation of multiple insecticides via substrate-dependent catalytic mechanisms including dehydrogenation, hydroxylation and oxidative desulfurization. The findings have important applied implications for the usage of insecticides.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Insecticidas/metabolismo , Animales , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética
20.
Sci Rep ; 14(1): 7541, 2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555348

RESUMEN

Diplopoda is one of the most diverse and important groups of soil arthropods, but little research has been done on their phylogenetic relationship and evolution. Here, we sequenced and annotated the complete mitochondrial genomes of Spirobolus grahami. The total mitogenome of S. grahami was typical circular, double-stranded molecules, with 14,875 bp in length, including 13 protein-coding genes, 22 tRNAs, two rRNAs, and one control region. Base composition analysis suggested that the mitochondrial sequences were biased toward A and T, with A + T content of 58.68%. The mitogenomes of S. grahami exhibited negative AT and positive GC skews. Most of the 13 PCGs had ATN as the start codon, except COX1 start with CGA, and most PCGs ended with the T stop codon. The dN/dS values for most PCGs were lower than 1, suggesting that purifying selection was likely the main driver of mitochondrial PCG evolution. Phylogenetic analyses based on 13 PCGs using BI and ML methods support the classification of genus Spirobolus and Tropostreptus. Glomeridesmus spelaeus is distantly related to the other Diplopoda species.


Asunto(s)
Artrópodos , Genoma Mitocondrial , Mariposas Nocturnas , Animales , Filogenia , Artrópodos/genética , Mariposas Nocturnas/genética , Secuencia de Bases
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA