Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(1): 214-224, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34935338

RESUMEN

Smart hydrogels with versatile properties, including a tunable gelation time, nonswelling attributes, and biocompatibility, are in great need in the biomedical field. To meet this urgent demand, we explored novel biomaterials with the desired properties from sessile marine organisms. To this end, a novel protein, Sbp9, derived from scallop byssus was extensively investigated, which features typical epidermal growth factor-like (EGFL) multiple repetitive motifs. Our current work demonstrated that the key fragment of Sbp9 (calcium-binding domain (CBD) and 4 EGFL repeats (CE4)) was able to form a smart hydrogel driven by noncovalent interactions and facilitated by disulfide bonds. More importantly, this smart hydrogel demonstrates several desirable and beneficial features, which could offset the drawbacks of typical protein-based hydrogels, including (1) a redox-responsive gelation time (from <1 to 60 min); (2) tunable mechanical properties, nonswelling abilities, and an appropriate microstructure; and (3) good biocompatibility and degradability. Furthermore, proof-of-concept demonstrations showed that the newly discovered hydrogel could be used for anticancer drug delivery and cell encapsulation. Taken together, a smart hydrogel inspired by marine sessile organisms with desirable properties was generated and characterized and demonstrated to have extensive applicability potential in biomedical applications, including tissue engineering and drug release.


Asunto(s)
Proteínas de Unión al Calcio/química , Encapsulación Celular/métodos , Portadores de Fármacos/química , Hidrogeles/química , Pectinidae/química , Materiales Inteligentes/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Antineoplásicos/química , Proteínas de Unión al Calcio/toxicidad , Línea Celular Tumoral , Doxorrubicina/química , Portadores de Fármacos/toxicidad , Liberación de Fármacos , Humanos , Hidrogeles/toxicidad , Peróxido de Hidrógeno/química , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Oxidación-Reducción , Porosidad , Dominios Proteicos , Ratas Sprague-Dawley , Materiales Inteligentes/toxicidad
2.
ACS Appl Mater Interfaces ; 13(39): 46938-46950, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34559507

RESUMEN

Smart response hydrogel has a broad application prospect in human health real-time monitoring due to its responses to a variety of stimuli. In this study, we developed a novel smart hydrogel dressing based on conductive MXene nanosheets and a temperature-sensitive PNIPAm polymer. γ-Methacryloxypropyltrimethoxysilane (KH570) was selected to functionalize the surface of MXene further to improve the interface compatibility between MXene and PNIPAm. Our prepared K-M/PNIPAm hydrogel was found to have a strain-sensitive property, as well as a respond to NIR phase change and volume change. When applied as a strain flexible sensor, this K-M/PNIPAm hydrogel exhibited a high strain sensitivity with a gauge factor (GF) of 4.491, a broad working strain range of ≈250%, a fast response of ∼160 ms, and good cycle stability (i.e., 3000 s at 20% strain). Besides, this K-M/PNIPAm hydrogel can be used as an efficient NIR light-controlled drug release carrier to achieve on-demand drug release. This work paved the way for the application of smart response hydrogel in human health real-time monitoring and NIR-controlled drug release functions.


Asunto(s)
Portadores de Fármacos/química , Hidrogeles/química , Materiales Inteligentes/química , Resinas Acrílicas/química , Resinas Acrílicas/farmacología , Resinas Acrílicas/efectos de la radiación , Resinas Acrílicas/toxicidad , Animales , Línea Celular , Portadores de Fármacos/farmacología , Portadores de Fármacos/efectos de la radiación , Portadores de Fármacos/toxicidad , Liberación de Fármacos/efectos de la radiación , Elasticidad , Hidrogeles/farmacología , Hidrogeles/efectos de la radiación , Hidrogeles/toxicidad , Rayos Infrarrojos , Masculino , Metacrilatos/química , Metacrilatos/farmacología , Metacrilatos/efectos de la radiación , Metacrilatos/toxicidad , Ratones , Ratas Sprague-Dawley , Silanos/química , Silanos/farmacología , Silanos/efectos de la radiación , Silanos/toxicidad , Piel/efectos de los fármacos , Materiales Inteligentes/farmacología , Materiales Inteligentes/efectos de la radiación , Materiales Inteligentes/toxicidad , Estrés Mecánico , Tetraciclina/química , Titanio/química , Titanio/farmacología , Titanio/efectos de la radiación , Titanio/toxicidad , Cicatrización de Heridas/efectos de los fármacos
3.
J Mater Chem B ; 7(42): 6592-6603, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31589221

RESUMEN

Management of infected wounds is one of the most costly procedures in the health care sector. Burn wounds are of significant importance due to the high infection risk that can possibly lead to severe consequences such as sepsis. Because antibiotic wound treatments have caused increasing antibiotic resistance in bacteria, there is currently a strong need for alternative strategies. Therefore, we developed new antimicrobial wound dressings consisting of pH-responsive human serum albumin/silk fibroin nanocapsules immobilized onto cotton/polyethylene terephthalate (PET) blends loaded with eugenol, which is an antimicrobial phenylpropanoid. Ultrasound-assisted production of eugenol-loaded nanocapsules resulted in particle sizes (hydrodynamic radii) between 319.73 ± 17.50 and 574.00 ± 92.76 nm and zeta potentials ranging from -10.39 ± 1.99 mV to -12.11 ± 0.59 mV. Because recent discoveries have indicated that the sweat glands contribute to wound reepithelialisation, release studies of eugenol were conducted in different artificial sweat formulas that varied in pH. Formulations containing 10% silk fibroin with lower degradation degree exhibited the highest release of 41% at pH 6.0. After immobilization, the functionalized cotton/PET blends were able to inhibit 81% of Staphylococcus aureus and 33% of Escherichia coli growth. Particle uniformity, silk fibroin concentration, and high surface-area-to-volume ratio of the produced nanocapsules were identified as the contributing factors leading to high antimicrobial activities against both strains. Therefore, the production of antimicrobial textiles using nanocapsules loaded with an active natural compound that will not contribute to antibiotic resistance is seen as a potential future alternative to commercially available antiseptic wound dressings.


Asunto(s)
Antibacterianos/farmacología , Fibra de Algodón , Eugenol/farmacología , Nanocápsulas/química , Tereftalatos Polietilenos/química , Materiales Inteligentes/farmacología , Antibacterianos/química , Antibacterianos/toxicidad , Vendajes , Hidrolasas de Éster Carboxílico/química , Línea Celular , Celulasa/química , Fibra de Algodón/toxicidad , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Escherichia coli/efectos de los fármacos , Eugenol/química , Eugenol/toxicidad , Fibroínas/química , Fibroínas/toxicidad , Humanos , Nanocápsulas/toxicidad , Tereftalatos Polietilenos/toxicidad , Albúmina Sérica Humana/química , Albúmina Sérica Humana/toxicidad , Materiales Inteligentes/química , Materiales Inteligentes/toxicidad , Staphylococcus aureus/efectos de los fármacos
4.
ACS Nano ; 13(6): 6813-6823, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31117378

RESUMEN

Using two-photon excitation (2PE), molecular nanomachines (MNMs) are able to drill through cell membranes and kill the cells. This avoids the use of the more damaging ultraviolet light that has been used formerly to induce this nanomechanical cell-killing effect. Since 2PE is inherently confocal, enormous precision can be realized. The MNMs can be targeted to specific cell surfaces through peptide addends. Further, the efficacy was verified through a controlled opening of synthetic bilayer vesicles using the 2PE excitation of MNM that had been trapped within the vesicles.


Asunto(s)
Rayos Infrarrojos , Nanoestructuras/toxicidad , Fotones , Materiales Inteligentes/toxicidad , Células 3T3 , Animales , Muerte Celular , Membrana Celular/metabolismo , Células HeLa , Humanos , Células MCF-7 , Ratones , Nanoestructuras/química , Nanoestructuras/efectos de la radiación , Células PC-3 , Materiales Inteligentes/química , Materiales Inteligentes/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...