Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 584
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
4.
Astrobiology ; 24(5): 498-517, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38768431

RESUMEN

Assessing the past habitability of Mars and searching for evidence of ancient life at Jezero crater via the Perseverance rover are the key objectives of NASA's Mars 2020 mission. Onboard the rover, PIXL (Planetary Instrument for X-ray Lithochemistry) is one of the best suited instruments to search for microbial biosignatures due to its ability to characterize chemical composition of fine scale textures in geological targets using a nondestructive technique. PIXL is also the first micro-X-ray fluorescence (XRF) spectrometer onboard a Mars rover. Here, we present guidelines for identifying and investigating a microbial biosignature in an aeolian environment using PIXL-analogous micro-XRF (µXRF) analyses. We collected samples from a modern wet aeolian environment at Padre Island, Texas, that contain buried microbial mats, and we analyzed them using µXRF techniques analogous to how PIXL is being operated on Mars. We show via µXRF technique and microscope images the geochemical and textural variations from the surface to ∼40 cm depth. Microbial mats are associated with heavy-mineral lags and show specific textural and geochemical characteristics that make them a distinct biosignature for this environment. Upon burial, they acquire a diffuse texture due to the expansion and contraction of gas-filled voids, and they present a geochemical signature rich in iron and titanium, which is due to the trapping of heavy minerals. We show that these intrinsic characteristics can be detected via µXRF analyses, and that they are distinct from buried abiotic facies such as cross-stratification and adhesion ripple laminations. We also designed and conducted an interactive survey using the Padre Island µXRF data to explore how different users chose to investigate a biosignature-bearing dataset via PIXL-like sampling strategies. We show that investigating biosignatures via PIXL-like analyses is heavily influenced by technical constraints (e.g., the XRF measurement characteristics) and by the variety of approaches chosen by different scientists. Lessons learned for accurately identifying and characterizing this biosignature in the context of rover-mission constraints include defining relative priorities among measurements, favoring a multidisciplinary approach to the decision-making process of XRF measurements selection, and considering abiotic results to support or discard a biosignature interpretation. Our results provide guidelines for PIXL analyses of potential biosignature on Mars.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Marte , Espectrometría por Rayos X , Exobiología/métodos , Exobiología/instrumentación , Medio Ambiente Extraterrestre/química , Espectrometría por Rayos X/métodos , Espectrometría por Rayos X/instrumentación
5.
Proc Natl Acad Sci U S A ; 121(21): e2318905121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739787

RESUMEN

We propose that spontaneous folding and molecular evolution of biopolymers are two universal aspects that must concur for life to happen. These aspects are fundamentally related to the chemical composition of biopolymers and crucially depend on the solvent in which they are embedded. We show that molecular information theory and energy landscape theory allow us to explore the limits that solvents impose on biopolymer existence. We consider 54 solvents, including water, alcohols, hydrocarbons, halogenated solvents, aromatic solvents, and low molecular weight substances made up of elements abundant in the universe, which may potentially take part in alternative biochemistries. We find that along with water, there are many solvents for which the liquid regime is compatible with biopolymer folding and evolution. We present a ranking of the solvents in terms of biopolymer compatibility. Many of these solvents have been found in molecular clouds or may be expected to occur in extrasolar planets.


Asunto(s)
Solventes , Biopolímeros/química , Solventes/química , Medio Ambiente Extraterrestre/química , Evolución Molecular , Agua/química
6.
Sci Adv ; 10(16): eadj7179, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38630826

RESUMEN

The formation of protein precursors, due to the condensation of atomic carbon under the low-temperature conditions of the molecular phases of the interstellar medium, opens alternative pathways for the origin of life. We perform peptide synthesis under conditions prevailing in space and provide a comprehensive analytic characterization of its products. The application of 13C allowed us to confirm the suggested pathway of peptide formation that proceeds due to the polymerization of aminoketene molecules that are formed in the C + CO + NH3 reaction. Here, we address the question of how the efficiency of peptide production is modified by the presence of water molecules. We demonstrate that although water slightly reduces the efficiency of polymerization of aminoketene, it does not prevent the formation of peptides.


Asunto(s)
Medio Ambiente Extraterrestre , Agua , Medio Ambiente Extraterrestre/química , Agua/química , Péptidos
7.
Astrobiology ; 24(5): 538-558, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38648554

RESUMEN

NASA's Perseverance and ESA's Rosalind Franklin rovers have the scientific goal of searching for evidence of ancient life on Mars. Geochemical biosignatures that form because of microbe-mineral interactions could play a key role in achieving this, as they can be preserved for millions of years on Earth, and the same could be true for Mars. Previous laboratory experiments have explored the formation of biosignatures under closed systems, but these do not represent the open systems that are found in natural martian environments, such as channels and lakes. In this study, we have conducted environmental simulation experiments using a global regolith simulant (OUCM-1), a thermochemically modelled groundwater, and an anaerobic microbial community to explore the formation of geochemical biosignatures within plausible open and closed systems on Mars. This initial investigation showed differences in the diversity of the microbial community developed after 28 days. In an open-system simulation (flow-through experiment), the acetogenic Acetobacterium (49% relative abundance) and the sulfate reducer Desulfosporomusa (43% relative abundance) were the dominant genera. Whereas in the batch experiment, the sulfate reducers Desulfovibrio, Desulfomicrobium, and Desulfuromonas (95% relative abundance in total) were dominant. We also found evidence of enhanced mineral dissolution within the flow-through experiment, but there was little evidence of secondary deposits in the presence of biota. In contrast, SiO2 and Fe deposits formed within the batch experiment with biota but not under abiotic conditions. The results from these initial experiments indicate that different geochemical biosignatures can be generated between open and closed systems, and therefore, biosignature formation in open systems warrants further investigation.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Marte , Medio Ambiente Extraterrestre/química , Exobiología/métodos , Agua Subterránea/microbiología , Agua Subterránea/química
8.
Astrobiology ; 24(5): 518-537, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38669050

RESUMEN

Solar radiation that arrives on the surface of Mars interacts with organic molecules present in the soil. The radiation can degrade or transform the organic matter and make the search for biosignatures on the planet's surface difficult. Therefore, samples to be analyzed by instruments on board Mars probes for molecular content should be selectively chosen to have the highest organic preservation content. To support the identification of organic molecules on Mars, the behavior under UV irradiation of two organic compounds, undecanoic acid and L-phenylalanine, in the presence of vermiculite and two chloride salts, NaCl and MgCl, was studied. The degradation of the molecule's bands was monitored through IR spectroscopy. Our results show that, while vermiculite acts as a photoprotective mineral with L-phenylalanine, it catalyzes the photodegradation of undecanoic acid molecules. On the other hand, both chloride salts studied decreased the degradation of both organic species acting as photoprotectors. While these results do not allow us to conclude on the preservation capabilities of vermiculite, they show that places where chloride salts are present could be good candidates for in situ analytic experiments on Mars due to their organic preservation capacity under UV radiation.


Asunto(s)
Silicatos de Aluminio , Exobiología , Marte , Fenilalanina , Rayos Ultravioleta , Fenilalanina/química , Exobiología/métodos , Silicatos de Aluminio/química , Medio Ambiente Extraterrestre/química , Fotólisis , Ácidos Grasos/química , Ácidos Grasos/análisis
10.
J Chromatogr A ; 1722: 464860, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38593521

RESUMEN

Thanks to the Cassini-Huygens space mission between 2004 and 2017, a lot was learned about Titan, the biggest satellite of Saturn, and its intriguing atmosphere, surface, and organic chemistry complexity. However, key questions about the potential for the atmosphere and surface chemistry to produce organic molecules of direct interest for prebiotic chemistry and life did not find an answer. Due to Titan potential as a habitable world, NASA selected the Dragonfly space mission to be launched in 2027 to Titan's surface and explore the Shangri-La surface region for minimum 3 years. One of the main goals of this mission will be to understand the past and actual abundant prebiotic chemistry on Titan, especially using the Dragonfly Mass Spectrometer (DraMS). Two recently used sample pre-treatments for Gas Chromatography - Mass Spectrometry (GC-MS mode of DraMS) analyses are planned prior analysis to extract refractory organic molecules of interest for prebiotic chemistry and astrobiology. The dimethylformamide dimethylacetal (DMF-DMA) derivatization reaction offers undoubtedly an opportunity to detect biosignatures by volatilizing refractory biological or prebiotic molecules and conserving the chiral carbons' conformation while an enantiomeric excess indicates a chemical feature induced primarily by life (and may be aided on the primitive systems by light polarization). The goal of this study is to investigate the ageing of DMF-DMA in DraMS (and likely MOMA) capsules prior to in situ analysis on Titan (or Mars). The main results highlighted by our work on DMF-DMA are first its satisfactory stability for space requirements through time (no significant degradation over a year of storage and less than 30 % of lost under thermal stress) to a wide range of temperature (0 °C to 250 °C), or the presence of water and oxidants during the derivatization reaction (between 0 and 10 % of DMF-DMA degradation). Moreover, this reagent derivatized very well amines and carboxylic acids in high or trace amounts (ppt to hundreds of ppm), conserving their molecular conformation during the heat at 145 °C for 3 min (0 to 4% in the enantiomeric form change).


Asunto(s)
Saturno , Estereoisomerismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Dimetilformamida/química , Exobiología/métodos , Medio Ambiente Extraterrestre/química , Vuelo Espacial
11.
Astrobiology ; 24(S1): S186-S201, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38498819

RESUMEN

While Earth contains the only known example of life in the universe, it is possible that life elsewhere is fundamentally different from what we are familiar with. There is an increased recognition in the astrobiology community that the search for life should steer away from terran-specific biosignatures to those that are more inclusive to all life-forms. To start exploring the space of possibilities that life could occupy, we can try to dissociate life from the chemistry that composes it on Earth by envisioning how different life elsewhere could be in composition, lifestyle, medium, and form, and by exploring how the general principles that govern living systems on Earth might be found in different forms and environments across the Solar System. Exotic life-forms could exist on Mars or Venus, or icy moons like Europa and Enceladus, or even as a shadow biosphere on Earth. New perspectives on agnostic biosignature detection have also begun to emerge, allowing for a broader and more inclusive approach to seeking exotic life with unknown chemistry that is distinct from life as we know it on Earth.


Asunto(s)
Medio Ambiente Extraterrestre , Júpiter , Medio Ambiente Extraterrestre/química , Exobiología , Sistema Solar , Planeta Tierra
12.
Astrobiology ; 24(S1): S57-S75, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38498821

RESUMEN

The materials that form the diverse chemicals and structures on Earth-from mountains to oceans and biological organisms-all originated in a universe dominated by hydrogen and helium. Over billions of years, the composition and structure of the galaxies and stars evolved, and the elements of life, CHONPS, were formed through nucleosynthesis in stellar cores. Climactic events such as supernovae and stellar collisions produced heavier elements and spread them throughout the cosmos, often to be incorporated into new, more metal-rich stars. Stars typically form in molecular clouds containing small amounts of dust through the collapse of a high-density core. The surrounding nebular material is then pulled into a protoplanetary disk, from which planets, moons, asteroids, and comets eventually accrete. During the accretion of planetary systems, turbulent mixing can expose matter to a variety of different thermal and radiative environments. Chemical and physical changes in planetary system materials occur before and throughout the process of accretion, though many factors such as distance from the star, impact history, and level of heating experienced combine to ultimately determine the final geophysical characteristics. In Earth's planetary system, called the Solar System, after the orbits of the planets had settled into their current configuration, large impacts became rare, and the composition of and relative positions of objects became largely fixed. Further evolution of the respective chemical and physical environments of the planets-geosphere, hydrosphere, and atmosphere-then became dependent on their local geochemistry, their atmospheric interactions with solar radiation, and smaller asteroid impacts. On Earth, the presence of land, air, and water, along with an abundance of important geophysical and geochemical phenomena, led to a habitable planet where conditions were right for life to thrive.


