Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.965
Filtrar
1.
Curr Opin Crit Care ; 30(3): 268-274, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690956

RESUMEN

PURPOSE OF REVIEW: This review explores lung recruitment monitoring, covering techniques, challenges, and future perspectives. RECENT FINDINGS: Various methodologies, including respiratory system mechanics evaluation, arterial bold gases (ABGs) analysis, lung imaging, and esophageal pressure (Pes) measurement are employed to assess lung recruitment. In support to ABGs analysis, the assessment of respiratory mechanics with hysteresis and recruitment-to-inflation ratio has the potential to evaluate lung recruitment and enhance mechanical ventilation setting. Lung imaging tools, such as computed tomography scanning, lung ultrasound, and electrical impedance tomography (EIT) confirm their utility in following lung recruitment with the advantage of radiation-free and repeatable application at the bedside for sonography and EIT. Pes enables the assessment of dorsal lung tendency to collapse through end-expiratory transpulmonary pressure. Despite their value, these methodologies may require an elevated expertise in their application and data interpretation. However, the information obtained by these methods may be conveyed to build machine learning and artificial intelligence algorithms aimed at improving the clinical decision-making process. SUMMARY: Monitoring lung recruitment is a crucial component of managing patients with severe lung conditions, within the framework of a personalized ventilatory strategy. Although challenges persist, emerging technologies offer promise for a personalized approach to care in the future.


Asunto(s)
Respiración Artificial , Humanos , Monitoreo Fisiológico/métodos , Respiración Artificial/métodos , Mecánica Respiratoria/fisiología , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Impedancia Eléctrica , Tomografía Computarizada por Rayos X , Análisis de los Gases de la Sangre/métodos , Ultrasonografía/métodos
2.
J Vis Exp ; (206)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38709055

RESUMEN

Mechanical ventilation is widely used and requires specific knowledge for understanding and management. Health professionals in this field may feel insecure and lack knowledge because of inadequate training and teaching methods. Therefore, the objective of this article is to outline the steps involved in generating an ex vivo porcine lung model to be used in the future, to study and teach lung mechanics. To generate the model, five porcine lungs were carefully removed from the thorax following the guidelines of the Animal Research Ethics Committee with adequate care and were connected to the mechanical ventilator through a tracheal cannula. These lungs were then subjected to the alveolar recruitment maneuver. Respiratory mechanics parameters were recorded, and video cameras were used to obtain videos of the lungs during this process. This process was repeated for five consecutive days. When not used, the lungs were kept refrigerated. The model showed different lung mechanics after the alveolar recruitment maneuver every day; not being influenced by the days, only by the maneuver. Therefore, we conclude that the ex vivo lung model can provide a better understanding of lung mechanics and its effects, and even of the alveolar recruitment maneuver through visual feedback during all stages of the process.


Asunto(s)
Pulmón , Mecánica Respiratoria , Animales , Porcinos , Pulmón/fisiología , Mecánica Respiratoria/fisiología , Modelos Animales , Respiración Artificial/métodos
3.
J Clin Anesth ; 95: 111444, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38583224

RESUMEN

BACKGROUND: Mechanical ventilation with variable tidal volumes (V-VCV) has the potential to improve lung function during general anesthesia. We tested the hypothesis that V-VCV compared to conventional volume-controlled ventilation (C-VCV) would improve intraoperative arterial oxygenation and respiratory system mechanics in patients undergoing thoracic surgery under one-lung ventilation (OLV). METHODS: Patients were randomized to V-VCV (n = 39) or C-VCV (n = 39). During OLV tidal volume of 5 mL/kg predicted body weight (PBW) was used. Both groups were ventilated with a positive end-expiratory pressure (PEEP) of 5 cm H2O, inspiration to expiration ratio (I:E) of 1:1 (during OLV) and 1:2 during two-lung ventilation, the respiratory rate (RR) titrated to arterial pH, inspiratory peak-pressure ≤ 40 cm H2O and an inspiratory oxygen fraction of 1.0. RESULTS: Seventy-five out of 78 Patients completed the trial and were analyzed (dropouts were excluded). The partial pressure of arterial oxygen (PaO2) 20 min after the start of OLV did not differ among groups (V-VCV: 25.8 ± 14.6 kPa vs C-VCV: 27.2 ± 15.3 kPa; mean difference [95% CI]: 1.3 [-8.2, 5.5], P = 0.700). Furthermore, intraoperative gas exchange, intraoperative adverse events, need for rescue maneuvers due to desaturation and hypercapnia, incidence of postoperative pulmonary and extra-pulmonary complications, and hospital free days at day 30 after surgery did not differ between groups. CONCLUSIONS: In thoracic surgery patients under OLV, V-VCV did not improve oxygenation or respiratory system mechanics compared to C-VCV. Ethical Committee: EK 420092019. TRIAL REGISTRATION: at the German Clinical Trials Register: DRKS00022202 (16.06.2020).


Asunto(s)
Ventilación Unipulmonar , Intercambio Gaseoso Pulmonar , Mecánica Respiratoria , Procedimientos Quirúrgicos Torácicos , Volumen de Ventilación Pulmonar , Humanos , Ventilación Unipulmonar/métodos , Ventilación Unipulmonar/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Procedimientos Quirúrgicos Torácicos/efectos adversos , Procedimientos Quirúrgicos Torácicos/métodos , Anciano , Respiración con Presión Positiva/métodos , Respiración con Presión Positiva/efectos adversos , Anestesia General/métodos , Respiración Artificial/métodos , Oxígeno/sangre , Oxígeno/administración & dosificación
4.
Crit Care ; 28(1): 136, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654391

RESUMEN

BACKGROUND: In acute respiratory distress syndrome (ARDS), respiratory drive often differs among patients with similar clinical characteristics. Readily observable factors like acid-base state, oxygenation, mechanics, and sedation depth do not fully explain drive heterogeneity. This study evaluated the relationship of systemic inflammation and vascular permeability markers with respiratory drive and clinical outcomes in ARDS. METHODS: ARDS patients enrolled in the multicenter EPVent-2 trial with requisite data and plasma biomarkers were included. Neuromuscular blockade recipients were excluded. Respiratory drive was measured as PES0.1, the change in esophageal pressure during the first 0.1 s of inspiratory effort. Plasma angiopoietin-2, interleukin-6, and interleukin-8 were measured concomitantly, and 60-day clinical outcomes evaluated. RESULTS: 54.8% of 124 included patients had detectable respiratory drive (PES0.1 range of 0-5.1 cm H2O). Angiopoietin-2 and interleukin-8, but not interleukin-6, were associated with respiratory drive independently of acid-base, oxygenation, respiratory mechanics, and sedation depth. Sedation depth was not significantly associated with PES0.1 in an unadjusted model, or after adjusting for mechanics and chemoreceptor input. However, upon adding angiopoietin-2, interleukin-6, or interleukin-8 to models, lighter sedation was significantly associated with higher PES0.1. Risk of death was less with moderate drive (PES0.1 of 0.5-2.9 cm H2O) compared to either lower drive (hazard ratio 1.58, 95% CI 0.82-3.05) or higher drive (2.63, 95% CI 1.21-5.70) (p = 0.049). CONCLUSIONS: Among patients with ARDS, systemic inflammatory and vascular permeability markers were independently associated with higher respiratory drive. The heterogeneous response of respiratory drive to varying sedation depth may be explained in part by differences in inflammation and vascular permeability.


Asunto(s)
Biomarcadores , Permeabilidad Capilar , Inflamación , Síndrome de Dificultad Respiratoria , Humanos , Síndrome de Dificultad Respiratoria/fisiopatología , Síndrome de Dificultad Respiratoria/sangre , Masculino , Femenino , Persona de Mediana Edad , Permeabilidad Capilar/fisiología , Permeabilidad Capilar/efectos de los fármacos , Inflamación/fisiopatología , Inflamación/sangre , Anciano , Biomarcadores/sangre , Biomarcadores/análisis , Angiopoyetina 2/sangre , Angiopoyetina 2/análisis , Interleucina-8/sangre , Interleucina-8/análisis , Interleucina-6/sangre , Interleucina-6/análisis , Mecánica Respiratoria/fisiología
5.
Intensive Care Med ; 50(5): 617-631, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38512400

RESUMEN

PURPOSE: Assessing efficacy of electrical impedance tomography (EIT) in optimizing positive end-expiratory pressure (PEEP) for acute respiratory distress syndrome (ARDS) patients to enhance respiratory system mechanics and prevent ventilator-induced lung injury (VILI), compared to traditional methods. METHODS: We carried out a systematic review and meta-analysis, spanning literature from January 2012 to May 2023, sourced from Scopus, PubMed, MEDLINE (Ovid), Cochrane, and LILACS, evaluated EIT-guided PEEP strategies in ARDS versus conventional methods. Thirteen studies (3 randomized, 10 non-randomized) involving 623 ARDS patients were analyzed using random-effects models for primary outcomes (respiratory mechanics and mechanical power) and secondary outcomes (PaO2/FiO2 ratio, mortality, stays in intensive care unit (ICU), ventilator-free days). RESULTS: EIT-guided PEEP significantly improved lung compliance (n = 941 cases, mean difference (MD) = 4.33, 95% confidence interval (CI) [2.94, 5.71]), reduced mechanical power (n = 148, MD = - 1.99, 95% CI [- 3.51, - 0.47]), and lowered driving pressure (n = 903, MD = - 1.20, 95% CI [- 2.33, - 0.07]) compared to traditional methods. Sensitivity analysis showed consistent positive effect of EIT-guided PEEP on lung compliance in randomized clinical trials vs. non-randomized studies pooled (MD) = 2.43 (95% CI - 0.39 to 5.26), indicating a trend towards improvement. A reduction in mortality rate (259 patients, relative risk (RR) = 0.64, 95% CI [0.45, 0.91]) was associated with modest improvements in compliance and driving pressure in three studies. CONCLUSIONS: EIT facilitates real-time, individualized PEEP adjustments, improving respiratory system mechanics. Integration of EIT as a guiding tool in mechanical ventilation holds potential benefits in preventing ventilator-induced lung injury. Larger-scale studies are essential to validate and optimize EIT's clinical utility in ARDS management.


Asunto(s)
Impedancia Eléctrica , Respiración con Presión Positiva , Síndrome de Dificultad Respiratoria , Tomografía , Lesión Pulmonar Inducida por Ventilación Mecánica , Humanos , Respiración con Presión Positiva/métodos , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/fisiopatología , Tomografía/métodos , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Mecánica Respiratoria/fisiología
6.
J Clin Anesth ; 95: 111440, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38460413

RESUMEN

STUDY OBJECTIVE: To explore if the pressure-controlled ventilation (PCV) and pressure-controlled ventilation-volume guaranteed (PCV-VG) modes are superior to volume-controlled ventilation (VCV) in optimizing intraoperative respiratory mechanics in infants and young children in the prone position. DESIGN: A single-center prospective randomized study. SETTING: Children's Hospital, Zhejiang University School of Medicine. PATIENTS: Pediatric patients aged 1 month to 3 years undergoing elective spinal cord detethering surgery. INTERVENTIONS: Patients were randomly allocated to the VCV group, PCV group and PCV-VG group. The target tidal volume (VT) was 8 mL/kg and the respiratory rate (RR) was adjusted to maintain a constant end tidal CO2. MEASUREMENTS: The primary outcome was intraoperative peak airway pressure (Ppeak). Secondary outcomes included other respiratory and ventilation variables, gas exchange values, serum lung injury biomarkers concentration, hemodynamic parameters and postoperative respiratory complications. MAIN RESULTS: A total of 120 patients were included in the final analysis (40 in each group). The VCV group showed higher Ppeak at T2 (10 min after prone positioning) and T3 (30 min after prone positioning) than the PCV and PCV-VG groups (T2: P = 0.015 and P = 0.002, respectively; T3: P = 0.007 and P = 0.009, respectively). The prone-related decrease in dynamic compliance was prevented by PCV and PCV-VG ventilation modalities at T2 and T3 than by VCV (T2: P = 0.008 and P = 0.015, respectively; T3: P = 0.015 and P = 0.014, respectively). Additionally, there were no significant differences in other secondary outcomes among the three groups. CONCLUSION: In infants and young children undergoing spinal cord detethering surgery in the prone position, PCV-VG may be a better ventilation mode due to its ability to mitigate the increase in Ppeak and decrease in Cdyn while maintaining consistent VT.


Asunto(s)
Respiración Artificial , Volumen de Ventilación Pulmonar , Humanos , Posición Prona/fisiología , Lactante , Estudios Prospectivos , Masculino , Femenino , Preescolar , Volumen de Ventilación Pulmonar/fisiología , Respiración Artificial/métodos , Mecánica Respiratoria/fisiología , Complicaciones Posoperatorias/prevención & control , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/epidemiología , Posicionamiento del Paciente/métodos , Respiración con Presión Positiva/métodos , Respiración con Presión Positiva/efectos adversos
7.
J Exp Biol ; 227(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38426596

RESUMEN

Teiid lizards possess an incomplete post-hepatic septum (PHS) separating the lungs and liver from the remaining viscera, and within this group, Salvator merianae has the most complete PHS. In this study, we explored the combined effects of the presence of the PHS and alterations in abdominal volume on the mechanics of the respiratory system. The PHS is believed to act as a mechanical barrier, mitigating the impact of the viscera on the lungs. Using established protocols, we determined static (Cstat) and dynamic (Cdyn) compliance, lung volume and work of breathing for the respiratory system in tegu lizards with intact (PHS+) or removed (PHS-) PHS, combined with (balloon+) or without (balloon-) increased abdominal volume. The removal of the PHS significantly reduced resting lung volume and Cdyn, as well as significantly increasing the work of breathing. An increase in abdominal volume significantly reduced Cstat, Cdyn, and resting and maximum lung volume. However, the work of breathing increased less in the PHS+/balloon+ treatment than in the PHS- treatments. These results highlight the barrier function of the PHS within the tegu lizard's body cavity. The septum effectively reduces the impact of the viscera on the respiratory system, enabling the lungs to be ventilated at a low work level, even when abdominal volume is increased. The presence of the PHS in teiid lizards underscores how extrapulmonary structures, such as septal divisions of the body cavity, can profoundly affect pulmonary breathing mechanics.


Asunto(s)
Lagartos , Animales , Hígado , Pulmón , Respiración , Mecánica Respiratoria
9.
Crit Care Clin ; 40(2): 255-273, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432695

RESUMEN

Invasive mechanical ventilation allows clinicians to support gas exchange and work of breathing in patients with respiratory failure. However, there is also potential for iatrogenesis. By understanding the benefits and limitations of different modes of ventilation and goals for gas exchange, clinicians can choose a strategy that provides appropriate support while minimizing harm. The ventilator can also provide crucial diagnostic information in the form of respiratory mechanics. These, and the mechanical ventilation strategy, should be regularly reassessed.


Asunto(s)
Respiración Artificial , Mecánica Respiratoria , Humanos
10.
Respir Res ; 25(1): 112, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38448933

RESUMEN

BACKGROUND: Whether COVID-19-induced acute respiratory distress syndrome (ARDS) should be approached differently in terms of mechanical ventilation therapy compared to other virus-induced ARDS is debatable. Therefore, we aimed to ascertain whether the respiratory mechanical characteristics of COVID-19-induced ARDS differ from those of influenza A induced ARDS, in order to establish a rationale for mechanical ventilation therapy in COVID-19-induced ARDS. METHODS: This was a retrospective cohort study comparing patients with COVID-19-induced ARDS and influenza A induced ARDS. We included intensive care unit (ICU) patients with COVID-19 or Influenza A aged ≥ 19, who were diagnosed with ARDS according to the Berlin definition between January 2015 and July 2021. Ventilation parameters for respiratory mechanics were collected at specific times on days one, three, and seven after intubation. RESULTS: The median age of the 87 participants was 71.0 (62.0-78.0) years old, and 63.2% were male. The ratio of partial pressure of oxygen in arterial blood to the fractional of inspiratory oxygen concentration in COVID-19-induced ARDS was lower than that in influenza A induced ARDS during the initial stages of mechanical ventilation (influenza A induced ARDS 216.1 vs. COVID-19-induced ARDS 167.9, p = 0.009, day 1). The positive end expiratory pressure remained consistently higher in the COVID-19 group throughout the follow-up period (7.0 vs. 10.0, p < 0.001, day 1). COVID-19 and influenza A initially showed different directions for peak inspiratory pressure and dynamic compliance; however, after day 3, both groups exhibited similar directions. Dynamic driving pressure exhibited opposite trends between the two groups during mechanical ventilation. CONCLUSIONS: Respiratory mechanics show clear differences between COVID-19-induced ARDS and influenza A induced ARDS. Based on these findings, we can consider future treatment strategies for COVID-19-induced ARDS.


Asunto(s)
COVID-19 , Gripe Humana , Síndrome de Dificultad Respiratoria , Humanos , Masculino , Anciano , Femenino , Respiración Artificial , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Gripe Humana/terapia , Estudios Retrospectivos , COVID-19/terapia , Síndrome de Dificultad Respiratoria/diagnóstico , Síndrome de Dificultad Respiratoria/epidemiología , Síndrome de Dificultad Respiratoria/terapia , Mecánica Respiratoria , Oxígeno
11.
Nature ; 627(8005): 830-838, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448588

RESUMEN

Airway integrity must be continuously maintained throughout life. Sensory neurons guard against airway obstruction and, on a moment-by-moment basis, enact vital reflexes to maintain respiratory function1,2. Decreased lung capacity is common and life-threatening across many respiratory diseases, and lung collapse can be acutely evoked by chest wall trauma, pneumothorax or airway compression. Here we characterize a neuronal reflex of the vagus nerve evoked by airway closure that leads to gasping. In vivo vagal ganglion imaging revealed dedicated sensory neurons that detect airway compression but not airway stretch. Vagal neurons expressing PVALB mediate airway closure responses and innervate clusters of lung epithelial cells called neuroepithelial bodies (NEBs). Stimulating NEBs or vagal PVALB neurons evoked gasping in the absence of airway threats, whereas ablating NEBs or vagal PVALB neurons eliminated gasping in response to airway closure. Single-cell RNA sequencing revealed that NEBs uniformly express the mechanoreceptor PIEZO2, and targeted knockout of Piezo2 in NEBs eliminated responses to airway closure. NEBs were dispensable for the Hering-Breuer inspiratory reflex, which indicated that discrete terminal structures detect airway closure and inflation. Similar to the involvement of Merkel cells in touch sensation3,4, NEBs are PIEZO2-expressing epithelial cells and, moreover, are crucial for an aspect of lung mechanosensation. These findings expand our understanding of neuronal diversity in the airways and reveal a dedicated vagal pathway that detects airway closure to help preserve respiratory function.


Asunto(s)
Pulmón , Reflejo , Respiración , Mecánica Respiratoria , Nervio Vago , Animales , Femenino , Masculino , Ratones , Células Epiteliales/metabolismo , Pulmón/citología , Pulmón/inervación , Pulmón/fisiología , Mecanorreceptores/metabolismo , Parvalbúminas/metabolismo , Reflejo/fisiología , Células Receptoras Sensoriales/metabolismo , Nervio Vago/fisiología , Rendimiento Pulmonar/fisiología , Mecánica Respiratoria/fisiología
12.
Microbiol Spectr ; 12(4): e0357423, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38466118

RESUMEN

Few data are available on the lung microbiota composition of patients with coronavirus disease 2019-related acute respiratory distress syndrome (C-ARDS) receiving invasive mechanical ventilation (IMV). Moreover, it has never been investigated whether there is a potential correlation between lung microbiota communities and respiratory mechanics. We performed a prospective observational study in two intensive care units of a university hospital in Italy. Lung microbiota was investigated by bacterial 16S rRNA gene sequencing, performed on bronchoalveolar lavage fluid samples withdrawn after intubation. The lung bacterial communities were analyzed after stratification by respiratory system compliance/predicted body weight (Crs) and ventilatory ratio (VR). Weaning from IMV and hospital survival were assessed as secondary outcomes. In 70 C-ARDS patients requiring IMV from 1 April through 31 December 2020, the lung microbiota composition (phylum taxonomic level, permutational multivariate analysis of variance test) significantly differed between who had low Crs vs those with high Crs (P = 0.010), as well as in patients with low VR vs high VR (P = 0.012). As difference-driving taxa, Proteobacteria (P = 0.017) were more dominant and Firmicutes (P = 0.040) were less dominant in low- vs high-Crs patients. Similarly, Proteobacteria were more dominant in low- vs high-VR patients (P = 0.013). After multivariable regression analysis, we further observed lung microbiota diversity as a negative predictor of weaning from IMV and hospital survival (hazard ratio = 3.31; 95% confidence interval, 1.52-7.20, P = 0.048). C-ARDS patients with low Crs/low VR had a Proteobacteria-dominated lung microbiota. Whether patients with a more diverse lung bacterial community may have more chances to be weaned from IMV and discharged alive from the hospital warrants further large-scale investigations. IMPORTANCE: Lung microbiota characteristics were demonstrated to predict ventilator-free days and weaning from mechanical ventilation in patients with acute respiratory distress syndrome (ARDS). In this study, we observed that in severe coronavirus disease 2019 patients with ARDS who require invasive mechanical ventilation, lung microbiota characteristics were associated with respiratory mechanics. Specifically, the lung microbiota of patients with low respiratory system compliance and low ventilatory ratio was characterized by Proteobacteria dominance. Moreover, after multivariable regression analysis, we also found an association between patients' microbiota diversity and a higher possibility of being weaned from mechanical ventilation and discharged alive from the hospital. For these reasons, lung microbiota characterization may help to stratify patient characteristics and orient the delivery of target interventions. (This study has been registered at ClinicalTrials.gov on 17 February 2020 under identifier NCT04271345.).Registered at ClinicalTrials.gov, 17 February 2020 (NCT0427135).


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , COVID-19/terapia , ARN Ribosómico 16S/genética , Pulmón , Síndrome de Dificultad Respiratoria/terapia , Mecánica Respiratoria
13.
Respir Res ; 25(1): 99, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402379

RESUMEN

BACKGROUND: Intra-breath oscillometry has been proposed as a sensitive means of detecting airway obstruction in young children. We aimed to assess the impact of early life wheezing and lower respiratory tract illness on lung function, using both standard and intra-breath oscillometry in 3 year old children. METHODS: History of doctor-diagnosed asthma, wheezing, bronchiolitis and bronchitis and hospitalisation for respiratory problems were assessed by questionnaires in 384 population-based children. Association of respiratory history with standard and intra-breath oscillometry parameters, including resistance at 7 Hz (R7), frequency-dependence of resistance (R7 - 19), reactance at 7 Hz (X7), area of the reactance curve (AX), end-inspiratory and end-expiratory R (ReI, ReE) and X (XeI, XeE), and volume-dependence of resistance (ΔR = ReE-ReI) was estimated by linear regression adjusted on confounders. RESULTS: Among the 320 children who accepted the oscillometry test, 281 (88%) performed 3 technically acceptable and reproducible standard oscillometry measurements and 251 children also performed one intra-breath oscillometry measurement. Asthma was associated with higher ReI, ReE, ΔR and R7 and wheezing was associated with higher ΔR. Bronchiolitis was associated with higher R7 and AX and lower XeI and bronchitis with higher ReI. No statistically significant association was observed for hospitalisation. CONCLUSIONS: Our findings confirm the good success rate of oscillometry in 3-year-old children and indicate an association between a history of early-life wheezing and lower respiratory tract illness and lower lung function as assessed by both standard and intra-breath oscillometry. Our study supports the relevance of using intra-breath oscillometry parameters as sensitive outcome measures in preschool children in epidemiological cohorts.


Asunto(s)
Asma , Bronquiolitis , Bronquitis , Humanos , Preescolar , Ruidos Respiratorios/diagnóstico , Espirometría , Sistema Respiratorio , Asma/diagnóstico , Asma/epidemiología , Mecánica Respiratoria , Bronquitis/diagnóstico , Bronquitis/epidemiología
14.
J Appl Physiol (1985) ; 136(3): 630-642, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38328823

RESUMEN

Airway liquid is cleared into lung tissue after birth, which becomes edematous and forces the chest wall to expand to accommodate both the cleared liquid and incoming air. This study investigated how changing chest wall mechanics affects respiratory function after birth in near-term lambs with different airway liquid volumes. Surgically instrumented near-term lambs (139 ± 2 days) were randomized into Control (n = 7) or Elevated Liquid (EL; n = 6) groups. Control lambs had lung liquid drained to simulate expected volumes following vaginal delivery. EL lambs had airway liquid drained and 30 mL/kg liquid returned to simulate expected airway liquid volumes after elective cesarean section. Lambs were delivered, transferred to a Perspex box, and ventilated (30 min). Pressure in the box was adjusted to apply positive (7-8 cmH2O above atmospheric pressure) or negative (7-8 cmH2O below atmospheric pressure) pressures for 30 min before pressures were reversed. External negative pressures expanded the chest wall, reduced chest wall compliance (CCW) and increased lung compliance (CL) in Control and EL lambs. External positive pressures compressed the chest wall, increased CCW and reduced CL in Control and EL lambs. External negative pressure improved pulmonary oxygen exchange, reducing the alveolar-arterial difference in oxygen (AaDO2) by 69 mmHg (95% CI [13, 125]; P = 0.016) in Control lambs and by 300 mmHg (95% CI [233, 367]; P < 0.001) in EL lambs. In contrast, external positive pressures impaired pulmonary gas exchange, increasing the AaDO2 by 179 mmHg (95% CI [73, 285]; P = 0.002) in Control and by 215 mmHg (95% CI [89, 343]; P < 0.001) in EL lambs. The application of external thoracic pressures influences respiratory function after birth.NEW & NOTEWORTHY This study investigated how changes in chest wall mechanics influence respiratory function after birth. Our data indicate that the application of continuous external subatmospheric pressure greatly improves respiratory function in near-term lambs with respiratory distress, whereas external positive pressures impair respiratory function. Our findings indicate that, during neonatal resuscitation at birth, the forces applied to the chest wall should not be ignored as they can have a major impact on neonatal respiratory function.


Asunto(s)
Pared Torácica , Animales , Ovinos , Embarazo , Femenino , Cesárea , Resucitación , Respiración , Oxígeno , Animales Recién Nacidos , Mecánica Respiratoria
15.
Med Sci Sports Exerc ; 56(6): 1168-1176, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38350462

RESUMEN

PURPOSE: We set out to understand how underband tightness or pressure of a sports bra relates to respiratory function and the mechanical work of breathing ( during exercise. Our secondary purpose was to quantify the effects of underband pressure on O 2 during submaximal running. METHODS: Nine highly trained female runners with normal pulmonary function completed maximal and submaximal running in three levels of underband restriction: loose, self-selected, and tight. RESULTS: During maximal exercise, we observed a significantly greater during the tight condition (350 ± 78 J·min -1 ) compared with the loose condition (301 ± 78 J·min -1 ; P < 0.05), and a 5% increase in minute ventilation ( ) during the tight condition compared with the loose condition ( P < 0.05). The pattern of breathing also differed between the two conditions; the greater maximal during the tight condition was achieved by a higher breathing frequency (57 ± 6 vs. 52 ± 7 breaths·min -1 ; P < 0.05), despite tidal volume being significantly lower in the tight condition compared with the loose condition (1.97 ± 0.20 vs. 2.05 ± 0.23 L; P < 0.05). During steady-state submaximal running, O 2 increased 1.3 ± 1.1% (range: -0.3 to 3.2%, P < 0.05) in the tight condition compared with the loose condition. CONCLUSIONS: Respiratory function may become compromised by the pressure exerted by the underband of a sports bra when women self-select their bra size. In the current study, loosening the underband pressure resulted in a decreased work of breathing, changed the ventilatory breathing pattern to deeper, less frequent breaths, and decreased submaximal oxygen uptake (improved running economy). Our findings suggest sports bra underbands can impair breathing mechanics during exercise and influence whole-body metabolic rate.


Asunto(s)
Mecánica Respiratoria , Carrera , Humanos , Femenino , Carrera/fisiología , Mecánica Respiratoria/fisiología , Adulto , Trabajo Respiratorio/fisiología , Adulto Joven , Equipo Deportivo , Consumo de Oxígeno/fisiología , Volumen de Ventilación Pulmonar/fisiología
17.
Crit Care ; 28(1): 19, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38217038

RESUMEN

BACKGROUND: During control mechanical ventilation (CMV), the driving pressure of the respiratory system (ΔPrs) serves as a surrogate of transpulmonary driving pressure (ΔPlung). Expiratory muscle activity that decreases end-expiratory lung volume may impair the validity of ΔPrs to reflect ΔPlung. This prospective observational study in patients with acute respiratory distress syndrome (ARDS) ventilated with proportional assist ventilation (PAV+), aimed to investigate: (1) the prevalence of elevated ΔPlung, (2) the ΔPrs-ΔPlung relationship, and (3) whether dynamic transpulmonary pressure (Plungsw) and effort indices (transdiaphragmatic and respiratory muscle pressure swings) remain within safe limits. METHODS: Thirty-one patients instrumented with esophageal and gastric catheters (n = 22) were switched from CMV to PAV+ and respiratory variables were recorded, over a maximum of 24 h. To decrease the contribution of random breaths with irregular characteristics, a 7-breath moving average technique was applied. In each patient, measurements were also analyzed per deciles of increasing lung elastance (Elung). Patients were divided into Group A, if end-inspiratory transpulmonary pressure (PLEI) increased as Elung increased, and Group B, which showed a decrease or no change in PLEI with Elung increase. RESULTS: In 44,836 occluded breaths, ΔPlung ≥ 12 cmH2O was infrequently observed [0.0% (0.0-16.9%) of measurements]. End-expiratory lung volume decrease, due to active expiration, was associated with underestimation of ΔPlung by ΔPrs, as suggested by a negative linear relationship between transpulmonary pressure at end-expiration (PLEE) and ΔPlung/ΔPrs. Group A included 17 and Group B 14 patients. As Elung increased, ΔPlung increased mainly due to PLEI increase in Group A, and PLEE decrease in Group B. Although ΔPrs had an area receiver operating characteristic curve (AUC) of 0.87 (95% confidence intervals 0.82-0.92, P < 0.001) for ΔPlung ≥ 12 cmH2O, this was due exclusively to Group A [0.91 (0.86-0.95), P < 0.001]. In Group B, ΔPrs showed no predictive capacity for detecting ΔPlung ≥ 12 cmH2O [0.65 (0.52-0.78), P > 0.05]. Most of the time Plungsw and effort indices remained within safe range. CONCLUSION: In patients with ARDS ventilated with PAV+, injurious tidal lung stress and effort were infrequent. In the presence of expiratory muscle activity, ΔPrs underestimated ΔPlung. This phenomenon limits the usefulness of ΔPrs as a surrogate of tidal lung stress, regardless of the mode of support.


Asunto(s)
Infecciones por Citomegalovirus , Síndrome de Dificultad Respiratoria , Humanos , Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Respiración con Presión Positiva/métodos , Pulmón , Síndrome de Dificultad Respiratoria/terapia , Respiración , Mecánica Respiratoria/fisiología , Volumen de Ventilación Pulmonar/fisiología
18.
Respir Care ; 69(3): 325-332, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38195144

RESUMEN

BACKGROUND: Accuracy of esophageal pressure measured by an air-filled esophageal balloon catheter is dependent on balloon filling volume. However, this has been understudied in mechanically ventilated children. We sought to study the optimal filling volume in children receiving ventilation by using previously reported calibration methods. Secondary objectives included to examine the difference in pressure measurements at individualized optimal filling volume versus a standardized inflation volume and to study if a static hold during calibration is required to identify the optimal filling volume. METHODS: An incremental inflation calibration procedure was performed in children receiving ventilation, <18 y, instrumented with commercially available catheters (6 or 8 French) who were not breathing spontaneously. The balloon was manually inflated by 0.2 to 1.6 mL (6 French) or 2.6 mL (8 French). Esophageal pressure (Pes) and airway pressure tracings were recorded during the procedure. Data were analyzed offline by using 2 methods: visual determination of filling range with the calculation of the highest difference between expiratory and inspiratory Pes and determination of a correctly filled balloon by calculating the esophageal elastance. RESULTS: We enrolled 40 subjects with median (interquartile range [IQR]) age 6.8 (2-25) months. The optimal filling volume ranged from 0.2 to 1.2 mL (median [IQR] 0.6 [0.2-1.0] mL) in the subjects with a 6 French catheter and 0.2-2.0 mL (median [IQR] 0.7 [0.5-1.2] mL) for 8 French catheters. Inflating the balloon with 0.6 mL (median computed from the whole cohort) gave an absolute difference in transpulmonary pressure that ranged from -4 to 7 cm H2O compared with the personalized volume. Pes calculated over 5 consecutives breaths differed with a maximum of 1 cm H2O compared to Pes calculated during a single inspiratory hold. The esophageal elastance was correlated with weight, age, and sex. CONCLUSIONS: The optimal balloon inflation volume was highly variable, which indicated the need for an individual calibration procedure. Pes was not overestimated when an inspiratory hold was not applied.


Asunto(s)
Respiración Artificial , Mecánica Respiratoria , Niño , Humanos , Respiración Artificial/métodos , Presión , Catéteres , Pruebas de Función Respiratoria/métodos
19.
Comput Methods Programs Biomed ; 244: 107988, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171168

RESUMEN

BACKGROUND AND OBJECTIVE: Recruitment maneuvers with subsequent positive-end-expiratory-pressure (PEEP) have proven effective in recruiting lung volume and preventing alveoli collapse. However, determining a safe, effective, and patient-specific PEEP is not standardized, and this more optimal PEEP level evolves with patient condition, requiring personalised monitoring and care approaches to maintain optimal ventilation settings. METHODS: This research examines 3 physiologically relevant basis function sets (exponential, parabolic, cumulative) to enable better prediction of elastance evolution for a virtual patient or digital twin model of MV lung mechanics, including novel elements to model and predict distension elastance. Prediction accuracy and robustness are validated against recruitment maneuver data from 18 volume-controlled ventilation (VCV) patients at 7 different baseline PEEP levels (0 to 12 cmH2O) and 14 pressure-controlled ventilation (PCV) patients at 4 different baseline PEEP levels (6 to 12 cmH2O), yielding 623 and 294 prediction cases, respectively. Predictions were made up to 12 cmH2O of added PEEP ahead, covering 6 × 2 cmH2O PEEP steps. RESULTS: The 3 basis function sets yield median absolute peak inspiratory pressure (PIP) prediction error of 1.63 cmH2O for VCV patients, and median peak inspiratory volume (PIV) prediction error of 0.028 L for PCV patients. The exponential basis function set yields a better trade-off of overall performance across VCV and PCV prediction than parabolic and cumulative basis function sets from other studies. Comparing predicted and clinically measured distension prediction in VCV demonstrated consistent, robust high accuracy with R2 = 0.90-0.95. CONCLUSIONS: The results demonstrate recruitment mechanics are best captured by an exponential basis function across different mechanical ventilation modes, matching physiological expectations, and accurately capture, for the first time, distension mechanics to within 5-10 % accuracy. Enabling the risk of lung injury to be predicted before changing ventilator settings. The overall outcomes significantly extend and more fully validate this digital twin or virtual mechanical ventilation patient model.


Asunto(s)
Pulmón , Mecánica Respiratoria , Humanos , Mecánica Respiratoria/fisiología , Respiración Artificial/métodos , Respiración con Presión Positiva/métodos , Respiración
20.
Anesthesiology ; 140(3): 483-494, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38088791

RESUMEN

BACKGROUND: Lung protective ventilation aims at limiting lung stress and strain. By reducing the amount of pressure transmitted by the ventilator into the lungs, diaphragm neurostimulation offers a promising approach to minimize ventilator-induced lung injury. This study investigates the physiologic effects of diaphragm neurostimulation in acute respiratory distress syndrome (ARDS) patients. The hypothesis was that diaphragm neurostimulation would improve oxygenation, would limit the distending pressures of the lungs, and would improve cardiac output. METHODS: Patients with moderate ARDS were included after 48 h of invasive mechanical ventilation and had a left subclavian catheter placed to deliver bilateral transvenous phrenic nerve stimulation. Two 60-min volume-controlled mechanical ventilation (control) sessions were interspersed by two 60-min diaphragm neurostimulation sessions delivered continually, in synchrony with the ventilator. Gas exchange, lung mechanics, chest electrical impedance tomography, and cardiac index were continuously monitored and compared across four sessions. The primary endpoint was the Pao2/fraction of inspired oxygen (Fio2) ratio at the end of each session, and the secondary endpoints were lung mechanics and hemodynamics. RESULTS: Thirteen patients were enrolled but the catheter could not be inserted in one, leaving 12 patients for analysis. All sessions were conducted without interruption and well tolerated. The Pao2/Fio2 ratio did not change during the four sessions. Median (interquartile range) plateau pressure was 23 (20 to 31) cm H2O and 21 (17 to 25) cm H2O, driving pressure was 14 (12 to 18) cm H2O and 11 (10 to 13) cm H2O, and end-inspiratory transpulmonary pressure was 9 (5 to 11) cm H2O and 7 (4 to 11) cm H2O during mechanical ventilation alone and during mechanical ventilation + neurostimulation session, respectively. The dorsal/ventral ventilation surface ratio was 0.70 (0.54 to 0.91) when on mechanical ventilation and 1.20 (0.76 to 1.33) during the mechanical ventilation + neurostimulation session. The cardiac index was 2.7 (2.3 to 3.5) l · min-1 · m-2 on mechanical ventilation and 3.0 (2.4 to 3.9) l · min-1 · m-2 on mechanical ventilation + neurostimulation. CONCLUSIONS: This proof-of-concept study showed the feasibility of short-term diaphragm neurostimulation in conjunction with mechanical ventilation in ARDS patients. Diaphragm neurostimulation was associated with positive effects on lung mechanics and on hemodynamics.


Asunto(s)
Respiración con Presión Positiva , Síndrome de Dificultad Respiratoria , Humanos , Respiración con Presión Positiva/métodos , Diafragma , Mecánica Respiratoria/fisiología , Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA