Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.390
Filtrar
1.
World J Microbiol Biotechnol ; 40(7): 232, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38834810

RESUMEN

Microbially induced carbonate precipitation (MICP) has been used to cure rare earth slags (RES) containing radionuclides (e.g. Th and U) and heavy metals with favorable results. However, the role of microbial extracellular polymeric substances (EPS) in MICP curing RES remains unclear. In this study, the EPS of Lysinibacillus sphaericus K-1 was extracted for the experiments of adsorption, inducing calcium carbonate (CaCO3) precipitation and curing of RES. The role of EPS in in MICP curing RES and stabilizing radionuclides and heavy metals was analyzed by evaluating the concentration and morphological distribution of radionuclides and heavy metals, and the compressive strength of the cured body. The results indicate that the adsorption efficiencies of EPS for Th (IV), U (VI), Cu2+, Pb2+, Zn2+, and Cd2+ were 44.83%, 45.83%, 53.7%, 61.3%, 42.1%, and 77.85%, respectively. The addition of EPS solution resulted in the formation of nanoscale spherical particles on the microorganism surface, which could act as an accumulating skeleton to facilitate the formation of CaCO3. After adding 20 mL of EPS solution during the curing process (Treat group), the maximum unconfined compressive strength (UCS) of the cured body reached 1.922 MPa, which was 12.13% higher than the CK group. The contents of exchangeable Th (IV) and U (VI) in the cured bodies of the Treat group decreased by 3.35% and 4.93%, respectively, compared with the CK group. Therefore, EPS enhances the effect of MICP curing RES and reduces the potential environmental problems that may be caused by radionuclides and heavy metals during the long-term sequestration of RES.


Asunto(s)
Bacillaceae , Carbonato de Calcio , Matriz Extracelular de Sustancias Poliméricas , Metales Pesados , Torio , Uranio , Uranio/química , Uranio/metabolismo , Carbonato de Calcio/química , Torio/química , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/química , Bacillaceae/metabolismo , Metales de Tierras Raras/química , Adsorción , Precipitación Química
2.
Appl Microbiol Biotechnol ; 108(1): 386, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896257

RESUMEN

Bacterial biofilms commonly cause chronic and persistent infections in humans. Bacterial biofilms consist of an inner layer of bacteria and an autocrine extracellular polymeric substance (EPS). Biofilm dispersants (abbreviated as dispersants) have proven effective in removing the bacterial physical protection barrier EPS. Dispersants are generally weak or have no bactericidal effect. Bacteria dispersed from within biofilms (abbreviated as dispersed bacteria) may be more invasive, adhesive, and motile than planktonic bacteria, characteristics that increase the probability that dispersed bacteria will recolonize and cause reinfection. The dispersants should be combined with antimicrobials to avoid the risk of severe reinfection. Dispersant-based nanoparticles have the advantage of specific release and intense penetration, providing the prerequisite for further antibacterial agent efficacy and achieving the eradication of biofilms. Dispersant-based nanoparticles delivered antimicrobial agents for the treatment of diseases associated with bacterial biofilm infections are expected to be an effective measure to prevent reinfection caused by dispersed bacteria. KEY POINTS: • Dispersed bacteria harm and the dispersant's dispersion mechanisms are discussed. • The advantages of dispersant-based nanoparticles in bacteria biofilms are discussed. • Dispersant-based nanoparticles for cutting off reinfection in vivo are highlighted.


Asunto(s)
Antibacterianos , Biopelículas , Nanopartículas , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Nanopartículas/química , Antibacterianos/farmacología , Humanos , Bacterias/efectos de los fármacos , Infecciones Bacterianas/prevención & control , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Reinfección/prevención & control , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/química , Matriz Extracelular de Sustancias Poliméricas/efectos de los fármacos
3.
J Cell Mol Med ; 28(12): e18481, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38899542

RESUMEN

Bacillus subtilis relies on biofilms for survival in harsh environments. Extracellular polymeric substance (EPS) is a crucial component of biofilms, yet the dynamics of EPS production in single cells remain elusive. To unveil the modulation of EPS synthesis, we built a minimal network model comprising the SinI-SinR-SlrR module, Spo0A, and EPS. Stochastic simulations revealed that antagonistic interplay between SinI and SinR enables EPS production in bursts. SlrR widens these bursts and increases their frequency by stabilizing SinR-SlrR complexes and depleting free SinR. DNA replication and chromosomal positioning of key genes dictate pulsatile changes in the slrR:sinR gene dosage ratio (gr) and Spo0A-P levels, each promoting EPS production in distinct phases of the cell cycle. As the cell cycle lengthens with nutrient stress, the duty cycle of gr pulsing decreases, whereas the amplitude of Spo0A-P pulses elevates. This coordinated response facilitates keeping a constant proportion of EPS-secreting cells within colonies across diverse nutrient conditions. Our results suggest that bacteria may 'encode' eps expression through strategic chromosomal organization. This work illuminates how stochastic protein interactions, gene copy number imbalance, and cell-cycle dynamics orchestrate EPS synthesis, offering a deeper understanding of biofilm formation.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Biopelículas , Replicación del ADN , Regulación Bacteriana de la Expresión Génica , Biopelículas/crecimiento & desarrollo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/fisiología , Replicación del ADN/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Ciclo Celular/genética
4.
Environ Sci Technol ; 58(26): 11542-11553, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38871676

RESUMEN

Nanoplastics (NPs) are emerging pollutants and have been reported to cause the disintegration of anaerobic granular sludge (AnGS). However, the mechanism involved in AnGS disintegration was not clear. In this study, polyvinyl chloride nanoplastics (PVC-NPs) were chosen as target NPs and their long-term impact on AnGS structure was investigated. Results showed that increasing PVC-NPs concentration resulted in the inhibition of acetoclastic methanogens, syntrophic propionate, and butyrate degradation, as well as AnGS disintegration. At the presence of 50 µg·L-1 PVC-NPs, the hydrophobic interaction was weakened with a higher energy barrier due to the relatively higher hydrophilic functional groups in extracellular polymeric substances (EPS). PVC-NPs-induced ROS inhibited quorum sensing, significantly downregulated hydrophobic amino acid synthesis, whereas it highly upregulated the genes related to the synthesis of four hydrophilic amino acids (Cys, Glu, Gly, and Lys), resulting in a higher hydrophily degree of protein secondary structure in EPS. The differential expression of genes involved in EPS biosynthesis and the resulting protein secondary structure contributed to the greater hydrophilic interaction, reducing microbial aggregation ability. The findings provided new insight into the long-term impact of PVC-NPs on AnGS when treating wastewater containing NPs and filled the knowledge gap on the mechanism involved in AnGS disintegration by PVC-NPs.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Cloruro de Polivinilo , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Cloruro de Polivinilo/química , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Anaerobiosis , Interacciones Microbianas
5.
Sci Total Environ ; 944: 173889, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38876335

RESUMEN

The transport and retention of bacteria in porous media, such as aquifer, are governed by the solid-liquid interface characteristics and bacterial mobility. The secretion of extracellular polymeric substance (EPS) by bacteria modifies their surface property, and thereby has effects on their adhesion to surface. The role of EPS in bacterial mobility within saturated quartz sand media is uncertain, as both promoting and inhibitory effects have been reported, and underlying mechanisms remain unclear. In this study, the effects of EPS on bacterial transport behavior and possible underlying mechanism were investigated at 4 concentrations (0 mg L-1, 50 mg L-1, 200 mg L-1 and 1000 mg L-1) using laboratory simulation experiments in conjunction with Extend Derjaguin-Landau-Verweu-Overbeek (XDLVO) modeling. The results showed that EPS facilitated bacterial mobility at all tested concentrations. It could be partially explained by the increased energy barrier between bacterial cells and quartz sand surface in the presence of EPS. The XDLVO sphere-plate model predicted that EPS induced a higher electrostatic double layer (EDL) repulsive force, Lewis acid-base (AB) and steric stabilization (ST), as well as a lower Lifshitz-van der Waals (LW) attractive force. However, at the highest EPS concentration (1000 mg L-1), the promotion of EPS on bacterial mobility weakened as a result of lower repulsive interactions between cells, which was supported by observed enhanced bacterial aggregation. Consequently, the increased aggregation led to greater bio-colloidal straining and ripening in the sand column, weakening the positive impact of EPS on bacterial transport. These findings suggested that EPS exhibited concentration-dependent effects on bacterial surface properties and transport behavior and revealed non-intuitive dual effects of EPS on those processes.


Asunto(s)
Bacterias , Matriz Extracelular de Sustancias Poliméricas , Porosidad , Bacterias/metabolismo , Propiedades de Superficie , Agua Subterránea/química , Adhesión Bacteriana
6.
J Environ Manage ; 365: 121523, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901321

RESUMEN

Anaerobic oxidation of methane (AOM) is a microbial process of importance in the global carbon cycle. AOM is predominantly mediated by anaerobic methanotrophic archaea (ANME), the physiology of which is still poorly understood. Here we present a new addition to the current physiological understanding of ANME by examining, for the first time, the biochemical and redox-active properties of the extracellular polymeric substances (EPS) of an ANME enrichment culture. Using a 'Candidatus Methanoperedens nitroreducens'-dominated methanotrophic consortium as the representative, we found it can produce an EPS matrix featuring a high protein-to-polysaccharide ratio of ∼8. Characterization of EPS using FTIR revealed the dominance of protein-associated amide I and amide II bands in the EPS. XPS characterization revealed the functional group of C-(O/N) from proteins accounted for 63.7% of total carbon. Heme-reactive staining and spectroscopic characterization confirmed the distribution of c-type cytochromes in this protein-dominated EPS, which potentially enabled its electroactive characteristic. Redox-active c-type cytochromes in EPS mediated the EET of 'Ca. M. nitroreducens' for the reduction of Ag+ to metallic Ag, which was confirmed by both ex-situ experiments with extracted soluble EPS and in-situ experiments with pristine EPS matrix surrounding cells. The formation of nanoparticles in the EPS matrix during in-situ extracellular Ag + reduction resulted in a relatively lower intracellular Ag distribution fraction, beneficial for alleviating the Ag toxicity to cells. The results of this study provide the first biochemical information on EPS of anaerobic methanotrophic consortia and a new insight into its physiological role in AOM process.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Metano , Oxidación-Reducción , Metano/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Anaerobiosis , Archaea/metabolismo
7.
Dalton Trans ; 53(28): 11787-11799, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38940617

RESUMEN

The extraction and recovery of valuable metals from various spent catalysts via bioleaching represents a green, low-carbon and eco-friendly process. However, the pulp density of spent catalysts is usually 1.0% or lower owing to their toxicity, denoting low process capacity and poor practical potential. In this study, an intensified bioleaching strategy was used for the first time to promote the release efficiencies of both Co and Mo from a spent Co-Mo catalyst at a high pulp density of 10% by supplementing extracellular polymeric substances (EPSs). The results showed that the addition of 0.6 g L-1 EPSs harvested a maximum release of 73.6% for Co and 72.5% for Mo after 9 days of contact, with an evident elevation of 22.6% for Co and 24.4% for Mo, in contrast to no addition, respectively. The added EPS not only promoted the growth of plankton cells to produce more active molecules but also boosted the adhesion of leaching cells to the spent catalyst to form stable aggregates. Moreover, the resulting aggregates allowed for the gathering and confinement of the active small molecules, including Fe3+ and Fe2+, inside the micro-areas between the spent catalysts and the cells for quick electronic transfer as an interface oxidation/reduction reaction to free both Co and Mo from the spent catalyst.


Asunto(s)
Cobalto , Matriz Extracelular de Sustancias Poliméricas , Molibdeno , Catálisis , Cobalto/química , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/química , Molibdeno/química , Monóxido de Carbono/química
8.
Harmful Algae ; 135: 102633, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38830715

RESUMEN

Nitrogen-fixing cyanobacteria not only cause severe blooms but also play an important role in the nitrogen input processes of lakes. The production of extracellular polymeric substances (EPS) and the ability to fix nitrogen from the atmosphere provide nitrogen-fixing cyanobacteria with a competitive advantage over other organisms. Temperature and nitrogen availability are key environmental factors in regulating the growth of cyanobacteria. In this study, Dolichospermum (formerly known as Anabaena) was cultivated at three different temperatures (10 °C, 20 °C, and 30 °C) to examine the impact of temperature and nitrogen availability on nitrogen fixation capacity and the release of EPS. Initially, confocal laser scanning microscopy (CLSM) and the quantification of heterocysts at different temperatures revealed that lower temperatures (10 °C) hindered the differentiation of heterocysts under nitrogen-deprived conditions. Additionally, while heterocysts inhibited the photosynthetic activity of Dolichospermum, the secretion of EPS was notably affected by nitrogen limitation, particularly at 30 °C. Finally, real-time quantitative polymerase chain reaction (qPCR) was used to measure the expression of nitrogen-utilizing genes (ntcA and nifH) and EPS synthesis-related genes (wzb and wzc). The results indicated that under nitrogen-deprived conditions, the expression of each gene was upregulated, and there was a significant correlation between the upregulation of nitrogen-utilizing and EPS synthesis genes (P < 0.05). Our findings suggested that Dolichospermum responded to temperature variation by affecting the formation of heterocysts, impacting its potential nitrogen fixation capacity. Furthermore, the quantity of EPS released was more influenced by nitrogen availability than temperature. This research enhances our comprehension of interconnections between nitrogen deprivation and EPS production under the different temperatures.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Fijación del Nitrógeno , Nitrógeno , Temperatura , Nitrógeno/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Anabaena/metabolismo , Anabaena/fisiología , Anabaena/genética
9.
Bioresour Technol ; 403: 130869, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777236

RESUMEN

In this study, the possibility of an auto-aggregating bacterium Pseudomonas strain XL-2 with heterotrophic nitrification-aerobic denitrification capacity for improving granulation and nitrogen removal was evaluated. The results showed that the supplementation of strain XL-2 promoted granulation, making R1 (experimental group with strain XL-2) dominated by granules at 14 d, which was 12 days earlier than R2 (control group without strain XL-2). This was attributed to the promotion of extracellular polymeric substances (EPS) secretion, particularly proteins by adding strain XL-2, thereby improving the hydrophobicity of sludge and altering the proteins secondary structures to facilitate aggregation. Meanwhile, adding strain XL-2 improved simultaneous nitrification and denitrification efficiency of R1. Microbial community analysis indicated that strain XL-2 successfully proliferated in aerobic granule sludge and might induce the enrichment of genera such as Flavobacterium and Paracoccus that were favorable for EPS secretion and denitrification, jointly promoting granulation and enhancing nitrogen removal efficiency.


Asunto(s)
Desnitrificación , Nitrificación , Nitrógeno , Pseudomonas stutzeri , Aguas del Alcantarillado , Desnitrificación/fisiología , Nitrificación/fisiología , Pseudomonas stutzeri/metabolismo , Aerobiosis , Aguas del Alcantarillado/microbiología , Procesos Heterotróficos/fisiología , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Reactores Biológicos
10.
N Biotechnol ; 82: 33-42, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-38714292

RESUMEN

Given the necessity for bioprocesses scaling-up, the present study aims to explore the potential of three marine cyanobacteria and a consortium, cultivated in semi-continuous mode, as a green approach for i) continuous exopolysaccharide-rich biomass production and ii) removal of positively charged metals (Cu, Ni, Zn) from mono and multi-metallic solutions. To ensure the effectiveness of both cellular and released exopolysaccharides, weekly harvested whole cultures were confined in dialysis tubings. The results revealed that all the tested cyanobacteria have a stronger affinity towards Cu in mono and three-metal systems. Despite the amount of metals removed per gram of biomass decreased with higher biosorbent dosage, the more soluble carbohydrates were produced, the greater was the metal uptake, underscoring the pivotal role of released exopolysaccharides in metal biosorption. According to this, Dactylococcopsis salina 16Som2 showed the highest carbohydrate productivity (142 mg L-1 d-1) and metal uptake (84 mg Cu g-1 biomass) representing a promising candidate for further studies. The semi-continuous cultivation of marine cyanobacteria here reported assures a schedulable production of exopolysaccharide-rich biosorbents with high metal removal and recovery potential, even from multi-metallic solutions, as a step forward in the industrial application of cyanobacteria.


Asunto(s)
Cianobacterias , Cianobacterias/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/química , Biomasa , Biotecnología , Metales/metabolismo , Metales/química , Tecnología Química Verde
11.
J Hazard Mater ; 474: 134760, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38820746

RESUMEN

In this study, we investigated the adsorption of Cd(II) and the biosynthesis of CdS quantum dots (QDs) mediated by cells of sulfate-reducing bacteria before and after the removal of EPS to determine whether EPS or the cell wall plays a major role. Potentiometric titration revealed that the concentration of proton-active binding sites on cells with EPS (EPS-intact) was notably higher than that on cells without EPS (EPS-free) and that the sites were predominantly carboxyl, phosphoryl, hydroxyl, and amine groups. The protein content in EPS-intact cells was higher, and thus the Cd(II) adsorption capacity was stronger. The CdS QDs biosynthesized using EPS-intact possessed better properties, including uniform size distribution, good crystallinity, small particle size, high fluorescence, and strong antimicrobial activity, and the yields were significantly higher than those of EPS-free by a factor of about 1.5-3.7. Further studies revealed that alkaline amino acids in EPS play a major role and serve as templates in the biosynthesis of QDs, whereas they were rarely detected in the cell wall. This study emphasizes the important role of EPS in the bacterial binding of metals and efficient recycling of hazardous waste in water.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Sulfuros , Puntos Cuánticos/química , Compuestos de Cadmio/metabolismo , Compuestos de Cadmio/química , Sulfuros/química , Sulfuros/metabolismo , Adsorción , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/química , Cadmio/metabolismo , Cadmio/química
12.
mBio ; 15(6): e0012424, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38722159

RESUMEN

Transmission of Yersinia pestis by fleas depends on the formation of condensed bacterial aggregates embedded within a gel-like matrix that localizes to the proventricular valve in the flea foregut and interferes with normal blood feeding. This is essentially a bacterial biofilm phenomenon, which at its end stage requires the production of a Y. pestis exopolysaccharide that bridges the bacteria together in a cohesive, dense biofilm that completely blocks the proventriculus. However, bacterial aggregates are evident within an hour after a flea ingests Y. pestis, and the bacterial exopolysaccharide is not required for this process. In this study, we characterized the biochemical composition of the initial aggregates and demonstrated that the yersinia murine toxin (Ymt), a Y. pestis phospholipase D, greatly enhances rapid aggregation following infected mouse blood meals. The matrix of the bacterial aggregates is complex, containing large amounts of protein and lipid (particularly cholesterol) derived from the flea's blood meal. A similar incidence of proventricular aggregation occurred after fleas ingested whole blood or serum containing Y. pestis, and intact, viable bacteria were not required. The initial aggregation of Y. pestis in the flea gut is likely due to a spontaneous physical process termed depletion aggregation that occurs commonly in environments with high concentrations of polymers or other macromolecules and particles such as bacteria. The initial aggregation sets up subsequent binding aggregation mediated by the bacterially produced exopolysaccharide and mature biofilm that results in proventricular blockage and efficient flea-borne transmission. IMPORTANCE: Yersinia pestis, the bacterial agent of plague, is maintained in nature in mammal-flea-mammal transmission cycles. After a flea feeds on a mammal with septicemic plague, the bacteria rapidly coalesce in the flea's digestive tract to form dense aggregates enveloped in a viscous matrix that often localizes to the foregut. This represents the initial stage of biofilm development that potentiates transmission of Y. pestis when the flea later bites a new host. The rapid aggregation likely occurs via a depletion-aggregation mechanism, a non-canonical first step of bacterial biofilm development. We found that the biofilm matrix is largely composed of host blood proteins and lipids, particularly cholesterol, and that the enzymatic activity of a Y. pestis phospholipase D (Ymt) enhances the initial aggregation. Y. pestis transmitted by flea bite is likely associated with this host-derived matrix, which may initially shield the bacteria from recognition by the host's intradermal innate immune response.


Asunto(s)
Biopelículas , Fosfolipasa D , Siphonaptera , Yersinia pestis , Yersinia pestis/enzimología , Fosfolipasa D/metabolismo , Siphonaptera/microbiología , Biopelículas/crecimiento & desarrollo , Peste/microbiología , Peste/transmisión , Matriz Extracelular de Sustancias Poliméricas/química , Matriz Extracelular de Sustancias Poliméricas/microbiología , Matriz Extracelular de Sustancias Poliméricas/ultraestructura , Polisacáridos/metabolismo , Microscopía Electrónica de Transmisión , Proteoma/metabolismo , Animales , Ratones , Lípidos/análisis
13.
Water Res ; 257: 121718, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38723358

RESUMEN

Extracellular polymeric substances (EPS) participate in the removal of organic micropollutants (OMPs), but the primary pathways of removal and detailed mechanisms remain elusive. We evaluated the effect of EPS on removal for 16 distinct chemical classes of OMPs during anaerobic digestion (AD). The results showed that hydrophobic OMPs (HBOMPs) could not be removed by EPS, while hydrophilic OMPs (HLOMPs) were amenable to removal via adsorption and biotransformation of EPS. The adsorption and biotransformation of HLOMPs by EPS accounted up to 19.4 ± 0.9 % and 6.0 ± 0.8 % of total removal, respectively. Further investigations into the adsorption and biotransformation mechanisms of HLOMPs by EPS were conducted utilizing spectral, molecular dynamics simulation, and electrochemical analysis. The results suggested that EPS provided abundant binding sites for the adsorption of HLOMPs. The binding of HLOMPs to tryptophan-like proteins in EPS formed nonfluorescent complexes. Hydrogen bonds, hydrophobic interactions and water bridges were key to the binding processes and helped stabilize the complexes. The biotransformation of HLOMPs by EPS may be attributed to the presence of extracellular redox active components (c-type cytochromes (c-Cyts), c-Cyts-bound flavins). This study enhanced the comprehension for the role of EPS on the OMPs removal in anaerobic wastewater treatment.


Asunto(s)
Biotransformación , Matriz Extracelular de Sustancias Poliméricas , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Adsorción , Anaerobiosis , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/química , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular
14.
Water Res ; 257: 121754, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38762929

RESUMEN

Algal-bacterial granular sludge (ABGS) system is promising in wastewater treatment for its potential in energy-neutrality and carbon-neutrality. However, traditional cultivation of ABGS poses significant challenges attributable to its long start-up period and high energy consumption. Extracellular polymeric substances (EPS), which could be stimulated as a self-defense strategy in cells under toxic contaminants stress, has been considered to contribute to the ABGS granulation process. In this study, photogranulation of ABGS by EPS regulation in response to varying loading rates of N-Methylpyrrolidone (NMP) was investigated for the first time. The results indicated the formation of ABGS with a maximum average diameter of ∼3.3 mm and an exceptionally low SVI5 value of 67 ± 2 mL g-1 under an NMP loading rate of 125 mg L-1 d-1, thereby demonstrating outstanding settleability. Besides, almost complete removal of 300 mg L-1 NMP could be achieved at hydraulic retention time of 48 h, accompanied by chemical oxygen demand (COD) and total nitrogen (TN) removal efficiencies higher than 90 % and 70 %, respectively. Moreover, possible degradation pathway and metabolism mechanism in the ABGS system for enhanced removal of NMP and nitrogen were proposed. In this ABGS system, the mycelium with network structure constituted by filamentous microorganisms was a prerequisite for photogranulation, instead of necessarily leading to granulation. Stress of 100-150 mg L-1 d-1 NMP loading rate stimulated tightly-bound EPS (TB-EPS) variation, resulting in rapid photogranulation. The crucial role of TB-EPS was revealed with the involved mechanisms being clarified. This study provides a novel insight into ABGS development based on the TB-EPS regulation by NMP, which is significant for achieving the manipulation of photogranules.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Pirrolidinonas , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Pirrolidinonas/metabolismo , Eliminación de Residuos Líquidos , Nitrógeno , Bacterias/metabolismo , Análisis de la Demanda Biológica de Oxígeno , Aguas Residuales/química
15.
Front Cell Infect Microbiol ; 14: 1374817, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779563

RESUMEN

Introduction: Periodontal diseases are known to be associated with polymicrobial biofilms and inflammasome activation. A deeper understanding of the subgingival cytological (micro) landscape, the role of extracellular DNA (eDNA) during periodontitis, and contribution of the host immune eDNA to inflammasome persistence, may improve our understanding of the mechanisms underlaying severe forms of periodontitis. Methods: In this work, subgingival biolfilms developing on biologically neutral polyethylene terephthalate films placed in gingival cavities of patients with chronic periodontitis were investigated by confocal laser scanning microscopy (CLSM). This allowed examination of realistic cytological landscapes and visualization of extracellular polymeric substances (EPS) including amyloids, total proteins, carbohydrates and eDNA, as well as comparison with several single-strain in vitro model biofilms produced by oral pathogens such as Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus gordonii, S. sanguinis and S. mitis. Fluorescence in situ hybridization (FISH) analysis was also used to identify eDNA derived from eubacteria, streptococci and members of the Bacteroides-Porphyromonas-Prevotella (BPP) group associated with periodontitis. Results: Analysis of subgingival biofilm EPS revealed low levels of amyloids and high levels of eDNA which appears to be the main matrix component. However, bacterial eDNA contributed less than a third of the total eDNA observed, suggesting that host-derived eDNA released in neutrophil extracellular traps may be of more importance in the development of biofilms causing periodontitis. Discussion: eDNA derived from host immunocompetent cells activated at the onset of periodontitis may therefore be a major driver of bacterial persistence and pathogenesis.


Asunto(s)
Biopelículas , Periodontitis , Biopelículas/crecimiento & desarrollo , Humanos , Periodontitis/microbiología , Microscopía Confocal , ADN , Hibridación Fluorescente in Situ , Bacterias/genética , ADN Bacteriano/genética , Inflamasomas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Encía/microbiología , Periodontitis Crónica/microbiología , Periodontitis Crónica/inmunología
16.
J Hazard Mater ; 473: 134434, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38762983

RESUMEN

The behavior of As is closely related to trans(formation) of ferrihydrite, which often coprecipitates with extracellular polymeric substances (EPS), forming EPS-mineral aggregates in natural environments. While the effect of EPS on ferrihydrite properity, mineralogy reductive transformation, and associated As fate in sulfate-reducing bacteria (SRB)-rich environments remains unclear. In this research, ferrihydrite-EPS aggregates were synthesized and batch experiments combined with spectroscopic, microscopic, and geochemical analyses were conducted to address these knowledge gaps. Results indicated that EPS blocked micropores in ferrihydrite, and altered mineral surface area and susceptibility. Although EPS enhanced Fe(III) reduction, it retarded ferrihydrite transformation to magnetite by inhibiting Fe atom exchange in systems with low SO42-. As a result, 16% of the ferrihydrite was converted into magnetite in the Fh-0.3 treatment, and no ferrihydrite transformation occurred in the Fh-EPS-0.3 treatment. In systems with high SO42-, however, EPS promoted mackinawite formation and increased As mobilization into the solution. Additionally, the coprecipitated EPS facilitated As(V) reduction to more mobilized As(III) and decreased conversion of As into the residual phase, enhancing the potential risk of As contamination. These findings advance our understanding on biogeochemistry of elements Fe, S, and As and are helpful for accurate prediction of As behavior.


Asunto(s)
Arsénico , Matriz Extracelular de Sustancias Poliméricas , Compuestos Férricos , Compuestos Férricos/química , Arsénico/química , Arsénico/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/química , Contaminantes Químicos del Agua/química
17.
Bioresour Technol ; 403: 130856, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763204

RESUMEN

The inductive effect of conductive materials (CMs) on enhancing methanogenesis metabolism has been overlooked. Herein, we highlight role of CMs in inducing the spatial optimisation of methanogenic consortia by altering the Lewis acid-base (AB) interactions within microbial aggregates. In the presence of CMs and after their removal, the methane production and methane proportion in biogas significantly increase, with no significant difference between the two situations. Analyses of interactions between CMs and extracellular polymer substances (EPSs) with and without D2O reveal that CMs promote release and transfer potential of electron in EPSs, which induce and enhance the role of water molecules being primarily as proton acceptors in the hydrogen bonding between EPSs and water, thereby changing the electron-donor- and electron-acceptor-based AB interactions. Investigations of succession dynamics of microbial communities, co-occurrence networks, and metagenomics further indicate that electron transfer drives the microbial spatial optimisation for efficient methanogenesis through intensive interspecies interactions.


Asunto(s)
Metano , Consorcios Microbianos , Metano/metabolismo , Transporte de Electrón , Anaerobiosis , Consorcios Microbianos/fisiología , Electrones , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Biocombustibles , Conductividad Eléctrica , Ácidos de Lewis
18.
Environ Res ; 255: 119209, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38782336

RESUMEN

Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) process is a promising wastewater treatment technology, but the slow microbial growth rate greatly hinders its practical application. Although high-level nitrogen removal and excellent biomass accumulation have been achieved in n-DAMO granule process, the formation mechanism of n-DAMO granules remains unresolved. To elucidate the role of functional microbes in granulation, this study attempted to cultivate granules dominated by n-DAMO microorganisms and granules coupling n-DAMO with anaerobic ammonium oxidation (Anammox). After long-term operation, dense granules were developed in the two systems where both n-DAMO archaea and n-DAMO bacteria were enriched, whereas granulation did not occur in the other system dominated by n-DAMO bacteria. Extracellular polymeric substances (EPS) measurement indicated the critical role of EPS production in the granulation of n-DAMO process. Metagenomic and metatranscriptomic analyses revealed that n-DAMO archaea and Anammox bacteria were active in EPS biosynthesis, while n-DAMO bacteria were inactive. Consequently, more EPS were produced in the systems containing n-DAMO archaea and Anammox bacteria, leading to the successful development of n-DAMO granules. Furthermore, EPS biosynthesis in n-DAMO systems is potentially regulated by acyl-homoserine lactones and c-di-GMP. These findings not only provide new insights into the mechanism of granule formation in n-DAMO systems, but also hint at potential strategies for management of the granule-based n-DAMO process.


Asunto(s)
Archaea , Bacterias , Oxidación-Reducción , Archaea/metabolismo , Archaea/genética , Anaerobiosis , Bacterias/metabolismo , Bacterias/genética , Metano/metabolismo , Eliminación de Residuos Líquidos/métodos , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Nitritos/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Reactores Biológicos/microbiología , Aguas Residuales/microbiología
19.
Aquat Toxicol ; 272: 106960, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761586

RESUMEN

Microplastics (MPs) pollution and seawater acidification have increasingly become huge threats to the ocean ecosystem. Their impacts on microalgae are of great importance, since microalgae are the main primary producers and play a critical role in marine ecosystems. However, the impact of microplastics and acidification on unicellular red algae, which have a unique phycobiliprotein antenna system, remains unclear. Therefore, the impacts of polystyrene-MPs alone and the combined effects of MPs and seawater acidification on the typical unicellular marine red algae Porphyridium purpureum were investigated in the current study. The result showed that, under normal seawater condition, microalgae densities were increased by 17.75-41.67 % compared to the control when microalgae were exposed to small-sized MPs (0.1 µm) at concentrations of 5-100 mg L-1. In addition, the photosystem II and antioxidant enzyme system were not subjected to negative effects. The large-sized MPs (1 µm) boosted microalgae growth at a low concentration of MPs (5 mg L-1). However, it was observed that microalgae growth was significantly inhibited when MPs concentration increased up to 50 and 100 mg L-1, accompanied by the remarkably reduced Fv/Fm value and the elevated levels of SOD, CAT enzymes, phycoerythrin (PE), and extracellular polysaccharide (EPS). Compared to the normal seawater condition, microalgae densities were enhanced by 52.11-332.56 % under seawater acidification, depending on MPs sizes and concentrations, due to the formed CO2-enrichment condition and appropriate pH range. PE content in microalgal cells was significantly enhanced, but SOD and CAT activities as well as EPS content markedly decreased under acidification conditions. Overall, the impacts of seawater acidification were more pronounced than MPs impacts on microalgae growth and physiological responses. These findings will contribute to a substantial understanding of the effects of MPs on marine unicellular red microalgae, especially in future seawater acidification scenarios.


Asunto(s)
Microplásticos , Fotosíntesis , Rhodophyta , Agua de Mar , Contaminantes Químicos del Agua , Agua de Mar/química , Fotosíntesis/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Rhodophyta/efectos de los fármacos , Rhodophyta/química , Concentración de Iones de Hidrógeno , Microplásticos/toxicidad , Microalgas/efectos de los fármacos , Antioxidantes/metabolismo , Matriz Extracelular de Sustancias Poliméricas/efectos de los fármacos , Porphyridium/efectos de los fármacos , Acidificación de los Océanos
20.
Talanta ; 276: 126231, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788376

RESUMEN

Extracellular polymeric substances (EPS), which were an important fraction of natural organic matter (NOM), played an important role in various environmental processes. However, the heterogeneity, complexity, and dynamics of EPS make their interactions with antibiotics elusive. Using advanced multispectral technology, this study examined how EPS interacts with different concentrations of tetracycline (TC) in the soil system. Our results demonstrated that protein-like (C1), fulvic-like (C2), and humic-like (C3) fractions were identified from EPS. Two-dimensional synchronous correlation spectroscopy (2D-SF-COS) indicated that the protein-like fraction gave faster responses than the fulvic-like fraction during the TC binding process. The sequence of structural changes in EPS due to TC binding was revealed by two-dimensional Fourier Transformation Infrared correlation spectroscopy (2D-FTIR-COS) as follows: 1550 > 1660 > 1395 > 1240 > 1087 cm-1. It is noteworthy that the sensitivity of the amide group to TC has been preserved, with its intensity gradually increasing to become the primary binding site for TC. The integration of hetero-2DCOS maps with moving window 2D correlation spectroscopy (MW2DCOS) provided a unique insight into understanding the correlation between EPS fractions and functional groups during the TC binding process. Moreover, molecular docking (MD) discovered that the extracellular proteins would provide plenty of binding sites with TC through salt bridges, hydrogen bonds, and π-π base-stacking forces. With these results, systematic investigations of the dynamic changes in EPS components under different concentrations of antibiotic exposure demonstrated the advanced capabilities of multispectral technology in examining intricate interactions with EPS in the soil environment.


Asunto(s)
Escherichia coli , Matriz Extracelular de Sustancias Poliméricas , Simulación del Acoplamiento Molecular , Tetraciclina , Tetraciclina/química , Tetraciclina/metabolismo , Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/química , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/metabolismo , Sitios de Unión , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...