Asunto(s)
Planetas , Sistema Solar , Planeta Tierra , Atmósfera/química , Planetas Menores , Evolución Planetaria , Medio Ambiente Extraterrestre/química
13.
Astrobiology ; 24(S1): S143-S163, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38498826

RESUMEN

All known life on Earth inhabits environments that maintain conditions between certain extremes of temperature, chemical composition, energy availability, and so on (Chapter 6). Life may have emerged in similar environments elsewhere in the Solar System and beyond. The ongoing search for life elsewhere mainly focuses on those environments most likely to support life, now or in the past-that is, potentially habitable environments. Discussion of habitability is necessarily based on what we know about life on Earth, as it is our only example. This chapter gives an overview of the known and presumed requirements for life on Earth and discusses how these requirements can be used to assess the potential habitability of planetary bodies across the Solar System and beyond. We first consider the chemical requirements of life and potential feedback effects that the presence of life can have on habitable conditions, and then the planetary, stellar, and temporal requirements for habitability. We then review the state of knowledge on the potential habitability of bodies across the Solar System and exoplanets, with a particular focus on Mars, Venus, Europa, and Enceladus. While reviewing the case for the potential habitability of each body, we summarize the most prominent and impactful studies that have informed the perspective on where habitable environments are likely to be found.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Planeta Tierra , Medio Ambiente Extraterrestre/química , Planetas , Sistema Solar
14.
Nature ; 629(8010): 53-57, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447669

RESUMEN

Local and low-redshift (z < 3) galaxies are known to broadly follow a bimodal distribution: actively star-forming galaxies with relatively stable star-formation rates and passive systems. These two populations are connected by galaxies in relatively slow transition. By contrast, theory predicts that star formation was stochastic at early cosmic times and in low-mass systems1-4. These galaxies transitioned rapidly between starburst episodes and phases of suppressed star formation, potentially even causing temporary quiescence-so-called mini-quenching events5,6. However, the regime of star-formation burstiness is observationally highly unconstrained. Directly observing mini-quenched galaxies in the primordial Universe is therefore of utmost importance to constrain models of galaxy formation and transformation7,8. Early quenched galaxies have been identified out to redshift z < 5 (refs. 9-12) and these are all found to be massive (M⋆ > 1010 M⊙) and relatively old. Here we report a (mini-)quenched galaxy at z = 7.3, when the Universe was only 700 Myr old. The JWST/NIRSpec spectrum is very blue (U-V = 0.16 ± 0.03 mag) but exhibits a Balmer break and no nebular emission lines. The galaxy experienced a short starburst followed by rapid quenching; its stellar mass (4-6 × 108 M⊙) falls in a range that is sensitive to various feedback mechanisms, which can result in perhaps only temporary quenching.


Asunto(s)
Galaxias , Factores de Tiempo , Estrellas Celestiales , Medio Ambiente Extraterrestre/química
15.
Astrobiology ; 24(2): 190-226, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38393828

RESUMEN

The NASA Mars 2020 Perseverance rover is actively exploring Jezero crater to conduct analyses on igneous and sedimentary rock targets from outcrops located on the crater floor (Máaz and Séítah formations) and from the delta deposits, respectively. The rock samples collected during this mission will be recovered during the Mars Sample Return mission, which plans to bring samples back to Earth in the 2030s to conduct in-depth studies using sophisticated laboratory instrumentation. Some of these samples may contain traces of ancient martian life that may be particularly difficult to detect and characterize because of their morphological simplicity and subtle biogeochemical expressions. Using the volcanic sediments of the 3.45 Ga Kitty's Gap Chert (Pilbara, Australia), containing putative early life forms (chemolithotrophs) and considered as astrobiological analogues for potential early Mars organisms, we document the steps required to demonstrate the syngenicity and biogenicity of such biosignatures using multiple complementary analytical techniques to provide information at different scales of observation. These include sedimentological, petrological, mineralogical, and geochemical analyses to demonstrate macro- to microscale habitability. New approaches, some unavailable at the time of the original description of these features, are used to verify the syngenicity and biogenicity of the purported fossil chemolithotrophs. The combination of elemental (proton-induced X-ray emission spectrometry) and molecular (deep-ultraviolet and Fourier transform infrared) analyses of rock slabs, thin sections, and focused ion beam sections reveals that the carbonaceous matter present in the samples is enriched in trace metals (e.g., V, Cr, Fe, Co) and is associated with aromatic and aliphatic molecules, which strongly support its biological origin. Transmission electron microscopy observations of the carbonaceous matter documented an amorphous nanostructure interpreted to correspond to the degraded remains of microorganisms and their by-products (extracellular polymeric substances, filaments…). Nevertheless, a small fraction of carbonaceous particles has signatures that are more metamorphosed. They probably represent either reworked detrital biological or abiotic fragments of mantle origin. This study serves as an example of the analytical protocol that would be needed to optimize the detection of fossil traces of life in martian rocks.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Medio Ambiente Extraterrestre/química , Sedimentos Geológicos/química , Exobiología , Fósiles
16.
Phys Chem Chem Phys ; 26(2): 760-769, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37862004

RESUMEN

Biomembranes are a key component of all living systems. Most research on membranes is restricted to ambient physiological conditions. However, the influence of extreme conditions, such as the deep subsurface on Earth or extraterrestrial environments, is less well understood. The deep subsurface of Mars is thought to harbour high concentrations of chaotropic salts in brines, yet we know little about how these conditions would influence the habitability of such environments. Here, we investigated the combined effects of high concentrations of Mars-relevant salts, including sodium and magnesium perchlorate and sulphate, and high hydrostatic pressure on the stability, structure, and function of a bacterial model membrane. To this end, several biophysical techniques have been employed, including calorimetry, fluorescence and CD spectroscopy, confocal microscopy, and small-angle X-ray scattering. We demonstrate that sulphate and perchlorate salts affect the properties of the membrane differently, depending on the counterion present (Na+vs. Mg2+). We found that the perchlorates, which are believed to be abundant salts in the Martian environment, induce a more hydrated and less ordered membrane, strongly favouring the physiologically relevant fluid-like phase of the membrane even under high-pressure stress. Moreover, we show that the activity of the phospholipase A2 is strongly modulated by both high pressure and salt. Compellingly, in the presence of the chaotropic perchlorate, the enzymatic reaction proceeded at a reasonable rate even in the presence of condensing Mg2+ and at high pressure, suggesting that bacterial membranes could still persist when challenged to function in such a highly stressed Martian environment.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Medio Ambiente Extraterrestre/química , Sales (Química)/química , Sulfatos
18.
Astrobiology ; 23(10): 1056-1070, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37782210

RESUMEN

Growing evidence of the potential habitability of Ocean Worlds across our solar system is motivating the advancement of technologies capable of detecting life as we know it-sharing a common ancestry or physicochemical origin with life on Earth-or don't know it, representing a distinct emergence of life different than our one known example. Here, we propose the Electronic Life-detection Instrument for Enceladus/Europa (ELIE), a solid-state single-molecule instrument payload that aims to search for life based on the detection of amino acids and informational polymers (IPs) at the parts per billion to trillion level. As a first proof-of-principle in a laboratory environment, we demonstrate the single-molecule detection of the amino acid L-proline at a 10 µM concentration in a compact system. Based on ELIE's solid-state quantum electronic tunneling sensing mechanism, we further propose the quantum property of the HOMO-LUMO gap (energy difference between a molecule's highest energy-occupied molecular orbital and lowest energy-unoccupied molecular orbital) as a novel metric to assess amino acid complexity. Finally, we assess the potential of ELIE to discriminate between abiotically and biotically derived α-amino acid abundance distributions to reduce the false positive risk for life detection. Nanogap technology can also be applied to the detection of nucleobases and short sequences of IPs such as, but not limited to, RNA and DNA. Future missions may utilize ELIE to target preserved biosignatures on the surface of Mars, extant life in its deep subsurface, or life or its biosignatures in a plume, surface, or subsurface of ice moons such as Enceladus or Europa. One-Sentence Summary: A solid-state nanogap can determine the abundance distribution of amino acids, detect nucleic acids, and shows potential for detecting life as we know it and life as we don't know it.


Asunto(s)
Júpiter , Ácidos Nucleicos , Exobiología , Planeta Tierra , Aminoácidos , Medio Ambiente Extraterrestre/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA