Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.616
Filtrar
1.
BMC Nephrol ; 25(1): 156, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724923

RESUMEN

BACKGROUND: Islet transplantation is an effective treatment for diabetes or even its complications. Aim of this study is to investigate efficacy of biomaterial treated islet transplantation on treating diabetic nephropathy. METHODS: Male rats were randomly divided into 6 groups; Control, diabetic control, diabetic transplanted with untreated islets, with platelet rich plasma treated islets, with pancreatic islets homogenate treated islets, or with these biomaterials combination treated islets. Islets cultured with biomaterials and transplanted to diabetic rats. After 60 days, biochemical, oxidative stress, and stereological parameters were assessed. RESULTS: Serum albumin and BUN concentration, decreased and increased respectively, Oxidative stress of kidney impaired, kidney weight, volume of kidney, cortex, medulla, glomerulus, proximal and distal tubules, collecting ducts, vessels, inflammatory, necrotic and fibrotic tissue in diabetic group increased compared to control group (p < 0.001). In treated groups, especially pancreatic islets homogenate treated islets transplanting animals, there was significant changes in kidney weight, and volume of kidney, proximal and distal tubules, Henle's loop and collecting ducts compared with diabetic group (p = 0.013 to p < 0.001). Combination treated islets animals showed significant increase in vessel volume compared to diabetic group (p < 0.001). Necrotic and fibrotic tissue significantly decreased in islets treated than untreated islet animals, it was higher in pancreatic islets homogenate, and combination treated islets groups (p = 0.001). CONCLUSIONS: Biomaterials treated islets transplanting could improve diabetic nephropathy. Improvement of oxidative stress followed by controlling glucose level, and effects of growth factors presenting in biomaterials can be considered as capable underlying mechanism of ameliorating inflammatory, necrotic and fibrotic tissue volume.


Asunto(s)
Materiales Biocompatibles , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Trasplante de Islotes Pancreáticos , Animales , Masculino , Ratas , Nefropatías Diabéticas/patología , Trasplante de Islotes Pancreáticos/métodos , Materiales Biocompatibles/uso terapéutico , Islotes Pancreáticos/patología , Estrés Oxidativo , Ratas Sprague-Dawley , Resultado del Tratamiento
2.
Mil Med Res ; 11(1): 29, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741175

RESUMEN

Peri-implantitis is a bacterial infection that causes soft tissue inflammatory lesions and alveolar bone resorption, ultimately resulting in implant failure. Dental implants for clinical use barely have antibacterial properties, and bacterial colonization and biofilm formation on the dental implants are major causes of peri-implantitis. Treatment strategies such as mechanical debridement and antibiotic therapy have been used to remove dental plaque. However, it is particularly important to prevent the occurrence of peri-implantitis rather than treatment. Therefore, the current research spot has focused on improving the antibacterial properties of dental implants, such as the construction of specific micro-nano surface texture, the introduction of diverse functional coatings, or the application of materials with intrinsic antibacterial properties. The aforementioned antibacterial surfaces can be incorporated with bioactive molecules, metallic nanoparticles, or other functional components to further enhance the osteogenic properties and accelerate the healing process. In this review, we summarize the recent developments in biomaterial science and the modification strategies applied to dental implants to inhibit biofilm formation and facilitate bone-implant integration. Furthermore, we summarized the obstacles existing in the process of laboratory research to reach the clinic products, and propose corresponding directions for future developments and research perspectives, so that to provide insights into the rational design and construction of dental implants with the aim to balance antibacterial efficacy, biological safety, and osteogenic property.


Asunto(s)
Materiales Biocompatibles , Implantes Dentales , Periimplantitis , Periimplantitis/terapia , Periimplantitis/prevención & control , Periimplantitis/tratamiento farmacológico , Humanos , Implantes Dentales/normas , Materiales Biocompatibles/uso terapéutico , Materiales Biocompatibles/farmacología , Biopelículas/efectos de los fármacos , Propiedades de Superficie , Antibacterianos/uso terapéutico , Antibacterianos/farmacología
3.
ACS Appl Mater Interfaces ; 16(15): 18551-18563, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564314

RESUMEN

High levels of reactive oxygen species (ROS) are known to play a critical role in the secondary cascade of spinal cord injury (SCI). The scavenging of ROS has emerged as a promising approach for alleviating acute SCI. Moreover, identifying the precise location of the SCI site remains challenging. Enhancing the visualization of the spinal cord and improving the ability to distinguish the lesion site are crucial for accurate and safe treatment. Therefore, there is an urgent clinical need to develop a biomaterial that integrates diagnosis and treatment for SCI. Herein, ultra-small-sized gold nanodots (AuNDs) were designed for dual-mode imaging-guided precision treatment of SCI. The designed AuNDs demonstrate two important functions. First, they effectively scavenge ROS, inhibit oxidative stress, reduce the infiltration of inflammatory cells, and prevent apoptosis. This leads to a significant improvement in SCI repair and promotes a functional recovery after injury. Second, leveraging their excellent dual-mode imaging capabilities, the AuNDs enable rapid and accurate identification of SCI sites. The high contrast observed between the injured and adjacent uninjured areas highlights the tremendous potential of AuNDs for SCI detection. Overall, by integrating ROS scavenging and dual-mode imaging in a single biomaterial, our work on functionalized AuNDs provides a promising strategy for the clinical diagnosis and treatment of SCI.


Asunto(s)
Oro , Traumatismos de la Médula Espinal , Humanos , Especies Reactivas de Oxígeno , Oro/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Estrés Oxidativo , Materiales Biocompatibles/uso terapéutico
4.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612646

RESUMEN

Presently, millions worldwide suffer from degenerative and inflammatory bone and joint issues, comprising roughly half of chronic ailments in those over 50, leading to prolonged discomfort and physical limitations. These conditions become more prevalent with age and lifestyle factors, escalating due to the growing elderly populace. Addressing these challenges often entails surgical interventions utilizing implants or bone grafts, though these treatments may entail complications such as pain and tissue death at donor sites for grafts, along with immune rejection. To surmount these challenges, tissue engineering has emerged as a promising avenue for bone injury repair and reconstruction. It involves the use of different biomaterials and the development of three-dimensional porous matrices and scaffolds, alongside osteoprogenitor cells and growth factors to stimulate natural tissue regeneration. This review compiles methodologies that can be used to develop biomaterials that are important in bone tissue replacement and regeneration. Biomaterials for orthopedic implants, several scaffold types and production methods, as well as techniques to assess biomaterials' suitability for human use-both in laboratory settings and within living organisms-are discussed. Even though researchers have had some success, there is still room for improvements in their processing techniques, especially the ones that make scaffolds mechanically stronger without weakening their biological characteristics. Bone tissue engineering is therefore a promising area due to the rise in bone-related injuries.


Asunto(s)
Huesos , Ingeniería de Tejidos , Anciano , Humanos , Materiales Biocompatibles/uso terapéutico , Trasplante Óseo , Laboratorios
5.
Biomolecules ; 14(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38672500

RESUMEN

Neuroma, a pathological response to peripheral nerve injury, refers to the abnormal growth of nerve tissue characterized by disorganized axonal proliferation. Commonly occurring after nerve injuries, surgeries, or amputations, this condition leads to the formation of painful nodular structures. Traditional treatment options include surgical excision and pharmacological management, aiming to alleviate symptoms. However, these approaches often offer temporary relief without addressing the underlying regenerative challenges, necessitating the exploration of advanced strategies such as tissue-engineered materials for more comprehensive and effective solutions. In this study, we discussed the etiology, molecular mechanisms, and histological morphology of traumatic neuromas after peripheral nerve injury. Subsequently, we summarized and analyzed current nonsurgical and surgical treatment options, along with their advantages and disadvantages. Additionally, we emphasized recent advancements in treating traumatic neuromas with tissue-engineered material strategies. By integrating biomaterials, growth factors, cell-based approaches, and electrical stimulation, tissue engineering offers a comprehensive solution surpassing mere symptomatic relief, striving for the structural and functional restoration of damaged nerves. In conclusion, the utilization of tissue-engineered materials has the potential to significantly reduce the risk of neuroma recurrence after surgical treatment.


Asunto(s)
Materiales Biocompatibles , Neuroma , Traumatismos de los Nervios Periféricos , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Humanos , Neuroma/terapia , Traumatismos de los Nervios Periféricos/terapia , Materiales Biocompatibles/uso terapéutico , Materiales Biocompatibles/química , Animales , Regeneración Nerviosa , Andamios del Tejido/química
6.
BMC Oral Health ; 24(1): 496, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678210

RESUMEN

BACKGROUND: Pulpotomy procedures aiming to preserve and regenerate the dentin-pulp complex have recently increased exponentially due to developments in the field of biomaterials and tissue engineering in primary and permanent teeth. Although the number of studies in this domain has increased, there is still scarcity of evidence in the current literature. OBJECTIVES: (1) Report the methods of outcome assessment of pulpotomy clinical trials in both primary and permanent teeth; (2) Identify the various bioactive agents and biodegradable scaffolds used in pulpotomy clinical trials in both primary and permanent teeth. MATERIALS AND METHODS: A scoping review of the literature was performed, including a search of primary studies on PubMed, Scopus, Web of Science, ProQuest and Clinicaltrials.gov. A search for controlled trials or randomized controlled trials published between 2012 and 2023 involving primary or permanent teeth receiving partial or full pulpotomy procedures using bioactive/regenerative capping materials was performed. RESULTS: 127 studies out of 1038 articles fulfilled all the inclusion criteria and were included in the current scoping review. More than 90% of the studies assessed clinical and radiographic outcomes. Histological, microbiological, or inflammatory outcomes were measured in only 9.4% of all included studies. Majority of the studies (67.7%) involved primary teeth. 119 studies used non-degradable bioactive cements, while biodegradable scaffolds were used by 32 studies, natural derivates and plant extracts studies were used in only 7 studies. Between 2012 (4 studies) and 2023 (11 studies), there was a general increase in the number of articles published. India, Egypt, Turkey, and Iran were found to have the highest total number of articles published (28, 28,16 and 10 respectively). CONCLUSIONS: Pulpotomy studies in both primary and permanent teeth relied mainly on subjective clinical and radiographic outcome assessment methods and seldom analyzed pulpal inflammatory status objectively. The use of biodegradable scaffolds for pulpotomy treatments has been increasing with an apparent global distribution of most of these studies in low- to middle-income countries. However, the development of a set of predictable outcome measures as well as long-term evidence from well conducted clinical trials for novel pulpotomy dressing materials are still required.


Asunto(s)
Materiales Biocompatibles , Pulpotomía , Diente Primario , Humanos , Pulpotomía/métodos , Materiales Biocompatibles/uso terapéutico , Dentición Permanente , Evaluación de Resultado en la Atención de Salud , Materiales de Recubrimiento Pulpar y Pulpectomía/uso terapéutico , Andamios del Tejido
7.
ACS Biomater Sci Eng ; 10(5): 2725-2741, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38630965

RESUMEN

Amidst the present healthcare issues, diabetes is unique as an emerging class of affliction with chronicity in a majority of the population. To check and control its effects, there have been huge turnover and constant development of management strategies, and though a bigger part of the health care area is involved in achieving its control and the related issues such as the effect of diabetes on wound healing and care and many of the works have reached certain successful outcomes, still there is a huge lack in managing it, with maximum effect yet to be attained. Studying pathophysiology and involvement of various treatment options, such as tissue engineering, application of hydrogels, drug delivery methods, and enhancing angiogenesis, are at constantly developing stages either direct or indirect. In this review, we have gathered a wide field of information and different new therapeutic methods and targets for the scientific community, paving the way toward more settled ideas and research advances to cure diabetic wounds and manage their outcomes.


Asunto(s)
Materiales Biocompatibles , Diabetes Mellitus , Hidrogeles , Neovascularización Fisiológica , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Humanos , Materiales Biocompatibles/uso terapéutico , Materiales Biocompatibles/química , Neovascularización Fisiológica/efectos de los fármacos , Hidrogeles/química , Hidrogeles/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/fisiopatología , Animales , Ingeniería de Tejidos/métodos , Sistemas de Liberación de Medicamentos/métodos , Angiogénesis
8.
Acta Biomater ; 180: 61-81, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588997

RESUMEN

A plethora of biomaterials for heart repair are being tested worldwide for potential clinical application. These therapeutics aim to enhance the quality of life of patients with heart disease using various methods to improve cardiac function. Despite the myriad of therapeutics tested, only a minority of these studied biomaterials have entered clinical trials. This rapid scoping review aims to analyze literature available from 2012 to 2022 with a focus on clinical trials using biomaterials for direct cardiac repair, i.e., where the intended function of the biomaterial is to enhance the repair of the endocardium, myocardium, epicardium or pericardium. This review included neither biomaterials related to stents and valve repair nor biomaterials serving as vehicles for the delivery of drugs. Surprisingly, the literature search revealed that only 8 different biomaterials mentioned in 23 different studies out of 7038 documents (journal articles, conference abstracts or clinical trial entries) have been tested in clinical trials since 2012. All of these, intended to treat various forms of ischaemic heart disease (heart failure, myocardial infarction), were of natural origin and most used direct injections as their delivery method. This review thus reveals notable gaps between groups of biomaterials tested pre-clinically and clinically. STATEMENT OF SIGNIFICANCE: Rapid scoping review of clinical application of biomaterials for cardiac repair. 7038 documents screened; 23 studies mention 8 different biomaterials only. Biomaterials for repair of endocardium, myocardium, epicardium or pericardium. Only 8 different biomaterials entered clinical trials in the past 10 years. All of the clinically translated biomaterials were of natural origin.


Asunto(s)
Materiales Biocompatibles , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/uso terapéutico , Animales
9.
Int J Biol Macromol ; 268(Pt 2): 131822, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677668

RESUMEN

Biomaterials are pivotal in the realms of tissue engineering, regenerative medicine, and drug delivery and serve as fundamental building blocks. Within this dynamic landscape, polymeric biomaterials emerge as the frontrunners, offering unparalleled versatility across physical, chemical, and biological domains. Natural polymers, in particular, captivate attention for their inherent bioactivity. Among these, carrageenan (CRG), extracted from red seaweeds, stands out as a naturally occurring polysaccharide with immense potential in various biomedical applications. CRG boasts a unique array of properties, encompassing antiviral, antibacterial, immunomodulatory, antihyperlipidemic, antioxidant, and antitumor attributes, positioning it as an attractive choice for cutting-edge research in drug delivery, wound healing, and tissue regeneration. This comprehensive review encapsulates the multifaceted properties of CRG, shedding light on the chemical modifications that it undergoes. Additionally, it spotlights pioneering research that harnesses the potential of CRG to craft scaffolds and drug delivery systems, offering high efficacy in the realms of tissue repair and disease intervention. In essence, this review celebrates the remarkable versatility of CRG and its transformative role in advancing biomedical solutions.


Asunto(s)
Carragenina , Algas Marinas , Carragenina/química , Algas Marinas/química , Humanos , Animales , Sistemas de Liberación de Medicamentos , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Materiales Biocompatibles/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Medicina Regenerativa/métodos
10.
Wound Repair Regen ; 32(3): 323-339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38445725

RESUMEN

Burn wound regeneration is a complex process, which has many serious challenges such as slow wound healing, secondary infection, and inflammation. Therefore, it is essential to utilise appropriate biomaterials to accelerate and guide the wound healing process. Bacterial cellulose (BC), a natural polymer synthesised by some bacteria, has attracted much attention for wound healing applications due to its unique properties including excellent physicochemical and mechanical properties, simple purification process, three-dimensional (3D) network structure similar to extracellular matrix, high purity, high water holding capacity and significant permeability to gas and liquid. BC's lack of antibacterial activity significantly limits its biomedical and tissue engineering application, but adding antimicrobial agents to it remarkably improves its performance in tissue regeneration applications. Burn wound healing is a complex long-lasting process. Using biomaterials in wound treatment has shown that they can satisfactorily accelerate wound healing. The purpose of this review is to elaborate on the importance of BC-based structures as one of the most widely used modern wound dressings in the treatment of burn wounds. In addition, the combination of various drugs, agents, cells and biomolecules with BC to expand its application in burn injury regeneration is discussed. Finally, the main challenges and future development direction of BC-based structures for burn wound repair are considered. The four most popular search engines PubMed/MEDLINE, Science Direct, Scopus and Google Scholar were used to help us find relevant papers. The most frequently used keywords were bacterial cellulose, BC-based biocomposite, wound healing, burn wound and vascular graft.


Asunto(s)
Materiales Biocompatibles , Quemaduras , Celulosa , Cicatrización de Heridas , Quemaduras/terapia , Quemaduras/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Celulosa/uso terapéutico , Humanos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Vendajes , Bacterias
11.
Biomater Adv ; 159: 213813, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428122

RESUMEN

The ability of human tissues to self-repair is limited, which motivates the scientific community to explore new and better therapeutic approaches to tissue regeneration. The present manuscript provides a comparative study between a marine-based composite biomaterial, and another composed of well-established counterparts for bone tissue regeneration. Blue shark skin collagen was combined with bioapatite obtained from blue shark's teeth (mColl:BAp), while bovine collagen was combined with synthetic hydroxyapatite (bColl:Ap) to produce 3D composite scaffolds by freeze-drying. Collagens showed similar profiles, while apatite particles differed in their composition, being the marine bioapatite a fluoride-enriched ceramic. The marine-sourced biomaterials presented higher porosities, improved mechanical properties, and slower degradation rates when compared to synthetic apatite-reinforced bovine collagen. The in vivo performance regarding bone tissue regeneration was evaluated in defects created in femoral condyles in New Zealand rabbits twelve weeks post-surgery. Micro-CT results showed that mColl:BAp implanted condyles had a slower degradation and an higher tissue formation (17.9 ± 6.9 %) when compared with bColl:Ap implanted ones (12.9 ± 7.6 %). The histomorphometry analysis provided supporting evidence, confirming the observed trend by quantifying 13.1 ± 7.9 % of new tissue formation for mColl:BAp composites and 10.4 ± 3.2 % for bColl:Ap composites, suggesting the potential use of marine biomaterials for bone regeneration.


Asunto(s)
Materiales Biocompatibles , Andamios del Tejido , Humanos , Animales , Conejos , Bovinos , Materiales Biocompatibles/uso terapéutico , Apatitas , Regeneración Ósea , Colágeno/farmacología
12.
Nanoscale ; 16(15): 7547-7558, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38501312

RESUMEN

The concept of combining external medical stimuli with internal functional biomaterials to achieve cancer-oriented treatments is being emergingly developed. Optical and acoustical activations have shown particular promise as non-invasive regulation modalities in cancer treatment and intervention. It is always challenging to leverage the contributions of optical and acoustical stimuli and find appropriate biomaterials to optimally match them. Herein, a type of hybrid nanomicelle (ICG@PEP@HA) containing ICG as a photo/sonosensitizer, an amphiphilic peptide for membrane penetration and hyaluronic acid for cluster determinant 44 (CD44) targeting was fabricated. Triggered by the external stimuli of laser and US irradiation, their photo/sonothermal performance, in vitro reactive oxygen species (ROS) production capability and tumor-targeting efficiency have been systematically evaluated. It was interestingly found that the external stimulus of laser irradiation induced a greater quantity of ROS, which resulted in significant cell apoptosis and tumor growth inhibition in the presence of ICG@PEP@HA. The individual analyses and corresponding rationales have been investigated. Meanwhile, these hybrid nanomicelles were administered into MDA-MB-231 tumor-bearing nude mice for PDT and SDT therapies and their biocompatibility assessment, and a prevailing PDT efficacy and reliable bio-safety have been evidenced based on the hematological analysis and histochemical staining. In summary, this study has validated a novel pathway to utilize these hybrid nanomicelles for laser/US-triggered localized tumor treatment, and the treatment efficiency may be leveraged by different external stimuli sources. It is also expected to give rise to full accessibility to clinical translations for human cancer treatments by means of the as-reported laser/US-nanomicelle combination strategy.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Fotoquimioterapia , Animales , Ratones , Humanos , Ratones Desnudos , Especies Reactivas de Oxígeno/metabolismo , Hipertermia Inducida/métodos , Fotoquimioterapia/métodos , Neoplasias/tratamiento farmacológico , Materiales Biocompatibles/uso terapéutico , Línea Celular Tumoral , Nanopartículas/uso terapéutico
13.
Int J Biol Macromol ; 264(Pt 2): 130771, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467220

RESUMEN

Development of the efficient hemostatic materials is an essential requirement for the management of hemorrhage caused by the emergency situations to avert most of the casualties. Such injuries require the use of external hemostats to facilitate the immediate blood clotting. A variety of commercially available hemostats are present in the market but most of them are associated with limitations such as exothermic reactions, low biocompatibility, and painful removal. Thus, fabrication of an ideal hemostatic composition for rapid blood clot formation, biocompatibility, and antimicrobial nature presents a real challenge to the bioengineers. Benefiting from their tunable fabrication properties, alginate-based hemostats are gaining importance due to their excellent biocompatibility, with >85 % cell viability, high absorption capacity exceeding 500 %, and cost-effectiveness. Furthermore, studies have estimated that wounds treated with sodium alginate exhibited a blood loss of 0.40 ± 0.05 mL, compared to the control group with 1.15 ± 0.13 mL, indicating its inherent hemostatic activity. This serves as a solid foundation for designing future hemostatic materials. Nevertheless, various combinations have been explored to further enhance the hemostatic potential of sodium alginate. In this review, we have discussed the possible role of alginate based composite hemostats incorporated with different hemostatic agents, such as inorganic materials, polymers, biological agents, herbal agents, and synthetic drugs. This article outlines the challenges which need to be addressed before the clinical trials and give an overview of the future research directions.


Asunto(s)
Hemostáticos , Trombosis , Humanos , Hemostáticos/farmacología , Hemostáticos/uso terapéutico , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Alginatos/farmacología , Hemostasis , Coagulación Sanguínea , Hemorragia/tratamiento farmacológico
14.
ACS Biomater Sci Eng ; 10(4): 1910-1920, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38452343

RESUMEN

The medical device industry is undergoing substantial transformations, looking to face the increasing pressures on healthcare systems and fundamental shifts in healthcare delivery. There is an ever-growing emphasis on identifying underserved clinical requirements and enhancing industry-academia partnerships to accelerate innovative solutions. In this context, an analysis of the requirements for translation, highlighting support and funding for innovation to transform an idea for a biomaterial device into a commercially available product, is discussed.


Asunto(s)
Materiales Biocompatibles , Atención a la Salud , Materiales Biocompatibles/uso terapéutico
15.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38542103

RESUMEN

Nano-sized biomaterials are innovative drug carriers with nanometric dimensions. Designed with biocompatibility in mind, they enable precise drug delivery while minimizing side effects. Controlled release of therapeutic substances enhances efficacy, opening new possibilities for treating neurological and oncological diseases. Integrated diagnostic-therapeutic nanosystems allow real-time monitoring of treatment effectiveness, which is crucial for therapy personalization. Utilizing biomaterials as nano-sized carriers in conjunction with drugs represents a promising direction that could revolutionize the field of pharmaceutical therapy. Such carriers represent groundbreaking drug delivery systems on a nanometric scale, designed with biocompatibility in mind, enabling precise drug delivery while minimizing side effects. Using biomaterials in synergy with drugs demonstrates significant potential for a revolutionary impact on pharmaceutical therapy. Conclusions drawn from the review indicate that nano-sized biomaterials constitute an innovative tool that can significantly improve therapy effectiveness and safety, especially in treating neurological and oncological diseases. These findings should guide researchers towards further studies to refine nano-sized biomaterials, assess their effectiveness under various pathological conditions, and explore diagnostic-therapeutic applications. Ultimately, these results underscore the promising nature of nano-sized biomaterials as advanced drug carriers, ushering in a new era in nanomedical therapy.


Asunto(s)
Materiales Biocompatibles , Neoplasias , Humanos , Materiales Biocompatibles/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos , Neoplasias/tratamiento farmacológico
16.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38542108

RESUMEN

The increasing demand for innovative approaches in wound healing and skin regeneration has prompted extensive research into advanced biomaterials. This review focuses on showcasing the unique properties of sustainable silk-based particulate systems in promoting the controlled release of pharmaceuticals and bioactive agents in the context of wound healing and skin regeneration. Silk fibroin and sericin are derived from well-established silkworm production and constitute a unique biocompatible and biodegradable protein platform for the development of drug delivery systems. The controlled release of therapeutic compounds from silk-based particulate systems not only ensures optimal bioavailability but also addresses the challenges associated with conventional delivery methods. The multifaceted benefits of silk proteins, including their inherent biocompatibility, versatility, and sustainability, are explored in this review. Furthermore, the intricate mechanisms by which controlled drug release takes place from silk-based carriers are discussed.


Asunto(s)
Fibroínas , Seda , Seda/metabolismo , Preparaciones de Acción Retardada , Cicatrización de Heridas , Piel/metabolismo , Materiales Biocompatibles/uso terapéutico , Fibroínas/metabolismo
17.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542247

RESUMEN

Throughout history, natural products have played a significant role in wound healing. Fibroblasts, acting as primary cellular mediators in skin wound healing, exhibit behavioral responses to natural compounds that can enhance the wound healing process. Identifying bioactive natural compounds and understanding their impact on fibroblast behavior offers crucial translational opportunities in the realm of wound healing. Modern scientific techniques have enabled a detailed understanding of how naturally derived compounds modulate wound healing by influencing fibroblast behavior. Specific compounds known for their wound healing properties have been identified. Engineered biomimetic compounds replicating the natural wound microenvironment are designed to facilitate normal healing. Advanced delivery methods operating at micro- and nano-scales have been developed to effectively deliver these novel compounds through the stratum corneum. This review provides a comprehensive summary of the efficacy of natural compounds in influencing fibroblast behavior for promoting wound regeneration and repair. Additionally, it explores biomimetic engineering, where researchers draw inspiration from nature to create materials and devices mimicking physiological cues crucial for effective wound healing. The review concludes by describing novel delivery mechanisms aimed at enhancing the bioavailability of natural compounds. Innovative future strategies involve exploring fibroblast-influencing pathways, responsive biomaterials, smart dressings with real-time monitoring, and applications of stem cells. However, translating these findings to clinical settings faces challenges such as the limited validation of biomaterials in large animal models and logistical obstacles in industrial production. The integration of ancient remedies with modern approaches holds promise for achieving effective and scar-free wound healing.


Asunto(s)
Biomimética , Cicatrización de Heridas , Animales , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Cicatriz/patología , Fibroblastos , Piel/patología
18.
ACS Appl Mater Interfaces ; 16(13): 15993-16002, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38509001

RESUMEN

Biomaterials capable of delivering therapeutic proteins are relevant in biomedicine, yet their manufacturing relies on centralized manufacturing chains that pose challenges to their remote implementation at the point of care. This study explores the viability of confined cell-free protein synthesis within porous hydrogels as biomaterials that dynamically produce and deliver proteins to in vitro and in vivo biological microenvironments. These functional biomaterials have the potential to be assembled as implants at the point of care. To this aim, we first entrap cell-free extracts (CFEs) from Escherichia coli containing the transcription-translation machinery, together with plasmid DNA encoding the super folded green fluorescence protein (sGFP) as a model protein, into hydrogels using various preparation methods. Agarose hydrogels result in the most suitable biomaterials to confine the protein synthesis system, demonstrating efficient sGFP production and diffusion from the core to the surface of the hydrogel. Freeze-drying (FD) of agarose hydrogels still allows for the synthesis and diffusion of sGFP, yielding a more attractive biomaterial for its reconstitution and implementation at the point of care. FD-agarose hydrogels are biocompatible in vitro, allowing for the colonization of cell microenvironments along with cell proliferation. Implantation assays of this biomaterial in a preclinical mouse model proved the feasibility of this protein synthesis approach in an in vivo context and indicated that the physical properties of the biomaterials influence their immune responses. This work introduces a promising avenue for biomaterial fabrication, enabling the in vivo synthesis and targeted delivery of proteins and opening new paths for advanced protein therapeutic approaches based on biocompatible biomaterials.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Animales , Ratones , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Hidrogeles/uso terapéutico , Sefarosa , Prótesis e Implantes
19.
Adv Sci (Weinh) ; 11(17): e2308848, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38380549

RESUMEN

Periodontitis is a dysbiosis-driven inflammatory disease affecting the tooth-supporting tissues, characterized by their progressive resorption, which can ultimately lead to tooth loss. A step-wise therapeutic approach is employed for periodontitis. After an initial behavioral and non-surgical phase, intra-bony or furcation defects may be amenable to regenerative procedures. This review discusses the regenerative technologies employed for periodontal regeneration, highlighting the current limitations and future research areas. The search, performed on the MEDLINE database, has identified the available biomaterials, including biologicals (autologous platelet concentrates, hydrogels), bone grafts (pure or putty), and membranes. Biologicals and bone grafts have been critically analyzed in terms of composition, mechanism of action, and clinical applications. Although a certain degree of periodontal regeneration is predictable in intra-bony and class II furcation defects, complete defect closure is hardly achieved. Moreover, treating class III furcation defects remains challenging. The key properties required for functional regeneration are discussed, and none of the commercially available biomaterials possess all the ideal characteristics. Therefore, research is needed to promote the advancement of more effective and targeted regenerative therapies for periodontitis. Lastly, improving the design and reporting of clinical studies is suggested by strictly adhering to the Consolidated Standards of Reporting Trials (CONSORT) 2010 statement.


Asunto(s)
Materiales Biocompatibles , Regeneración Tisular Guiada Periodontal , Periodontitis , Humanos , Materiales Biocompatibles/uso terapéutico , Periodontitis/terapia , Regeneración Tisular Guiada Periodontal/métodos , Medicina Regenerativa/métodos
20.
Quintessence Int ; 55(4): 328-334, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38329717

RESUMEN

OBJECTIVE: This study aimed to evaluate the effectiveness of biomaterials in bone healing of critical bone defects created by piezoelectric surgery in rat calvaria. METHOD AND MATERIALS: Histomorphologic analysis was performed to assess bone regeneration and tissue response. Fifty animals were randomized into five groups with one of the following treatments: Control group (n = 10), spontaneous blood clot formation with no bone fill; BO group (Bio-Oss, Geistlich Pharma; n = 10), defects were filled with bovine medullary bone substitute; BF group (Bonefill, Bionnovation; n = 10), defects were filled with bovine cortical bone substitute; hydroxyapatite group (n = 10), defects were filled with hydroxyapatite; calcium sulfate group (n = 10), defects were filled with calcium sulfate. Five animals from each group were euthanized at 30 and 45 days. The histomorphometry calculated the percentage of the new bone formation in the bone defect. RESULTS: All data obtained were evaluated statistically considering P < .05 as statistically significant. The results demonstrated the potential of all biomaterials for enhancing bone regeneration. The findings showed no statistical differences between all the biomaterials at 30 and 45 days including the control group without bone grafting. CONCLUSION: In conclusion, the tested biomaterials presented an estimated capacity of osteoconduction, statistically nonsignificant between them. In addition, the selection of biomaterial should consider the specific clinical aspect, resorption rates, size of the particle, and desired bone healing responses. It is important to emphasize that in some cases, using no bone filler might provide comparable results with reduced cost and possible complications questioning the very frequent use of ridge presentation procedures.


Asunto(s)
Regeneración Ósea , Sustitutos de Huesos , Sulfato de Calcio , Durapatita , Minerales , Distribución Aleatoria , Ratas Wistar , Cráneo , Animales , Sustitutos de Huesos/uso terapéutico , Sustitutos de Huesos/farmacología , Ratas , Regeneración Ósea/efectos de los fármacos , Cráneo/cirugía , Sulfato de Calcio/uso terapéutico , Sulfato de Calcio/farmacología , Durapatita/uso terapéutico , Minerales/uso terapéutico , Bovinos , Piezocirugía/métodos , Masculino , Materiales Biocompatibles/uso terapéutico , Matriz Ósea/trasplante , Osteogénesis/efectos de los fármacos , Proceso Alveolar/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA